
APMO 1991 – Problems and Solutions

Problem 1
Let G be the centroid of triangle ABC and M be the midpoint of BC. Let X be on AB and Y
on AC such that the points X, Y , and G are collinear and XY and BC are parallel. Suppose
that XC and GB intersect at Q and Y B and GC intersect at P . Show that triangle MPQ is
similar to triangle ABC.

Solution 1
Let R be the midpoint of AC; so BR is a median and contains the centroid G.
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It is well known that AG
AM

= 2
3
; thus the ratio of the similarity between AXY and ABC is 2

3
.

Hence GX = 1
2
XY = 1

3
BC.

Now look at the similarity between triangles QBC and QGX:

QG

QB
=
GX

BC
=

1

3
=⇒ QB = 3QG =⇒ QB =

3

4
BG =

3

4
· 2

3
BR =

1

2
BR.

Finally, since BM
BC

= BQ
BR

, MQ is a midline in BCR. Therefore MQ = 1
2
CR = 1

4
AC and

MQ ‖ AC. Similarly, MP = 1
4
AB and MP ‖ AB. This is sufficient to establish that MPQ

and ABC are similar (with similarity ratio 1
4
).

Solution 2
Let S and R be the midpoints of AB and AC, respectively. Since G is the centroid, it lies in
the medians BR and CS.
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Due to the similarity between triangles QBC and QGX (which is true because GX ‖ BC),
there is an inverse homothety with center Q and ratio −XG

BC
= XY

2BC
that takes B to G and C

to X. This homothety takes the midpoint M of BC to the midpoint K of GX.
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Now consider the homothety that takes B to X and C to G. This new homothety, with ratio
XY
2BC

, also takes M to K. Hence lines BX (which contains side AB), CG (which contains the
median CS), and MK have a common point, which is S. Thus Q lies on midline MS.
The same reasoning proves that P lies on midline MR. Since all homothety ratios are the
same, MQ

MS
= MP

MR
, which shows that MPQ is similar to MRS, which in turn is similar to ABC,

and we are done.
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Problem 2
Suppose there are 997 points given in a plane. If every two points are joined by a line segment
with its midpoint coloured in red, show that there are at least 1991 red points in the plane.
Can you find a special case with exactly 1991 red points?

Solution
Embed the points in the cartesian plane such that no two points have the same y-coordinate.
Let P1, P2, . . . , P997 be the points and y1 < y2 < . . . < y997 be their respective y-coordinates.
Then the y-coordinate of the midpoint of PiPi+1, i = 1, 2, . . . , 996 is yi+yi+1

2
and the y-coordinate

of the midpoint of PiPi+2, i = 1, 2, . . . , 995 is yi+yi+2

2
. Since

y1 + y2
2

<
y1 + y3

2
<
y2 + y3

2
<
y2 + y4

2
< · · · < y995 + y997

2
<
y996 + y997

2
,

there are at least 996 + 995 = 1991 distinct midpoints, and therefore at least 1991 red points.
The equality case happens if we take Pi = (0, 2i), i = 1, 2, . . . , 997. The midpoints are (0, i+j),
1 ≤ i < j ≤ 997, which are the points (0, k) with 1 + 2 = 3 ≤ k ≤ 996 + 997 = 1993, a total of
1993− 3 + 1 = 1991 red points.
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Problem 3
Let a1, a2, . . . , an, b1, b2, . . . , bn be positive real numbers such that a1 + a2 + · · ·+ an = b1 + b2 +
· · ·+ bn. Show that

a21
a1 + b1

+
a22

a2 + b2
+ · · ·+ a2n

an + bn
≥ a1 + a2 + · · ·+ an

2
.

Solution
By the Cauchy-Schwartz inequality,(

a21
a1 + b1

+
a22

a2 + b2
+ · · ·+ a2n

an + bn

)
((a1+b1)+(a2+b2)+· · ·+(an+bn)) ≥ (a1+a2+· · ·+an)2.

