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Problem 1. Let ABC be an equilateral triangle. P is a variable point
internal to the triangle and its perpendicular distances to the sides are de-
noted by a2, b2 and c2 for positive real numbers a, b and c. Find the locus of
points P so that a, b and c can be the sides of a non-degenerate triangle.

[U.K.]

Solution. The required locus is the interior of the inscribed circle of
triangle ABC.

To prove this, embed the equilateral triangle in the Cartezian space Oxyz,
as the set in the plane x + y + z = 1 described by x, y, z ≥ 1. Let the feet
of the perpendiculars from P to BC and CA be D and E respectively, and
let the feet of the perpendiculars from P to the planes OBC and OCA
be Q and R respectively. Then triangles PQD and PRE are similar, so
PQ : PR = PD : PE; i.e. x : y = a2 : b2, where (x, y, z) are coordinates of
P . In the same way we get y : z = b2 : c2, so we have (a2 : b2 : c2) = (x : y : z).

Now if a, b and c are the sides of a triangle, the Heron’s formula states
that the square of the area of that triangle is

1

16
(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c).

So this quantity is positive. The reverse is also true.
Multiplying the expression out, this means that a, b and c are the sides

of a triangle if and only if

2
∑

b2c2 −
∑

a4 > 0.

Since a2, b2, c2 are proportional to x, y, z, it follows that a, b and c are the
sides of a triangle if and only if

2(x2 + y2 + z2) < (x+ y + z)2 = 1.

So the required locus of points is the intersection of the solid sphere x2 +y2 +
z2 < 1/2 with the plane x + y + z = 1; that is the interior of the inscribed
circle of the equilateral triangle.

Remark. Using a2, b2, c2 as baricentric coordinates for P , in an equilat-
eral triangle of circumradius 1, one can calculate the distance from P to the
incenter I, reducing thus the problem to an algebraic one. In fact one can
see the similarity to the above solution.



Problem 2. Prove that any bijective function f : Z→ Z can be written
as f = u+ v where u, v : Z→ Z are bijective functions.

[Romania]

Solution. To find u, v such that f = u + v it is enough to consider the
case f = identity on Z. For that it suffices to write the above relation as
idZ = u ◦ f−1 + v ◦ f−1. Consider the following well-ordering of the nonzero
integers: Z∗ = {1,−1, 2,−2, . . . , n,−n, . . . }.

Build the following table

Step A # B
−−−−− −−−− −−−− −−−−−

1 1 +1 2
2 −1 −2 −3
3 −2 −3 −5
4 3 +4 7
...

...
...

...
k ak sign(ak) · k bk = ak + #(k)
...

...
...

...

The inductive rule in completing the table is as follows: at step 1 write 1,
the first in the ordering of Z∗, in column A, in column # put the number of
the step, that is 1, with the sign from A, and in column B the sum from A
and #. Suppose now that row of step i has been completed. Write on row
i+1 in column A the first integer in the ordering of Z∗ that has not yet been
used in A nor B, in column # the number i+ 1 with the sign given by that
of the number just written in A, and in B the sum of A and #.

It is easy to see that in this manner we get an infinite array where A∪B =
Z∗ and A ∩B = ∅, while elements in A and B do not repeat.

Define now u(0) = v(0) = 0 and for x ∈ Z
• for x = ai ∈ A (meaning that x is in column A and row i), take

u(x) = −#(i), v(x) = bi;
• for x = bj ∈ B, take u(x) = #(j), v(x) = aj.
Obviously u and v are both bijections from Z to Z and idZ = u+ v. �
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Problem 3. Given positive integer a > 1, prove that any positive integer
N has a multiple in the sequence

(an)n≥1, an =
⌊an
n

⌋
.

[Romania]

Solution. In what follows, all literals will represent non-negative inte-
gers. The solution makes use of specific values for n, carefully chosen to
facilitate the computation of the floor function.

Clearly, there exist e ≥ 0, q ≥ 1 and

M = aa
e−eq, gcd(q, a) = 1,

such that M is a multiple of N .
Let us consider values n = aep, with p prime, p > M . Then, by Fermat’s

little Theorem (p > M ≥ a, so gcd(a, p) = 1)

aa
e(p−1) − 1 = (ap−1)a

e − 1 ≡ 0 (mod p), so an = aa
e

kp+ aa
e

,

therefore, as n = aep > aeM ≥ aa
e

an =
⌊an
n

⌋
= aa

e−ek.

On the other hand, kp = aa
e(p−1) − 1. Assuming p − 1 = mϕ(q) we

have aϕ(q) ≡ 1 (mod q)1 therefore kp ≡ 0 (mod q), so q divides kp. But
p > M > q, so gcd(q, p) = 1, hence q divides k, so M (and a fortiori N)
divides an.

We are left to prove that we can find such p− 1 = mϕ(q), that is, p > M
must belong to the arithmetic sequence of first-term 1 and ratio ϕ(q). The
existence of such p is guaranteed by Dirichlet’s Theorem2 and that
should suffice in an international math competition. �

Remarks. We will however, for self-containment, present a proof for this
particular case of Dirichlet’s Theorem 3

An arithmetical sequence of first-term 1 and ratio r contains infinitely
many primes (assume r > 2, as r = 1 or r = 2 makes it trivially true).

