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Analysis

Problem }N‘f

Let f: R — R be a continuous convez function. Show that the inequality

/ i [flz+1t)— f(z))dt 2 0

-a

holds for any a > 0, z € R.

Remark. A function f is convex, if for any z¢ € R there exists a linear function
I(z, o) such that I(zg,z0) = f(zo) and I(z,z¢) < f(z) for any z € R.

Remark 2. It can be proved that every convex function f : R — R is continu-
ous. Also, using the definition given above one can see that

flz+1) + flz—t) 2 2f(z)

for every z,t € R.

First Solution. Fix some z € R and a > 0. Consider a rectangle P with center
at point A(z, f(z)) and one side parallel to Oz and equal to 2a, the other side
parallel to Oy and equal to 2b. Take b so large that each point (¢, f(¢)) lies in P
fort € [z—a,z+a]. Since f is convex, there is at least one tangent [ to its graph
at the point A(z, f(z)). Then, [ divides the area of P into two equal parts (A is
a center of P) and since the graph of f is situated above [, it evidently follows
that the set

{ty) |y<f@E)}nP
has area > ; area(P) = 2ab. In other terrs,
z+4a
|10 - (@) - vlat > 200,
whereby
z+a
[ v - s@nezo.

—a
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Now. by the change of variable u =t — z, one gets
" [f(e+u) - f@du 20,
Second Solution. The change of variables u = ~¢ shows that
[ e+ - st = [ (-1 - flonae.
So. it suffices to prove the inequality
/a [fe+1)+ flz - 1) — 2f()] dt 2 0.

This is clear because the integrand is non-negative by Remark 2.



Problem AN2

Let f : R — R be a continuous function which satisfies the equation
) af(z+1)+cf(z—1) = 2bf(z).

a.) Show that (x) has a non-constant continuous periodic solution if and
only ifa=c# 0 and % € [-1,1].

b.) Does the egquation have a periodic solution if the condition for continuity
is omitted? Justify your answer.

Solution. a.) Suppose that () has a continuous periodic solution f. We
distinguish three cases: &

(i) ® — ac > 0. Then, for some 7o we have f(zo) # 0, and hence, one can find
constants C; and Cz such that f(z) = C1AT + C2A3 for z € z¢ + Z where Ay 2
are the roots of the characteristic equation

(he) a)? - 262 +c=0.

Therefore f is unbounded on the set zg + Z which contradicts the hypothesis
that f is continuous and periodic.

(ii) b2 = ac. Then, the function f has the form (C; + Caz) (ﬁ)‘} on the set
zo + Z.

(iii) % — ac < 0. Then, the equation (he) has conjugate complex roots A; 2 =
r(cos pisin). It is easy to see that in this case the restriction of the function
f over the set zg + Z has the form f(z) = 7*(Cicospz + Casinpz). Thus
we obtain again that if r % 1 the function f is unbounded on zg + Z (observe
that for 7 > 0; 7 # 1 and n € Z the sequences {r" cosny} and {r"sinne} are
unbounded).

From the above we see that necessary conditions for the existence of a con-
tinuous periodic solution are: b —ac < 0 and 7 = 1. It is easy to check that the
condition r = 1 implies a = ¢. Indeed, if b —ac < 0 then A\; 2 = b—@ and
72 = & 4 ac5b” _ £ Note that from 5% —ac < 0 we must have £ = & € [0,1].

And so, the equation (he) takes the form f(z + 1) + f(z — 1) = 22 f(z).
Now, we have for example the solution f(z) = cos oz where a = arccos f.

b.) The answer is “yes”. One can construct a function f by using the set M
of all real numbers of the form z = m + né, where m,n € Z and £ is irrational
- for example, £ = v/2. Let furthermore A # 0 be a root of the equation (he).
If A € R we define the function f by f(z) = 0if z ¢ M and f(z) = ™ if
z = m + ny/2 for some m,n € Z.

In the case A = r(cos ¢ + isin¢) is complex one may put as above f(z) =0
for z ¢ M and f(z) = r™ cos myp otherwise.
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‘Problem AN3/ A (=%
Izt 7:1.0) — (0,00) and g : (0,00) — (0,00) be continuous functions such
that g s stmictly increasing and g(oo) = co. Assume that for every a > 0 the

egucsion f(z) = ag(z) has a solution in the interval [1,00).

o Prove that for every a > 0 the equation f(z) = ag(z) has infinitely many
soludions.

