

SEEMOUS 2007

South Eastern European Mathematical Olympiad for University Students Agros, Cyprus 7-12 March 2007

Mathematical Society of South Eastern Europe Cyprus Mathematical Society

COMPETITION PROBLEMS 9 March 2007

Do all problems 1-4. Each problem is worth 10 points. All answers should be answered in the booklet provided, based on the rules written in the Olympiad programme. Time duration: 9.00 – 14.00

PROBLEM 1

Given $a \in (0,1) \cap \square$ let $a = 0, a_1 \ a_2 \ a_3 \dots$ be its decimal representation. Define

$$f_a(x) = \sum_{n=1}^{\infty} a_n x^n, x \in (0, 1).$$

Prove that f_a is a rational function of the form $f_a(x) = \frac{P(x)}{Q(x)}$, where P and Q are polynomials with integer coefficients.

Conversely, if $a_k \in \{0, 1, 2, \dots, 9\}$ for all $k \in \square$, and $f_a(x) = \sum_{n=1}^{\infty} a_n x^n$ for $x \in (0, 1)$

is a rational function of the form $f_a(x) = \frac{P(x)}{Q(x)}$, where P and Q are polynomials with integer coefficients, prove that the number $a = 0, a_1 a_2 a_3...$ is rational.

PROBLEM 2

Let $f(x) = \underbrace{max}_{i} |x_{i}|$ for $x = (x_{1}, x_{2}, ..., x_{n})^{T} \in \Box^{n}$ and let A be an nxn matrix such that f(Ax) = f(x) for all $x \in \square^n$. Prove that there exists a positive integer m such that A^m is the identity matrix I_n.

PROBLEM 3

Let F be a field and let P: $F \times F \to F$ be a function such that for every $x_0 \in F$ the function $P(x_0, y)$ is a polynomial in y and for every $y_0 \in F$ the function $P(x, y_0)$ is a polynomial in x.

Is it true that P is necessarily a polynomial in x and y, when

- a) $F = \Box$, the field of rational numbers?
- b) F is a finite field?

Prove your claims.

PROBLEM 4

For $x \in \square$, $y \ge 0$ and $n \in \square$ denote by $w_n(x, y) \in [0, \pi)$ the angle in radians with which the segment joining the point (n, 0) to the point (n + y, 0) is seen from the point $(x, 1) \in \square^2$.

a) Show that for every $x\in\Box$ and $y\geq0$, the series $\sum_{n=-\infty}^{\infty}w_{n}(x,y)$ converges.

If we now set $w(x,y) = \sum_{n=-\infty}^{\infty} w_n(x,y)$, show that $w(x,y) \le ([y] + 1)\pi$.

([y] is the integer part of y)

- b) Prove that for every $\epsilon > 0$ there exists $\delta > 0$ such that for every y with $0 < y < \delta$ and every $x \in \Box$ we have $w(x,y) < \epsilon$.
- c) Prove that the function $w: \Box x [0, +\infty) \rightarrow [0, +\infty)$ defined in (a) is continuous.