Since ((a1 + b1) + (a2 + b2) + · · ·+ (an + bn)) = 2(a1 + a2 + · · ·+ an),

a21
a1 + b1

+
a22

a2 + b2
+ · · ·+ a2n

an + bn
≥ (a1 + a2 + · · ·+ an)2

2(a1 + a2 + · · ·+ an)
=
a1 + a2 + · · ·+ an

2
.
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Problem 4
During a break, n children at school sit in a circle around their teacher to play a game. The
teacher walks clockwise close to the children and hands out candies to some of them according
to the following rule. He selects one child and gives him a candy, then he skips the next child
and gives a candy to the next one, then he skips 2 and gives a candy to the next one, then he
skips 3, and soon. Determine the values of n for which eventually, perhaps after many rounds,
all children will have at least one candy each.

Answer: All powers of 2.

Solution 1
Number the children from 0 to n − 1. Then the teacher hands candy to children in positions
f(x) = 1 + 2 + · · · + x mod n = x(x+1)

2
mod n. Our task is to find the range of f : Zn → Zn,

and to verify whether the range is Zn, that is, whether f is a bijection.
If n = 2am, m > 1 odd, look at f(x) modulo m. Since m is odd, m | f(x) ⇐⇒ m | x(x+ 1).
Then, for instance, f(x) ≡ 0 (mod m) for x = 0 and x = m− 1. This means that f(x) is not a
bijection modulo m, and there exists t such that f(x) 6≡ t (mod m) for all x. By the Chinese
Remainder Theorem,

f(x) ≡ t (mod n) ⇐⇒

{
f(x) ≡ t (mod 2a)

f(x) ≡ t (mod m)

Therefore, f is not a bijection modulo n.
If n = 2a, then

f(x)− f(y) =
1

2
(x(x+ 1)− y(y + 1)) =

1

2
(x2 − y2 + x− y) =

(x− y)(x+ y + 1)

2
.

and
f(x) ≡ f(y) (mod 2a) ⇐⇒ (x− y)(x+ y + 1) ≡ 0 (mod 2a+1). (∗)

If x and y have the same parity, x+ y + 1 is odd and (∗) is equivalent to x ≡ y (mod 2a+1). If
x and y have different parity,

(∗) ⇐⇒ x+ y + 1 ≡ 0 (mod 2a+1).

However, 1 ≤ x + y + 1 ≤ 2(2a − 1) + 1 = 2a+1 − 1, so x + y + 1 is not a multiple of 2a+1.
Therefore f is a bijection if n is a power of 2.

Solution 2
We give a full description of an, the size of the range of f .
Since congruences modulo n are defined, via Chinese Remainder Theorem, by congruences
modulo pα for all prime divisors p of n and α being the number of factors p in the factorization
of n, an =

∏
pα‖n apα .

Refer to the first solution to check the case p = 2: a2α = 2α.
For an odd prime p,

f(x) =
x(x+ 1)

2
=

(2x+ 1)2 − 1

8
,

and since p is odd, there is a bijection between the range of f and the quadratic residues modulo
pα, namely t 7→ 8t+ 1. So apα is the number of quadratic residues modulo pα.
Let g be a primitive root of pα. Then there are 1

2
φ(pα) = p−1

2
· pα−1 quadratic residues that

are coprime with p: 1, g2, g4, . . . , gφ(p
n)−2. If p divides a quadratic residue kp, that is, x2 ≡ kp

(mod pα), α ≥ 2, then p divides x and, therefore, also k. Hence p2 divides this quadratic
residue, and these quadratic residues are p2 times each quadratic residue of pα−2. Thus

apα =
p− 1

2
· pα−1 + apα−2.
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Since ap = p−1
2

+ 1 and ap2 = p−1
2
· p+ 1, telescoping yields

ap2t =
p− 1

2
(p2t−1 + p2t−3 + · · ·+ p) + 1 =

p(p2t − 1)

2(p+ 1)
+ 1

and

ap2t−1 =
p− 1

2
(p2t−2 + p2t−4 + · · ·+ 1) + 1 =

p2t − 1

2(p+ 1)
+ 1

Now the problem is immediate: if n is divisible by an odd prime p, apα < pα for all α, and since
at ≤ t for all t, an < n.
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Problem 5
Given are two tangent circles and a point P on their common tangent perpendicular to the
lines joining their centres. Construct with ruler and compass all the circles that are tangent to
these two circles and pass through the point P .