5. Is it possible to choose such a function f to be strictly increasing? Justify
you=r enswer.

Solution. 2 ) Suppose that one can find constants @ > 0 and b > 0 such that
Flz) = aglz) for all z € [b,c0). Since f and g are continuous we obtain two
possible cases:

1) f(z) > ag(z) for z € [b,o0). Define
_ . @) _ f{e)

- I !
zenb) g(z)  g(zo)

Then, for every z € [1,c0) one should have

min(a, c)
fla) > T2 gla),

a contradiction.
2.) f(z) < ag(z) for z € [b,c0). Define

" f(z) _ f(zo)
= selie 9(z) | 9(a0)

Then,
f(z) < 2max(a, C)g(z)

for every z € [1,00) and this is again a contradiction.

b.) The answer is yes. In view of the fact that g is increasing and :Jll.n;‘> g(z) =
oo one can choose a sequence 1 = 27 < 23 < -+ < T < --- such that the
sequence Y = 2%°*7g(z,) is also increasing. Next define f(zx) = yi and
extend f linearly on each interval [zx_1,7k]: f(z) = axz + b for suitable
ai,bx. In this way we obtain an increasing continuous function f, for which

lingo g(;:" = oo and nhn;o i(z:"':) = 0. It now follows that the continuous
n— n -t Th -

function g{g takes every positive value on [1,0).



Problem AN4
Let A be a subset of R and let f : A — (0,4+00) be a function such that

min{ f(z1), f(z2)} < |21 — 22|

for all z1,z5 € A. Prove that A is countable.

Solution. Assume that A is uncountable. We consider the following decompo-
sition of R x (0, +o0):

[~ < )

Rx(0,+00)= (J | Dam:

n=-—o00 m=0

where

Dpm = [n,n+1)x [leii' ;11—) and Dy o = [n,n+1)X[1, +c0), neZméeN.
Consider the graph G = {(z, f(z)) | z € A} of f. Since A is uncountable, the set
G is also uncountable. If all the sets GN Dy, », were finite, then the set G would
be countable. So, there exist ng € Z, mg > 0 such that G N Dy m, is infinite.
This means that there exists an infinite set X C [ng,ng+1)NA: forallz € X,
f(z) > -m—°1—+—1 Then, by Bolzano-Weierstrass theorem, there exists a sequence
of distinct elements (z,) C X which converges to some zg € [ng,ng + 1]. But
then, (z,) is a Cauchy sequence and for all k € N we have f(zx) > 'nT.l-ﬁ This
leads to a contradiction:

1
mo+1

Jim [ze+1 —2zk| =0 and min{f(zk), f(Zk+1)} 2
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Pro%ﬁ 5

Let a, (n=1,2,...) be a non-increasing sequence of non-negative numbers such
that Y oo | an < +00. Prove that nan, — 0 as n — oo.

First Solution. Assume that na, does not converge to 0. Then, we can find
¢ > 0 and a subsequence a;, (k=1,2,...) such that a;, > c/k for all k € N.

We define a new sequence b, (n = 1,2,...) as follows: for all n € N we set
bn = ¢/ik(n), where k(n) = min{k : iy > n}. Since a, is non-increasing, one can
check that for all n € N,

bn = ¢/ik(n) < Gipny < Cn-

Hence,

o oc

D a2 bn

n=1 n=1
We shall prove that 3 .- ; bp = +oc, which is a contradiction. Suppose that
limp—o bn = 0, otherv ‘se the statement is clearly true. Consider Zf;l b, as
the area of a histograr .. where the n-th column has width 1 and height b,. Set
io = 0. Summing by columns we get

) o0 oo ©
an &= Z(zk —ig—1)b;, = CZ(ik —tg-1)/k = CZ(]- — tk-1/1k).
n=1 k=1 k=1 k=1

Summing by layers, we get

oo o0 oo o0
D bn =) (biy = bipy, )ik = (1/ik — Viks1)in = ¢ Y _(1 - ix/iks1).
n=1 k=1 k=1

k=1

The last sum can be rewritten as cz,;";z(l — ik—1/i). So, the two sums differ
by ¢(1 —ip/i1) = ¢ # 0. This can be possible only if 3 oo ; bp = +00.

o0
Second Solution. Let £ > 0. Since ) a, < 400, the sequence s, = a; +
n=1
-+ + a, of partial sums is a Cauchy sequence. So, there exists ng € N with the
following property: if n > m > ng then
£

Qi1+ +8n =87 —Sm| < 2

In particular, if n > 2ng, choosing m = ng and using the fact that (a,) is
non-increasing, we get
€
2
because n—ng > 3. In other words, for «.i n 2> 2ny we have na, <e. It follows
that lim (na,) =0.
n-—oco

na,
>a-m+1+"'+an2(n—no)an2—,j-,



Problem AN6

Let n be a positive integer and f : [0,1] — R be a continuous function such that

/l:z:kf(:c)dz=1
0

for every k € {0,1,...,n — 1}. Prove that

/: f(z)dz > nl.
Solution. There exists a polynomial p(z) = a; + a2 + -+ - + a,z" ! which
satisfies
(1) ‘/:a:kp(:z:)dm=1 forallk=0,1,...,n—1.
It follows that, for all k =0,1,...,n— 1,
[ #t@ -stanaz =o,

and hence 4
/(; p(z)(f(z) — p(z))dz = 0.

