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Problem 1. Consider A ∈M2020(C) such that

(1)
A+ A× = I2020,
A · A× = I2020,

where A× is the adjugate matrix of A, i.e., the matrix whose elements are aij = (−1)i+jdji,
where dji is the determinant obtained from A, eliminating the line j and the column i.

Find the maximum number of matrices verifying (1) such that any two of them are
not similar.

Solution. It is known that
A · A× = detA · I2020,

hence, from the second relation we get detA = 1, so A is invertible. Next, multiplying in
the first relation by A, we get

A2 − A+ I2020 = O2020.

It follows that the minimal polynomial of A divides

X2 −X + 1 = (X − ω)(X − ω̄),

where

ω =
1

2
+ i

√
3

2
= cos

π

3
+ i sin

π

3
.

Because the factors of the minimal polynomial of A are of degree 1, it follows that A is
diagonalizable, so A is similar to a matrix of the form

Ak =

(
ωIk Ok,2020−k

O2020−k,k ω̄In−k

)
, k ∈ {0, 1, ..., 2020} .

But detA = 1, so we must have

ωkω̄2020−k = 1⇔ ω2k−2020 = 1⇔ cos
(2k − 2020)π

3
+ i sin

(2k − 2020)π

3
= 1

⇔ cos
(2k + 2)π

3
+ i sin

(2k + 2)π

3
= 1

⇔ k = 3n+ 2 ∈ {0, ..., 2020} ⇔ k ∈ {2, 5, 8, ..., 2018}

Two matrices that verify the given relations are not similar if and only if the numbers
k1, k2 corresponding to those matrices are different, so the required maximum number of
matrices is 673.
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Problem 2. Let k > 1 be a real number. Calculate:

(a) L = lim
n→∞

∫ 1

0

(
k

n
√
x+ k − 1

)n
dx.

(b) lim
n→∞

n

[
L−

∫ 1

0

(
k

n
√
x+ k − 1

)n
dx

]
.

Proof. (a) The limit equals
k

k − 1
.

Using the substitution x = yn we have that

In =

∫ 1

0

(
k

n
√
x+ k − 1

)n
dx = nkn

∫ 1

0

(
y

y + k − 1

)n−1
dy

y + k − 1
.

Using the substitution y
y+k−1 = t ⇒ y = (k−1)t

1−t we get, after some calculations, that

In = nkn
∫ 1

k

0

tn−1

1− t
dt.

We integrate by parts and we have that

In =
k

k − 1
− kn

∫ 1
k

0

tn

(1− t)2
dt.

It follows that lim
n→∞

In = k
k−1 since

0 < kn
∫ 1

k

0

tn

(1− t)2
dt <

kn+2

(k − 1)2

∫ 1
k

0

tn dt =
k

(n+ 1)(k − 1)2
.

(b) The limit equals
k

(k − 1)2
.

We have that
k

k − 1
− In = kn

∫ 1
k

0

tn

(1− t)2
dt.

We integrate by parts and we have that

k

k − 1
− In =

1

n+ 1
· k

(k − 1)2
− 2kn

n+ 1

∫ 1
k

0

tn+1

(1− t)3
dt.

This implies that

lim
n→∞

n

[
k

k − 1
−
∫ 1

0

(
k

n
√
x+ k − 1

)n
dx

]
=

= lim
n→∞

[
n

n+ 1
· k

(k − 1)2
− 2knn

n+ 1

∫ 1
k

0

tn+1

(1− t)3
dt

]
.

Thus

lim
n→∞

n

[
k

k − 1
−
∫ 1

0

(
k

n
√
x+ k − 1

)n
dx

]
=

k

(k − 1)2
,

since

0 < kn
∫ 1

k

0

tn+1

(1− t)3
dt <

kn+3

(k − 1)3

∫ 1
k

0

tn+1 dt =
k

(k − 1)3(n+ 2)
.
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Problem 3. Let n be a positive integer, k ∈ C and A ∈Mn(C) such that TrA 6= 0 and

rank A+ rank ((TrA) · In − kA) = n.

Find rank A.

Proof. For simplicity, denote α = TrA. Consider the block matrix:

M =

[
A 0
0 αIn − kA

]
.

