
APMO 2020 Solution

1. Let Γ be the circumcircle of ∆ABC. Let D be a point on the side BC. The tangent to Γ at A intersects
the parallel line to BA through D at point E. The segment CE intersects Γ again at F . Suppose
B,D,F,E are concyclic. Prove that AC,BF,DE are concurrent.

Solution 1 From the conditions, we have

∠CBA = 180◦ − ∠EDB = 180◦ − ∠EFB

= 180◦ − ∠EFA− ∠AFB

= 180◦ − ∠CBA− ∠ACB = ∠BAC.

Let P be the intersection of AC and BF . Then we have

∠PAE = ∠CBA = ∠BAC = ∠BFC.

This implies A,P, F,E are concyclic. It follows that

∠FPE = ∠FAE = ∠FBA,

and hence AB and EP are parallel. So E,P,D are collinear, and the result follows.

Solution 2
Let E′ be any point on the extension of EA. From ∠AED = ∠E′AB = ∠ACD, points A,D,C,E are
concyclic.
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Let P be the intersection of BF and DE. From ∠AFP = ∠ACB = ∠AEP , the points A,P, F,E are
concyclic. In addition, from ∠EPA = ∠EFA = ∠DBA, points A,B,D, P are concyclic.
By considering the radical centre of (BDFE), (APFE) and (BDPA), we find that the lines BD,AP,EF
are concurrent at C. The result follows.

2. Show that r = 2 is the largest real number r which satisfies the following condition:
If a sequence a1, a2, . . . of positive integers fulfills the inequalities

an ≤ an+2 ≤
√
a2n + ran+1

for every positive integer n, then there exists a positive integer M such that an+2 = an for every n ≥M .

Solution 1. First, let us assume that r > 2, and take a positive integer a ≥ 1/(r − 2).

Then, if we let an = a + bn/2c for n = 1, 2, . . ., the sequence an satisfies the inequalities

√
a2n + ran+1 ≥

√
a2n + ran ≥

√
a2n +

(
2 +

1

a

)
an ≥ an + 1 = an+2,

but since an+2 > an for any n, we see that r does not satisfy the condition given in the problem.

Now we show that r = 2 does satisfy the condition of the problem. Suppose a1, a2, . . . is a sequence of
positive integers satisfying the inequalities given in the problem, and there exists a positive integer m
for which am+2 > am is satisfied.

By induction we prove the following assertion:

(†) am+2k ≤ am+2k−1 = am+1 holds for every positive integer k.

The truth of (†) for k = 1 follows from the inequalities below

2am+2 − 1 = a2m+2 − (am+2 − 1)2 ≤ a2m + 2am+1 − (am+2 − 1)2 ≤ 2am+1.

Let us assume that (†) holds for some positive integer k. From

a2m+1 ≤ a2m+2k+1 ≤ a2m+2k−1 + 2am+2k ≤ a2m+1 + 2am+1 < (am+1 + 1)2,

it follows that am+2k+1 = am+1 must hold. Furthermore, since am+2k ≤ am+1, we have

a2m+2k+2 ≤ a2m+2k + 2am+2k+1 ≤ a2m+1 + 2am+1 < (am+1 + 1)2,
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from which it follows that am+2k+2 ≤ am+1, which proves the assertion (†).
We can conclude that for the value of m with which we started our argument above, am+2k+1 = am+1

holds for every positive integer k. Therefore, in order to finish the proof, it is enough to show that
am+2k becomes constant after some value of k. Since every am+2k is a positive integer less than or
equal to am+1, there exists k = K for which am+2K takes the maximum value. By the monotonicity
of am+2k, it then follows that am+2k = am+2K for all k ≥ K.

Solution 2
We only give an alternative proof of the assertion (†) in solution 1. Let {an} be a sequence satisfying
the inequalities given in the problem. We will use the following key observations:

(a) If an+1 ≤ an for some n ≥ 1, then

an ≤ an+2 ≤
√
a2n + 2an+1 <

√
a2n + 2an + 1 = an + 1,

hence an = an+2.