Then, we can write

1
/0 f(@)(f(z) - p(2)) do

1 n—1 1
JRECEE Y O

k=0

1
/0 (f(z) - p(z))2dz

and since the first integral is non-negative we get
1
/ fAz)dz > a1 +az+ - +an.
0

To complete the proof we show the following:
Claim. For the coefficients ay,...,a, of p we have

a1 +ag + -+ +a, =n’

Proof of the Claim. The defining property of p can be written in the form

ai az Qn
=1, <k<n-1
k+1 T k+2 " TExa e
Equivalently, the function
r(z) = ay az G an st

z+1 z+2 T+n
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has 0,1,...,n — 1 as zeros. We write r in the form

glz)—(z+1)(z+2)---(z+n)
(z+1)(z+2)--(z+n)

r(z) = .
where ¢ is a polynomial of degree n — 1. Observe that the coefficient of 2"~ in
¢ is equal to a; + a2+ -+ +an. Also, the numerator has 0,1,... ,n—1 as zeros,
which shows that

@)= (@ +1)(z+2)- (+n) Fa(z—1)---(z — (n - 1)).

This expression for g shows that the coefficient of z"~! in g is 3(22-"'—12 + L"_'zll’_‘

It follows that

a1+a2+---+an=n2.



Problem/m'/

Prove that every positive rational number can be writien as the sum of finitely
many fractions of the form % with n > 2 and distinct denominators.

Solution. Let z be a positive rational number. We distinguish three cases:
A ; . |

(i) z = 1. Then, we can write z = 5 + 5 + 3.

(i) 0 < x < 1. We write z = ¢, where a,b € N with 0 < a < b. We write n; for

the least positive integer such that n; > and set a; = nya—>b, by = n1b. Then,
wecaneasxlycheckthat0<a1 <a,n1 >landz=§ =1 =8 +8. Ifa =0
thenz = ¢ = L and this proves the assertion. Assume that a.1 > 0 Repeating

the same argument for z; = 311 (0,1) we find ni,az,bs such that ny is the
least positive integer satisfying np > %, az = mpa; — by and by = npby. Then,
0<ay <a; and %11 = n% + %22. Moreover, nga > nga; > by = n1b which implies
;—511 > g > 1, and hence, ny > n;. As before, if as = 0 the proof is complete. If
ap > 0, we proceed in a similar way to obtain a sequence of fractions

a a1 az Qf

E,E,E,...,b—k',....

Our construction shows that the sequence of numerators is strictly decreasing.
Therefore, for some k£ we will have a; = 1. This means that there exists k such
that
a 1 1 1
T===—4 — 4 -4+ —
b n1 me Nk
and all the denominators are distinct integers greater than 1.

(iii) z > 1. Since the series Y po, % is divergent and the sequence of its partial
sums is strictly increasing, there exists n > 2 such that

il ’fl
—<z< =
k=2k k= k

If z = Y ;_, %, then the proof is complete. If z > Y°7_, %, we define y =
T—3 pm2 % € (0,1). As in the first part of the proof, we can write y in the form

1
(1) y=—+—F-4—,
where 2 < n; < ng < -+ < ng. If we prove that n; > n then the proof is
complete: we have
1

1 1 1 1
=+ + b oyl U e
3 ny; No N

For the inequality n; > n, observe that y = 2 - 30, & < 747 and, by (1),
y>> 1 . It follows that - = S 1, and hence, n; >n+1>n.



Lz 7 - 0.8 — R be twmos diferentioble. Assume that f, f' and f" are continu-
oss o .= s=d §{0) = 7(0) = 0. Prove that

[ VErEreie< 2 [ (@) e,
- 0

Solution. An zpplication of the Cauchy-Schwarz inequality shows that
2 a a
([ viEreireie) < ([ rereis) ([ 1e)is).
So, it is enough to prove that

a 3 a
) | rer@iess [ (@)

Since f(0) = 0. we can write

(@) = 1£(z) - FO)| = 0“ (t)dt}s /Oalf’(t)ldt-

6= ([ il dt)z.

G'(z) = 2| (2)| [o S 170t 2 2 (@) F @)

Define
Then,

It follows that

/Oa |£(2)f'(@)ldz < 5 / s G(a) _ % ( /0 |f'(t)|dt)2,

One more application of the Cauchy-Schwarz inequality shows that

(f lf’(t)ldt>2 <([Cae) ([ ones) =o( [ (rayes).