We will denote by d, 1 ≤ d < r, any (proper) divisor of r. Let us consider
the polynomial Xr−1 ∈ Z(X), factored in irreducible polynomials. Its roots
(the r-roots of unity) are

cos
2kπ

r
+ i sin

2kπ

r
, with 1 ≤ k ≤ r,

1ϕ is the Euler totient function, and gcd(q, a) = 1.
2Dirichlet’s Theorem asserts the existence of infinitely many primes in an arithmetic

sequence of co-prime first-term and ratio.
3This effort is a personal improvement on a proof by A. Rotkiewicz.
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and, for k = 1, the main primitive r-root of unity ζ cannot be the root of
any polynomial Xd − 1. Therefore ζ must be root of an irreducible factor
f(X) for Xr − 1, which cannot be a factor for any Xd − 1.4 Now

f(X) divides
Xr − 1

Xd − 1
for all d, and f(X) =

deg f∏
i=1

(X − zi),

with zi among the r-roots of unity, so |zi| = 1. Therefore, for any n > 2

|f(n)| =
deg f∏
i=1

|n− zi| ≥
deg f∏
i=1

|n− |zi|| = (n− 1)deg f > 1.

Assume now there are only finitely many such primes q, and take n = r
∏
q.5

As |f(n)| > 1, there exists p prime, dividing f(n), and therefore dividing nr−1
nd−1

for all d. We then cannot have p dividing nd − 1 for any d, because

X
r
d − 1 = (X − 1)P (X), P (X) = (X − 1)Q(X) +R, R = P (1) =

r

d
,

so nr−1
nd−1

= P (nd) = (nd−1)Q(nd)+ r
d
, while clearly nd−1 and r

d
are co-prime

(as r divides n), therefore p cannot divide r
d
.

This shows that nr ≡ 1 (mod p) and nd 6≡ 1 (mod p) for any d, so r =
ordp(n). But np−1 ≡ 1 (mod p) (by Fermat’s little Theorem), so we must
have r dividing p− 1, that is, p belongs to the stated arithmetical sequence.
However, p 6= q for any q considered in the above, as gcd(p, n) = 1, and thus
we have found yet another such prime, contradiction. �

4In fact (not needed here), all primitive roots, for gcd(k, r) = 1, are the roots of a same
irreducible factor Φr(X), of degree ϕ(r), which is the cyclotomic polynomial of order r.
Then Xr − 1 =

∏
d|r

Φd(X), the product of the (irreducible) cyclotomic polynomials.

5By definition
∏
q := 1 if no such primes were to be selected.
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Problem 4. Prove that from among any (n+ 1)2 points inside a square
of sidelength positive integer n, one can pick three, such that the triangle
determined by them has area no more than 1

2
.

[Romania]

Solution. Although the topic of the problem may somehow appear fa-
miliar, the solution involves a novel and ingenious mix of ideas, centered
around estimating areas of triangles using simple convexity inequalities.

Denote by A = n2 the area of the square, by P = 4n the perimeter of
the square, and by N = (n + 1)2 the number of points. The convex hull of
the set of N points will be a convex k-gon (contained in the given square),
3 ≤ k ≤ N , with N−k points in its interior (if any three points are collinear,
they will determine a triangle of area 0, thus rendering the result trivially).

We will make use of the following folklore result

Any triangulation of a (convex) k-gon, using m = N - k interior points,
is made of t = (k - 2) + 2m = 2(N - 1) - k triangles.6

As the area of the convex hull k-gon is at most A, it follows, using an
averaging argument, that there will exist a triangle ∆f of area at most

A

t
=

A

2(N − 1)− k
= f(k).

On the other hand, as the perimeter of the convex hull k-gon is at most P ,
one can find a pair of consecutive sides, be them a, b, of lengths a, b, such
that a+b

2
≤ P

k
(this also is an averaging argument). Now, the area of the

triangle ∆g determined by a, b, is

1

2
absin∠(a,b) ≤ 1

2

(a+ b

2

)2

≤ P 2

2k2
= g(k).

Clearly, the bounds for the areas of triangles ∆f ,∆g depend on k, but f(k)
is increasing, while g(k) is decreasing, therefore the worst case occurs for the
value calculated in k0 where the graphs of f and g meet

A

2(N − 1)− k0

=
P 2

2k2
0

, so k2
0 = 16(n+ 1)2 − 16− 8k0, hence k0 = 4n.

Both formulae f and g, calculated in k0, yield the value 1
2
, as required. �

Remarks. One can improve on the bound given by g(k); in fact it may
be proven that a triangle ∆g of area at most P 2

2k2 sin2π
k

can be found. However,
the minimum value offered by f(k) is greater than 1

2
( n
n+1

)2, which converges

6The total sum of angles for the t triangles is tπ; but the vertices contribute (k − 2)π,
while the interior points contribute 2mπ, therefore t = (k − 2) + 2m.
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to 1
2

when n grows large, thus thwarting any attempt to improve on the 1
2

bound. The issue is to improve on the bound given by f(k), but it is difficult
to find efficient ways to bound from above the size of a least-area triangle for
small k.

The author is far from claiming the result is tight (for large n), although
better estimates appear elusive; however the näıve attempt to use the pi-
geonhole principle in its simplest form (partition the side-n square into n2

unit squares; then for any 2n2 + 1 points inside the square there will exist
three within a unit square, thus determining a triangle of area at most 1

2
),

necessitates almost twice as many points as those afforded in the problem
(except for n = 2, when 2 · 22 + 1 = (2 + 1)2). On the other hand, for n = 1,
the result is best possible!

Moreover, using the P 2

2k2 sin2π
k

bound for ∆g, one can prove for n = 2 that
there exists a triangle of area at most 4

9
(the critical point k0 is moving from

value 8 to 7, when the correct answer is given by f(7) = 4
9
), a better bound

than anything found in the literature!
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