(b) If an ≤ an+1 for some n ≥ 1, then

an ≤ an+2 ≤
√
a2n + 2an+1 <

√
a2n+1 + 2an+1 + 1 = an+1 + 1,

hence an ≤ an+2 ≤ an+1.

Now let m be a positive integer such that am+2 > am. By the observations above, we must have
am < am+2 ≤ am+1. Thus the assertion (†) is true for k = 1. Assume that the assertion holds for some
positive integer k. Using observation (a), we get am+2k+1 = am+2k−1 = am+1. Thus am+2k ≤ am+2k+1,
and then using observation (b), we get am+2k+2 ≤ am+2k+1 = am+1, which proves the assertion (†).

3. Determine all positive integers k for which there exist a positive integer m and a set S of positive
integers such that any integer n > m can be written as a sum of distinct elements of S in exactly k
ways.
Solution:
We claim that k = 2a for all a ≥ 0.
Let A = {1, 2, 4, 8, . . . } and B = N\A. For any set T , let s(T ) denote the sum of the elements of T .
(If T is empty, we let s(T ) = 0.)

We first show that any positive integer k = 2a satisfies the desired property. Let B′ be a subset of
B with a elements, and let S = A ∪ B′. Recall that any nonnegative integer has a unique binary
representation. Hence, for any integer t > s(B′) and any subset B′′ ⊆ B′, the number t − s(B′′) can
be written as a sum of distinct elements of A in a unique way. This means that t can be written as a
sum of distinct elements of B′ in exactly 2a ways.

Next, assume that some positive integer k satisfies the desired property for a positive integer m ≥ 2
and a set S. Clearly, S is infinite.

Lemma: For all sufficiently large x ∈ S, the smallest element of S larger than x is 2x.

Proof of Lemma: Let x ∈ S with x > 3m, and let x < y < 2x. We will show that y 6∈ S. Suppose
first that y > x + m. Then y − x can be written as a sum of distinct elements of S not including x in
k ways. If y ∈ S, then y can be written as a sum of distinct elements of S in at least k + 1 ways, a
contradiction. Suppose now that y ≤ x + m. We consider z ∈ (2x−m, 2x). Similarly as before, z − x
can be written as a sum of distinct elements of S not including x or y in k ways. If y ∈ S, then since
m < z − y < x, z − y can be written as a sum of distinct elements of S not including x or y. This
means that z can be written as a sum of distinct elements of S in at least k + 1 ways, a contradiction.

We now show that 2x ∈ S; assume for contradiction that this is not the case. Observe that 2x can be
written as a sum of distinct elements of S including x in exactly k − 1 ways. This means that 2x can
also be written as a sum of distinct elements of S not including x. If this sum includes any number
less than x −m, then removing this number, we can write some number y ∈ (x + m, 2x) as a sum of
distinct elements of S not including x. Now if y = y′ + x where y′ ∈ (m,x) then y′ can be written as
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a sum of distinct elements of S including x in exactly k ways. Therefore y can be written as a sum of
distinct elements of S in at least k + 1 ways, a contradiction. Hence the sum only includes numbers
in the range [x −m,x). Clearly two numbers do not suffice. On the other hand, three such numbers
sum to at least 3(x−m) > 2x, a contradiction. �

From the Lemma, we have that S = T ∪ U , where T is finite and U = {x, 2x, 4x, 8x, . . . } for some
positive integer x. Let y be any positive integer greater than s(T ). For any subset T ′ ⊆ T , if
y − s(T ′) ≡ 0 (mod x), then y − s(T ′) can be written as a sum of distinct elements of U in a unique
way; otherwise y − s(T ′) cannot be written as a sum of distinct elements of U . Hence the number of
ways to write y as a sum of distinct elements of S is equal to the number of subsets T ′ ⊆ T such that
s(T ′) ≡ y (mod x). Since this holds for all y, for any 0 ≤ a ≤ x− 1 there are exactly k subsets T ′ ⊆ T
such that s(T ′) ≡ a (mod x). This means that there are kx subsets of T in total. But the number of
subsets of T is a power of 2, and therefore k is a power of 2, as claimed.