Since f’(0) = 0, we can write f'(z) = foz f"(t) dt, and Cauchy-Schwarz inequal-
ity shows that

(f'(2))? = ( /0 § F'(@) dt)z <% /0 ) (F"@®) dt <z /0 ’ (f"@)* dt.

It follows that

Yea 2 " » 15\ \ 2 soas _‘f_ ® on 2
(4) /0 (f'()) sz/o a:/o ((f (t)) dt) dz = 2/0 (£"(2)* at.
Combining (2), (3) and (4) we get

/0“|f(z)f'(x)|dzs-;-(/oalf’(t)ldt) <§(/ (@)’ ) aZ/ (@) a

This proves (1).
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Problem AN9

Let f : (0,00) — (0,00) be a continuous and strictly increasing function. As-
sume that the equation f(z) = z has a unique solution ¢ > 0. Let ug > 0 and
define uny1 = f(un), n > 0. Prove that the sequence (un)n>0 is convergent and
find its limit.

Solution. Using the intermediate value theorem one can check that f(z) > z
for z € [0,¢) and f(z) < z for z € (¢, 00).

We distinguish three cases:
(i) If ug = c then u; = f(up) = f(c) = ¢ = up. Inductively, we see that u, =c
for all n > 0. It follows that u, — c.
(i) If 0 < wo < ¢ we have: u; = f(u) < f(¢) = ¢ (because f is strictly
increasing) and u; = f(ug) > uo (because ug < ¢). Therefore, 0 < uy < u; < c.
Inductively, we see that (un)n>0 is increasing and bounded from above by c.
It follows that u, — y for some y < c¢. By the continuity of f at y we get
Un+1 = f(un) = f(y), and hence, f(y) = y. It follows that y = ¢ and u, — c.
(iii) If ug > ¢ we have: u; = f(ug) > f(c¢) = ¢ (because f is increasing) and
u; = f(ug) < ug (because ug > ¢). Therefore, ug > u; > c¢. Inductively, we see
that (un)n>0 is decreasing and bounded from below by c. It follows that u, — y
for some y > c. By the continuity of f at y we get u,41 = f(un) — f(y), and
hence, f(y) = y. It follows that y = c and u, — c.
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Problem AN10

Let f : [0,00) — [0,00) be a continuous function and let p > 1 be a real number.
Define I, = .f0°° fP(z) dz and assume that I} < co. Prove the following:

(i) If f is uniformly continuous on [0,00) then it is bounded on [0, c0).

(i) If f is bounded on [0, 00) then I, < oo for allp > 1.

(iti) The converse of the above statements are false.

Solution. (i) One can actually show that lim f (z) = 0. If not, we can find
M > 0 and a sequence (z,) in [0, o) such that z, — co and f(z,) > M for all
n € N. We can also assume that 2,41 > z, + 1 for all n € N (define the z,'s
inductively).

Since f is uniformly continuous, we can find 0 < § < 1 such that [z —y| < §
implies [f(z) — f(y)| < %. It follows that f(z) > Y for all n € N and all
z € Jp := [zn — 6,25 + 6]. Since 0 < § < 1, the intervals J,, are disjoint. Now,
f is non-negative, and hence,

- N
11=/0 f(x)dzzgfjnf(z)dszMé

for all N € N. This shows that I; = oo, a contradiction.

(ii) Assume that there exists M > 0 such that f(z) < M for every z € [0, 0).
Then, for every p > 1 we have

I, = / " @) @) do < M / " f(e)do = MUy < 0.
0 0

(iii) A counterexample for the converse of (i). We set I, = [n - ;lg,n], Iy =

[n.n+ 2] for n > 2, and define f as follows:
flz)=1+n*(z-n)onl,, f(z)=1-n*(z—n)onJ,, f(z)= 0 otherwise.

Check that f is continuous on [0, c0) and

2= [ f@a=Y [  j@da=Y z<w

n=2 n=2

On the other hand, f is not uniformly continuous: consider the sequences a, = n
and b, =n+ %, n > 2. We have b, — an = 25 — 0 but |f(bn) — f(as)| =1 for
alln > 2.

A counterexample for the converse of (ii). Fix p > 1 and consider any g > p.
We set I, = [n— =3r,n], Jn = [n,n + 31| for n > 2, and define f as follows:

f(z) = n9*%(z—n)+non I, f(z) =n—-n?"2(z—n)on J,, f(z) = 0 otherwise.
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Check that f is continuous on [0, c0) and

Ip(f) = / f(-’t)d:c 2Z/n+;ﬁfﬁ' TL nq+2(z_n))P &
n=2
7 5 1
- 22/ n"+zy)pdy=22;_:2;q—_1;+-7/a (1—2Pdz
2 1
= — 00

P+ 1 n‘l‘i”+1

On the other hand, f is not bounded: observe that f(n) =n for all n > 2.