We perform on M a sequence of elementary transformations on rows and columns (that
do not change the rank) as follows:

M
R1−→
[
A 0
A αIn − kA

]
C1−→
[
A kA
A αIn

]
R2−→

R2−→
[
A− k

α
A2 0

A αIn

]
C2−→
[
A− k

α
A2 0

0 αIn

]
= N

where

R1 : is the left multiplication by

[
In 0
In In

]
;

C1 : is the right multiplication by

[
In kIn
0 In

]
;

R2 : is the left multiplication by

[
In − k

α
A

0 In

]
;

C2 : is the right multiplication by

[
In 0
− 1
α
A In

]
.

It follows that

rank A+ rank (αIn − kA) = rank M = rank N = rank

(
A− k

α
A2

)
+ n.

Note that

rank

(
A− k

α
A2

)
= 0⇔ A− k

α
A2 = 0⇔ k

α
A︸︷︷︸
B

=

(
k

α
A

)2

⇔ B = B2

⇒ rank B = TrB = Tr

(
k

α
A

)
=
k

α
TrA = k

so finally rank A = rank B = k.



4

Problem 4. Consider 0 < a < T, D = R \ {kT + a | k ∈ Z} , and let f : D → R a
T−periodic and differentiable function which satisfies f ′ > 1 on (0, a) and

f(0) = 0, lim
x→a
x<a

f(x) = +∞ and lim
x→a
x<a

f ′(x)

f 2(x)
= 1.

(a) Prove that for every n ∈ N∗, the equation f(x) = x has a unique solution in the
interval (nT, nT + a) , denoted xn.

(b) Let yn = nT + a− xn and zn =

∫ yn

0

f(x)dx. Prove that lim
n→∞

yn = 0 and study the

convergence of the series
∑∞

n=1
yn and

∑∞

n=1
zn.

Proof. (1) Observe first that, for every n ∈ N∗, f(nT ) = 0 and lim
x→nT+a
x<nT+a

f(x) = +∞, hence

the equation f(x) = x has at least one solution in the interval (nT, nT + a) .
Now, consider the function g(x) = f(x)− x on (nT, nT + a) and observe that if there

would exist two solutions of the equation f(x) = x, say x1n < x2n, by Rolle’s Theorem, there
exists rn ∈ (x1n, x

2
n) ⊂ (nT, nT + a) such that g′(rn) = f ′(rn) − 1 = 0, a contradiction,

since f ′ > 1 on (nT, nT + a) by periodicity.
(2) Observe that for any n, f is strictly increasing on (nT, nT + a) . We prove that (yn)
is decreasing. By contradiction, suppose that yn < yn+1 for some n. Then T + xn > xn+1,
and by the monotonicity of f that

xn = f(xn) = f(xn + T ) > f(xn+1) = xn+1,

an obvious contradiction.
Since yn ∈ (0, a) for every n, it follows that (yn) it converges. Then there exists

y ≥ 0 such that yn → y. Suppose, by contradiction, that y > 0. Observe that y < a.
Since xn − nT → a − y for n → ∞, it follows by the continuity of f on (−T, a) that
f(xn − nT ) → f(a − y) ∈ R for n → ∞. But f(xn − nT ) = f(xn) = xn → ∞, hence we
obtain a contradiction. Therefore, yn → 0.

Next, we will prove that

lim
n→∞

n · yn =
1

T
,

hence
∑∞

n=1
yn diverges by a comparison test.

For that, observe that

lim
n→∞

n · yn = lim
n→∞

nT

Txn
· xnyn =

1

T
lim
n→∞

xnyn.

Moreover,

lim
n→∞

xnyn = lim
n→∞

f(xn) · yn = lim
n→∞

f(nT + a− yn) · yn

= lim
n→∞

yn
1

f(a−yn)
= − lim

n→∞

(a− yn)− a
1

f(a−yn)
.

But a− yn converges increasingly to a so the previous limit is

− lim
x→a
x<a

x− a
1

f(x)

= − lim
x→a
x<a

1

− f ′(x)
f2(x)

= 1.
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For the second series, observe that for every n, there is cn ∈ (0, yn) such that zn =
yn · f(cn). Since f is increasing on (0, a) ,

zn ≤ yn · f(yn) = y2n ·
f(yn)

yn
.

But f is differentiable at 0, and
f(yn)

yn
→ f ′(0) ≥ 0 for n→∞, hence there exists M > 0

such that, for any large n,
f(yn)

yn
≤M.

Then there exist n0 ∈ N and K > 0 such that

0 ≤ zn ≤
K

n2
, ∀n ≥ n0.

By a comparison test,
∑∞

n=1
zn converges.