Solution 2. We give an alternative proof of the first half of the lemma in the Solution 1 above.

Let s1 < s2 < · · · be the elements of S. For any positive integer r, define Ar(x) =
∏r

n=1(1 + xsn).
For each n such that m ≤ n < sr+1, all k ways of writing n as a sum of elements of S must only use
s1, . . . , sr, so the coefficient of xn in Ar(x) is k. Similarly the number of ways of writing sr+1 as a sum
of elements of S without using sr+1 is exactly k − 1. Hence the coefficient of xsr+1 in Ar(x) is k − 1.

Fix a t such that st > 2(m + 1). Write

At−1(x) = u(x) + k
(
xm+1 + · · ·+ xst−1

)
+ xstv(x)

for some u(x), v(x) where u(x) is of degree at most m.

Note that
At+1(x) = At−1(x) + xstAt−1(x) + xst+1At−1(x) + xst+st+1At−1(x).

If st+1 + m + 1 < 2st, we can find the term xst+1+m+1 in xstAt−1(x) and in xst+1At−1(x). Hence the
coefficient of xst+1+m+1 in At+1(x) is at least 2k, which is impossible. So st+1 ≥ 2st − (m + 1) >
st + m + 1.

Now
At(x) = At−1(x) + xstu(x) + k(xst+m+1 + · · ·x2st−1) + x2stv(x).

Recall that the coefficent of xst+1 in At(x) is k− 1. But if st +m+ 1 < st+1 < s2t, then the coefficient
of xst+1 in At(x) is at least k, which is a contradiction. Therefore st+1 ≥ 2st.

4. Let Z denote the set of all integers. Find all polynomials P (x) with integer coefficients that satisfy the
following property:

For any infinite sequence a1, a2, . . . of integers in which each integer in Z appears exactly once, there
exist indices i < j and an integer k such that ai + ai+1 + · · ·+ aj = P (k).

Solution:

Part 1: All polynomials with degP = 1 satisfy the given property.

Suppose P (x) = cx + d, and assume without loss of generality that c > d ≥ 0. Denote si = a1 + a2 +
· · ·+ ai (mod c). It suffices to show that there exist indices i and j such that j− i ≥ 2 and sj − si ≡ d
(mod c).

Consider c + 1 indices e1, e2, . . . , ec+1 > 1 such that ael ≡ d (mod c). By the pigeonhole principle,
among the n+1 pairs (se1−1, se1), (se2−1, se2), . . . , (sen+1−1, sen+1

), some two are equal, say (sm−1, sm)
and (sn−1, sn). We can then take i = m− 1 and j = n.

Part 2: All polynomials with degP 6= 1 do not satisfy the given property.

Lemma: If degP 6= 1, then for any positive integers A,B, and C, there exists an integer y with |y| > C
such that no value in the range of P falls within the interval [y −A, y + B].

Proof of Lemma: The claim is immediate when P is constant or when degP is even since P is bounded
from below. Let P (x) = anx

n + · · · + a1x + a0 be of odd degree greater than 1, and assume without
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loss of generality that an > 0. Since P (x+ 1)−P (x) = annx
n−1 + . . . , and n−1 > 0, the gap between

P (x) and P (x + 1) grows arbitrarily for large x. The claim follows. �

Suppose degP 6= 1. We will inductively construct a sequence {ai} such that for any indices i < j and
any integer k it holds that ai +ai+1 + · · ·+aj 6= P (k). Suppose that we have constructed the sequence
up to ai, and m is an integer with smallest magnitude yet to appear in the sequence. We will add two
more terms to the sequence. Take ai+2 = m. Consider all the new sums of at least two consecutive
terms; each of them contains ai+1. Hence all such sums are in the interval [ai+1−A, ai+1 +B] for fixed
constants A,B. The lemma allows us to choose ai+1 so that all such sums avoid the range of P .