Let 7 - 0.2} — 0.). g : [0.00) — (0,00) be two continuous functions.
Define I, = |5 9lf(z))f(z) dz and assume that I = [° f(z) dz < oo. Prove

sho ST e
i€ joilowmng:

-

)

f = wnaformly condinuous on [0,00) then it is bounded on [0, c0).

e
[

(35) If f is bounded on [0,00) then I, < 0.

.“‘ ‘ 4"‘

(t3i) The converse of the above statements are false.

Solution. (i) One can actually show that lim f (z) = 0. If not, we can find
M > 0 and 2 sequence (z,) in [0, 00) such that 2, — oo and f(z,) > M for all
n € N. We can zlso assume that z,+1 > 2, + 1 for all n € N (define the z,,’s
inductively).

Since f is uniformly continuous, we can find 0 < § < 1 such that [z —y| < ¢
implies |f(z) — f(y)| < . It follows that f(z) > % for all n € N and all
z € J, =z, — 8,2z, + ). Since 0 < § < 1, the intervals J, are disjoint. Now,
f is non-negative, and hence,

= N
I1=/0 f(x)dngLnf(x)dmzNMé

for all N € N. This shows that I; = co, a contradiction.

(ii) Assume that there exists M > 0 such that f(z) < M for every z € [0, 0).
Since g is continuous on [0, M], there exists D > 0 such that g(y) < D for all
0 <y < M. It follows that g(f(z)) < D for all z > 0. Then,

L= [ si@Ns@d<D [~ fe)da = DI <o

(iii) A counterexample for the converse of (i). We set I, = [n— %;,n], Jp =

[n,n+ %] for n > 2, and define f as follows:
fl@)=1+n*(@—n)onl,, f(z)=1-n*@z-n)onJd,, f(z)=0otherwise.

Check that f is continuous on [0,c0) and

Il(f)zfowf(z)dz=Z/J g f(_:c)d:c=2$<oo.

n=2 n=2

On the other hand, f is not uniformly continuous: consider the sequences a, = n
and b, =n+ 2, n > 2. We have b, —an = 75 — 0 but |f(bn) — f(as)| = 1 for
alln > 2.

A counterexample for the converse of (ii). For n > 2 we define

an=‘/onzg(z)dx2/olzg(m)dx=:r>0.
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There exists & € N such that na, > nr > 2 for all n > k We set I, =
n-— t,n], Jp = [n,n + ;‘}:] for n > k, and define f as follows:

f(z) = axn®(z—n)+non I,, f(z) = n—ann*(z—n) on Jy, f(z) =0 otherwise.

Check that the intervals I;, U Jyn, n > k are disjoint, f is continuous on [0, cc)
and

oo = | " 0 (@)f (@) de

T
= 2;/" " (n = ann®(z — n))g(n — ann®(z — n)) dx

20 nan
2y / (n — ann®y)g(n — ann’y) dy
0

n=k
oo 1 n
= 12 / n—z)g(n—z)dz
2, o ), @2
= 2Zann2an=2zﬁ<w'
n=k n=k

On the other hand, f is not bounded: observe that f(n) =n for all n > k.
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Problem AN12
Let f: [a,b] — R be a continuous function such that

b
/ o* f(z)dz =0
For 0,12, 000 =L, adind

Prove that the equation f(z) =0 has at least n%;ts.

Sketch of a Solution. Suppose the contrary. Then there are k£ < n — 1 points
a <z < Ty <...<uzp <bwhere the sign of f(z) changes. Consider the

polynomial
9(z) = (@ —z1)(z —23) -+ (z — mk) = 2" + 12 + - + T + a0

The sign of the product f(z)g(z) is constant (with the exception of the finite
set of points z which satisfy f(z)g(z) = 0), hence

b
[s@is@ dz o
On the other hand,
b k b
/g(:c)f(z) dz = Zai/mif(rc) dz = ZO =0.
a =0 a

This leads to a contradiction.



Chapter 2

Algebra

Problem AL1
For any square matriz A = (a;;), denote by A" = (@;;) the matriz with elements

- a;j, ifi+J is even
a;; =
" laj, ifi+j is odd.

For each positive integer n, find all n X n matrices A such that the equality
(AB)M = BHAM holds for all n x n matrices B.

Solution. If n < 2 then any matrix A satisfies the condition, since in this case
the operation A — A" is the usual transposition of a matrix.

