1	A Mediterranean polynomial has only real roots and it is of the form
	$P(x) = x^{10} - 20x^9 + 135x^8 + a_7x^7 + a_6x^6 + a_5x^5 + a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$
	with real coefficients $a_0 \dots, a_7$. Determine the largest real number that occurs as a root of some Mediterranean polynomial. (Proposed by Gerhard Woeginger, Austria)
2	Let A be a finite set of positive reals, let $B=\{x/y\mid x,y\in A\}$ and let $C=\{xy\mid x,y\in A\}$. Show that $ A \cdot B \leq C ^2$. (Proposed by Gerhard Woeginger, Austria)
3	A regular tetrahedron of height h has a tetrahedron of height xh cut off by a plane parallel to the base. When the remaining frustrum is placed on one of its slant faces on a horizontal plane, it is just on the point of falling over. (In other words, when the remaining frustrum is placed on one of its slant faces on a horizontal plane, the projection of the center of gravity G of the frustrum is a point of the minor base of this slant face.) Show that x is a root of the equation $x^3 + x^2 + x = 2$.
4	Let D be the foot of the internal bisector of the angle $\angle A$ of the triangle ABC . The straight line which joins the incenters of the triangles ABD and ACD cut AB and AC at M and N , respectively. Show that BN and CM meet on the bisector AD .