Alternate Solution for Part 1: Again, suppose P (x) = cx+d, and assume without loss of generality
that c > d ≥ 0. Let Si = {aj + aj+1 + · · · + ai (mod c) | j = 1, 2, . . . , i}. Then Si+1 = {si + ai+1

(mod c) | si ∈ Si} ∪ {ai+1 (mod c)}. Hence |Si+1| = |Si| or Si+1 = |Si|+ 1, with the former occuring
exactly when 0 ∈ Si. Since |Si| ≤ c, the latter can only occur finitely many times, so there exists I
such that 0 ∈ Si for all i ≥ I. Let t > I be an index with at ≡ d (mod c). Then we can find a sum of
at least two consecutive terms ending at at and congruent to d (mod c).

Alternate Construction when P (x) is constant or of even degree
If P (x) is of even degree, then P is bounded from below or from above. In case of P is constant
or bounded from above, then there exists a positive integer c such that P (x) < c. Let {ai} be the
sequence

0, 1,−1, 2, 3,−2, 4, 5,−3, · · ·

which is given by a3n+1 = 2n, a3n+2 = 2n + 1, a3n+3 = −(n + 1) for all n ≥ 0. Notice that for
any i < j we have ai + · · · + aj ≥ 0 . Then for the sequence {bn} defined by bn = an + c, clearly
bi + · · ·+ bj ≥ (ai + · · ·+ aj) + 2c > c which is out side the range of P (x).

Now if P is bounded from below, there exist a positive integer c such that P (x) > −c. In this case,
take bn to be bn = −an − c. Then for all i < j we have bi + · · ·+ bj ≤ −(a1 + · · · an)− 2c < −c which
is again out side the range of P (x).

5. Let n ≥ 3 be a fixed integer. The number 1 is written n times on a blackboard. Below the blackboard,
there are two buckets that are initially empty. A move consists of erasing two of the numbers a and b,
replacing them with the numbers 1 and a + b, then adding one stone to the first bucket and gcd(a, b)
stones to the second bucket. After some finite number of moves, there are s stones in the first bucket and
t stones in the second bucket, where s and t are positive integers. Find all possible values of the ratio t

s .

Solution:
The answer is the set of all rational numbers in the interval [1, n − 1). First, we show that no other
numbers are possible. Clearly the ratio is at least 1, since for every move, at least one stone is added
to the second bucket. Note that the number s of stones in the first bucket is always equal to p − n,
where p is the sum of the numbers on the blackboard. We will assume that the numbers are written
in a row, and whenever two numbers a and b are erased, a+ b is written in the place of the number on
the right. Let a1, a2, ..., an be the numbers on the blackboard from left to right, and let

q = 0 · a1 + 1 · a2 + · · ·+ (n− 1)an.

Since each number ai is at least 1, we always have

q ≤ (n− 1)p− (1 + · · ·+ (n− 1)) = (n− 1)p− n(n− 1)

2
= (n− 1)s +

n(n− 1)

2
.

Also, if a move changes ai and aj with i < j, then t changes by gcd(ai, aj) ≤ ai and q increases by

(j − 1)ai − (i− 1)(ai − 1) ≥ iai − (i− 1)(ai − 1) ≥ ai.

Hence q− t never decreases. We may assume without loss of generality that the first move involves the

rightmost 1. Then immediately after this move, q = 0 + 1 + · · ·+ (n− 2) + (n− 1) · 2 = (n+2)(n−1)
2 and
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t = 1. So after that move, we always have

t ≤ q + 1− (n + 2)(n− 1)

2

≤ (n− 1)s +
n(n− 1)

2
− (n + 2)(n− 1)

2
+ 1

= (n− 1)s− (n− 2) < (n− 1)s.

Hence, t
s < n− 1. So t

s must be a rational number in [1, n− 1).