Suppose n > 3 and let B be the matrix with b;; = 1 and all other entires
equal to zero. It follows from (AB)" = BHA" that ajr = 0 for k # j and
aj; = a if 1+ j is even. Hence the matrix A should be diagonal with elements
a,b.a,b,... in the diagonal. It is easy to check that such matrices A satisfy the
condition.
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Problem AL2

Let m < n be positive integers and P(z) = ™ +pp_12" " +-- -+ pg be a polyno-
mial with complez coefficients and no more than m distinct complex roots. It is
given that P(z) # z™. Prove that at least one coefficient among pn—1,. - ,Pn-m
s not equal to:0.

Solution. Let P(z) = (z — 21)% -+ - (z — zx)%*, where z1,22,...,2k are the
distinct roots of P(z), so that k& < m by our hypothesis. Then P’(z) is divisible
by Q(z) = (x — 21)**™ - (z — zx)** !, which has degree n — k > n — m. The
polynomial nP(z) — zP'(z) is divisible by Q(z) too, so either it is identically
zero or its degree is at least n — m. But

nP(z) — 2P (z) = pn-12""" + 228" % +-- - + nipo

is identically zero only if P(z) = z", which is forbidden. Therefore we must have
deg(nP(z)—zP'(z)) > n—m and hence some coefficient among pn_i,...,Pn-m
is not equal to 0.
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Problem AL3

Let P(z) and Q(z) be two real polynomials (possibly of different degrees). If the
set of points where P(x) attains integer values is equal to the set of points where
Q(z) attains integer values, prove that P(z) — Q(z) = ¢ or P(z) + Q(z) = c.

Solution. By continuity considerations, one may assume that neither P(z) nor
Q(z) is a constant polynomial. One may assume further that P(z) and Q(z)
have leading coefficients with the same sign, for example positive (otherwise one
may replace Q(z) by —Q(z)).

So let the leading coefficients of P(z) and Q(z) be positive. Then there
exists a > 0 such that P(z) and Q(z) increase when z > a. Let t; <ty < :--
be those points ¢ > a where P(z) attains integer values. By continuity, these
values must be successive integers f, f+1, f+2.... By our hypothesis, Q(z) also
attains integer values at these points, which must also be successive integers.
So P(z) — Q(z) attains the same value at infinitely many points t; <t < ---
and hence must be a constant polynomial.
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Problem AL4

Let P(z),Q(z), R(z) be nonzero polynomials with complez coefficients. Leta,b,c
be distinct nonzero compler numbers and set

zn = P(n)a™ +Q(n)d™ + R(n) c™.

Prove that if the set {z, : n € N} is finite, then there ezists p € N\ {0} such
that zn4p = 25, for everyn € N.

Solution. Let 2}, = 2,41 — azy, so that

2, = Pi(n)a™ + Q1(n)b" + Ry(n)c™

where
Pi(n) = a(P(n +1) - P(n)),

Q1(n) = Q(n +1) — aQ(n),
Ri(n) = cR(n+1) —aR(n)

have degrees deg(P) — 1, deg(Q" and deg(R), respectively. Since {z, : n € N}
is a finite set, so is {z}, : n € N; Repeating the argument finitely many times
we can transform any two of the polynomials P(z),Q(z), R(z) into zero and
the third into a nonzero constant polynomial. We conclude that all three sets
{a™ : n € N}, {b" : n € N} and {c" : n € N} are finite and hence that a? =
b? = ¢" = 1 for some positive integers p, g, 7. Replacing these integers by their
least common multiple we may assume that p=g=17,sothata? =P =c? =1
for some positive integer p. Setting n = kp in the formula for z,, it follows that
the set {P(kp)+ Q(kp)+ R(kp) : k € N} is finite and hence that the polynomial
P + @Q + R is constant. Similarly, setting n = kp + 1 and n = kp + 2 we find
that the polynomials aP + bQ + cR and a?P + b?Q + ¢?R are constants. Hence
P, @ and R are constants and the result follows.

Remark. Using generating functions instead, we have

f(n) g(n) h(n)
= +
> A-a)  @-b07  Q-ct)
for some polynomials f,g and h (of degrees less than m,r and s, respecively).
The operation of replacing z, by 2/, in the preceeding proof corresponds (essen-
tially) to multiplying this generating function by 1 — at.
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Problem AL5

Let M,(R) denote the set of all real nxn matrices. Find all surjective functions
f:Mnp(R) —{0,1,...,n} which satisfy

f(X-Y) < min{f(X), f(Y)}
for all X, Y € M,(R).

Solution. We will show that the only such function is f(X) = rank(X). Setting

Y = I, we find that f(X) < f(I,) for all X € M,(R). Setting Y = X~ we

find that f(I,) < f(X) for all invertible X € M,(R). From these facts we

conclude that f(X) = f(I,) for all X € GL,(R). :
For X € GL,(R) and Y € M, (R) we have

f¥)=f(X1XY) < f(XY) < f(Y),
f¥) = f(¥YXX™') < f(YX) < f(Y).