Solution
Throughout this problem, we will assume that the given circles are externally tangent, since
the problem does not have a solution otherwise.
Let Γ1 and Γ2 be the given circles and T be their tangency point. Suppose ω is a circle that is
tangent to Γ1 and Γ2 and passes through P .
Now invert about point P , with radius PT . Let any line through P that cuts Γ1 do so at points
X and Y . The power of P with respect to Γ1 is PT 2 = PX · PY , so X and Y are swapped
by this inversion. Therefore Γ1 is mapped to itself in this inversion. The same applies to Γ2.
Since circle ω passes through P , it is mapped to a line tangent to the images of Γ1 (itself) and
Γ2 (also itself), that is, a common tangent line. This common tangent cannot be PT , as PT
is also mapped to itself. Since Γ1 and Γ2 have exactly other two common tangent lines, there
are two solutions: the inverses of the tangent lines.

P

T

We proceed with the construction with the aid of some macro constructions that will be detailed
later.

Step 1. Draw the common tangents to Γ1 and Γ2.

Step 2. For each common tangent t, draw the projection Pt of P onto t.

Step 3. Find the inverse P1 of Pt with respect to the circle with center P and radius PT .

Step 4. ωt is the circle with diameter PP1.

Let’s work out the details for steps 1 and 3. Steps 2 and 4 are immediate.

Step 1. In this particular case in which Γ1 and Γ2 are externally tangent, there is a small
shortcut:

� Draw the circle with diameter on the two centers O1 of Γ1 and O2 of Γ2, and find its
center O.
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� Let this circle meet common tangent line OP at points Q,R. The required lines are the
perpendicular to OQ at Q and the perpendicular to OR at R.

O1 O2

P

T O

Q

R

Let’s show why this construction works. Let Ri be the radius of circle Γi and suppose without
loss of generality that R1 ≤ R2. Note that OQ = 1

2
O1O2 = R1+R2

2
, OT = OO1 − R1 = R2−R1

2
,

so

sin∠TQO =
OT

OQ
=
R2 −R1

R1 +R2

,

which is also the sine of the angle between O1O2 and the common tangent lines.
Let t be the perpendicular to OQ through Q. Then ∠(t, O1O2) = ∠(OQ,QT ) = ∠TQO, and t
is parallel to a common tangent line. Since

d(O, t) = OQ =
R1 +R2

2
=
d(O1, t) + d(O2, t)

2
,

and O is the midpoint of O1O2, O is also at the same distance from t and the common tangent
line, so these two lines coincide.

Step 3. Finding the inverse of a point X given the inversion circle Ω with center O is a well
known procedure, but we describe it here for the sake of completeness.

� If X lies in Ω, then its inverse is X.

� If X lies in the interior of Ω, draw ray OX, then the perpendicular line ` to OX at X.
Let ` meet Ω at a point Y . The inverse of X is the intersection X ′ of OX and the line
perpendicular to OY at Y . This is because OYX ′ is a right triangle with altitude Y X,
and therefore OX ·OX ′ = OY 2.

� If X is in the exterior of Ω, draw ray OX and one of the tangent lines ` from X to Ω
(just connect X to one of the intersections of Ω and the circle with diameter OX). Let
` touch Ω at a point Y . The inverse of X is the projection X ′ of Y onto OX. This is
because OYX ′ is a right triangle with altitude Y X ′, and therefore OX ·OX ′ = OY 2.

O
X ′

X

Y

X is inside Ω

O
X

X ′

Y

X is outside Ω
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