After a single move, we have t
s = 1, so it remains to prove that t

s can be any rational number in
(1, n− 1). We will now show by induction on n that for any positive integer a, it is possible to reach
a situation where there are n − 1 occurrences of 1 on the board and the number an−1, with t and s
equal to an−2(a − 1)(n − 1) and an−1 − 1, respectively. For n = 2, this is clear as there is only one
possible move at each step, so after a − 1 moves s and t will both be equal to a − 1. Now assume
that the claim is true for n − 1, where n > 2. Call the algorithm which creates this situation using
n − 1 numbers algorithm A. Then to reach the situation for size n, we apply algorithm A, to create
the number an−2 . Next, apply algorithm A again and then add the two large numbers, repeat until
we get the number an−1 . Then algorithm A was applied a times and the two larger numbers were
added a − 1 times. Each time the two larger numbers are added, t increases by an−2 and each time
algorithm A is applied, t increases by an−3(a− 1)(n− 2). Hence, the final value of t is

t = (a− 1)an−2 + a · an−3(a− 1)(n− 2) = an−2(a− 1)(n− 1).

This completes the induction.

Now we can choose 1 and the large number b times for any positive integer b, and this will add b stones
to each bucket. At this point we have

t

s
=

an−2(a− 1)(n− 1) + b

an−1 − 1 + b
.

So we just need to show that for any rational number p
q ∈ (1, n− 1), there exist positive integers a and

b such that
p

q
=

an−2(a− 1)(n− 1) + b

an−1 − 1 + b

Rearranging, we see that this happens if and only if

b =
qan−2(a− 1)(n− 1)− p(an−1 − 1)

p− q
.

If we choose a ≡ 1 (mod p−q), then this will be an integer, so we just need to check that the numerator
is positive for sufficiently large a.

qan−2(a− 1)(n− 1)− p(an−1 − 1) > qan−2(a− 1)(n− 1)− pan−1

= an−2 (a(q(n− 1)− p)− (n− 1)) ,

which is positive for sufficiently large a since q(n− 1)− p > 0.

Alternative solution for the upper bound. Rather than starting with n occurrences of 1, we may
start with infinitely many 1s, but we are restricted to having at most n − 1 numbers which are not
equal to 1 on the board at any time. It is easy to see that this does not change the problem. Note
also that we can ignore the 1 we write on the board each move, so the allowed move is to rub off two
numbers and write their sum. We define the width and score of a number on the board as follows.
Colour that number red, then reverse every move up to that point all the way back to the situation
when the numbers are all 1s. Whenever a red number is split, colour the two replacement numbers
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red. The width of the original number is equal to the maximum number of red integers greater than 1
which appear on the board at the same time. The score of the number is the number of stones which
were removed from the second bucket during these splits. Then clearly the width of any number is
at most n − 1. Also, t is equal to the sum of the scores of the final numbers. We claim that if a
number p > 1 has a width of at most w, then its score is at most (p − 1)w. We will prove this by
strong induction on p. If p = 1, then clearly p has a score of 0, so the claim is true. If p > 1, then p
was formed by adding two smaller numbers a and b. Clearly a and b both have widths of at most w.
Moreover, if a has a width of w, then at some point in the reversed process there will be w numbers
in the set {2, 3, 4, ...} that have split from a, and hence there can be no such numbers at this point
which have split from b. Between this point and the final situation, there must always be at least one
number in the set {2, 3, 4, ...} that split from a, so the width of b is at most w − 1. Therefore, a and b
cannot both have widths of w, so without loss of generality, a has width at most w and b has width at
most w − 1. Then by the inductive hypothesis, a has score at most (a− 1)w and b has score at most
(b− 1)(w − 1). Hence, the score of p is at most

(a− 1)w + (b− 1)(w − 1) + gcd(a, b) ≤ (a− 1)w + (b− 1)(w − 1) + b

= (p− 1)w + 1− w

≤ (p− 1)w.

This completes the induction.

Now, since each number p in the final configuration has width at most (n − 1), it has score less than
(n− 1)(p− 1). Hence the number t of stones in the second bucket is less than the sum over the values
of (n− 1)(p− 1), and s is equal to the sum of the the values of (p− 1). Therefore, t

s < n− 1.
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