Hence we have f(XY) = f(YX) = f(Y) for all X € GL,(R) and Y € M,(R).
For k=0,1,...,n, let
(& O
5= (5 9).

It is well known that every matrix ¥ € M,(R) is equivalent to J for k =
rank(Y’). This means that there exist matrices X, Z € GL,(R) such that ¥ =
XJiZ. From the discussion above it follows that f(Y") = f(Ji). Thus it suffices
to determine the values of the function f on the matrices Jg, Ji,...,Jn. Since
Jr = Ji - Je+1 we have f(Jx) € f(Ji41) for 0 < k < n— 1. Surjectivity of
f imples that f(Jx) = k for k = 0,1,...,n and hence f(Y) = rank(Y) for all
Y € Mn(R).
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Problem AL6

Let G be a finite group and let p be the smallest prime number which divides the
order of G. If H is a subgroup of G of indez p in G, prove that H is a normal
subgroup of G.

Solution. Let S be the set of left cosets of H in G and let Perm(S) denote the
group of permutations of S. For z € G consider the permutation ¢, : § — S
which associates the coset zyH to a coset yH. For z,y € G one checks that
¢z 0 ¢y = Pzy and therefore the map ¢ : G — Perm(S), defined by ¢(z) = ¢,
is a group homomorphism (known as the left coset representation of G with
respect to H). o

Let K = ker(¢). Since Perm(S) has order p! and G/K is isomorphic to a
subgroup of Perm(S), it follows that (G : K) divides p!. We have K C H (since
z € K implies zH = ¢,(H) = H, so that z € H) and hence

(G:K) = (G:H)(H: K),

where (G : H) = p. It follows that (H : K) divides (p—1)!. Finally, noting that
(H : K) also divides the order of G and that p is the smallest prime number
which divides the order of G, we conclude that (H : K) =1, so that H = K is
normal in G.

Remark. This problem generalizes the well known fact that any subgroup of
index 2 in a finite group G is a normal subgroup of G.
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Combinatorics

Problem C1

Some m horizontal and n vertical lines break the square D = [0,1] x [0,1] into
(m + 1)(n + 1) rectangles (not necessarily congruent). Denote the left upper
rectangle by A and the lower right one by B. A trace from A to B is a set II
of m+n+1 such rectangles which includes A and B and whenever rectangle P
belongs to I, either the rectangle under P or the one right to P (but not both)
belong to I1. Let I(I1) be the sum of the areas of the rectangles in II and denote
by w(D;m,n) the set of all traces from A to B. Prove that

m+n+1
nen(Di m,n) ) 2 (m+1(n+1)

Solution. Let us consider a little more general situation with rectangle Dy, =
[0, a] x [0,5] instead of the unit square. We will show that

m+n<+1

> — '~ ab.
Her(%::f; m,n) ) 2 (m+1)(n+1) b

Let us prove this statement by induction on the number N = m +n + 1 of
rectangles in a trace. For V = 3 our statement is trivial. Assume it has been
proved for N > 3 and let £k = N + 1. It is clear that any trace II from A to B
includes either the rectangle B; over B or the rectangle Bs to the left of B. Let
rectangle B have dimensions z X y, where (z,y) € (0,a) % (0,b). Let us consider
the rectangles P; and P, with dimensions a x (b—y) and (a—z) X b, respectively,
which are included in D, ; and include A. Clearly P; contains exactly m(n+1)
of the subrectangles of D, and P, contains exactly n(m + 1) of them. The
induction hypothesis for rectangles P, and P, gives:

m+n
ne"(DuT—a;f'm—l,n)l ) = m(n+1) a(b—y)

and .
16 1§ e e i S - BN~
ne"(Dnr—nffgm,n—l)( ) 2 (m+1)n (a-2)
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Let ﬁ1 be a trace in (D, 5—y; m — 1,n) with length at least Rmni':ﬁ ca(b—1y)
and II; be a trace in 7(Dy—z5; m,n— 1) witg length at least z;"—:l"m - (a - z)b.
Then it is clear that IT; = II; U B and II; = ITo U B are traces in m(Dg p; m, ).
Consequently

ne"(fg‘fﬁmm)l(n) > max {{(I11), I(TI2)}
> mu{-ﬂ%% -a(b—1y), % (a—- m)b} +zy = f(z,9)-

The minimum of the function f(z,y) for (z,y) € D, can be found to equal

m+n+1

T

(for instance with Lagrange’s method). This completes the inductive step.
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Problem C2

What is the largest positive integer N for which we can draw a complete graph
with N vertices on the plane, so that each arc is intersected by at most one other
are, no three arcs have a common inner point and no two arcs are tangent? (Of
course, no vertez can be an inner point of any arc.)

Solution. We will show that the maximum is 6. For N = 6 an explicit drawing
of the graph can be given, for instance so that the six vertices are those of two
homothetic equilateral triangles with common centroid. Suppose, by the way of
contradiction, that a drawing is also possible for N = 7. Consider two arcs AC
and BD of the graph which cross each other at point X. A configuration such as
this will be called a cross. Clearly, arcs AX, BX, CX and DX are not crossed
by other arcs. Consider the (curvilinear) triangle ABX and suppose it contains
a vertex E of the graph other than A, B. This vertex must be connected to
C and D. Since arcs CE and DE cannot cross AX or BX, they must escape
the triangle ABX through AB. Hence AB is crossed twice, which is forbidden.
We conclude that triangle ABX does not contain vertices of the graph other
than A, B. We will also show that no arc crosses edge AB. Indeed, if an
arc enters triangle ABX, it must also escape it. Since both can be done only
through the arc AB, this arc would be intersected twice, which is forbidden.
Similar reasoning applies to triangles BCX,CDX and DAX. Thus each cross
is bounded from all four sides by arcs which are not intersected. So, if we have
n crosses, these correspond to 4n arcs with no intersections. Those arcs might
be counted twice (since each arc can be approached from two sides) and hence
there are at least 2n arcs which are not intersected. Also, each intersection is
formed by two arcs, so n intersections are formed by 2n intersecting arcs and
none is counted twice. So n crosses require at least 4n arcs (2n intersecting
ones and 2n non-intersecting). In a complete graph of 7 vertices we have only
7-6/2 = 21 arcs, so no more than 5 crosses. Consider the graph whose vertices
are the 7 original points and all n intersection points, formed by the crosses,
and arcs among them. Since this graph is planar, Euler formula v —e+ f = 2
applies to it. Clearly v = 7+ n and e = 21 + 2n, since for each of the n
crosses we have split two arcs of the original graph in two. Hence the number
of faces satisfies (7 + n) — (21 + 2n) + f = 2 and hence f = n + 16. Each
face of the new graph has at least three edges and each edge has exactly two
incident faces. Hence, by counting face-edge incidencies, we get 3f < 2e. This
gives 3(n + 16) < 2(21 4 2n), so n > 6. However we have already shown that
n < 5. This contradiction shows that such a drawing of a complete graph with
7 vertices is impossible.



Chapter 4
Analytic Geometry

Problem G1

Let A, B,C, D be four distinct spheres in space. Suppose spheres A and B inter-
sect along a circle which is contained in a plane P, spheres B and C intersect
along a circle which is contained in a plane Q, spheres C and D intersect along
a circle which is contained in a plane S, and spheres D and A intersect along
a circle which is contained in a plane T'. Show that planes P, Q,S,T are either
parallel to the same line or have a common point.

Solution. Let a(z,y, z) be a polynomial of the form z? + y? + 22+ linear part
which defines sphere A. Similarly, let b, ¢, d, be the polynomials defining spheres
B,C,D. The difference of two such polynomials is linear, since the quadratic
part is cancelled out, and gives the equation of the plane which contains the
circle of their intersection. Hence the equation of the four planes, mentioned in
the statement of the problem, area —b=0,b—-c=0,c~d =0,d—a = 0.
Therefore the sum of the four equations is zero and hence the sum of normals to
the planes (whose coordinates are the coefficients of z,y, z in the equations of
these planes) is also zero. If three normals are linearly dependent, then they lie
in a plane and are orthogonal to the same nonzero vector. The fourth normal,
which is the negative of their sum, is also orthogonal to the same vector. Hence,
in this case all normals are orthogonal to the same nonzero vector and the line
parallel to it will be parallel to all four planes.

If thee of the normals are linearly independent, then three of the planes have
a common point (z,y, z). The equations of these planes are valid at this point
and so does that of the fourth plane, since the sum of the four equations is zero.
Hence all four planes have a common point.
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Problem G2

Find the curve traced out by the center of an ellipse that rolls along two perpen-
dicular lines.

Solution. Suppose our ellipse is congruent to %; + {; = 1. Choosing the two
orthogonal tangents as the axes of a coordinate system and assuming the ellipse
lies in the first quadrant, the center of the ellipse will trace out the arc of the
circle 2 + y? = a® + b? in the first quadrant between points (a,b) and (b, a).
This follows easily from the next lemma and its proof.

Lemma. The set of all points of intersection of two orthogonal tangents to an
ellipse is a circle.

Proof. Consider the ellipse ﬁ; + {; = 1. Suppose that ¢; : y = yo + k1(z — 7o)
and tp : ¥ = Yo+ k2(z —xp) are two orthogonal tangents, intersecting at (zg, ¥o).
For k = ki, ks, the system

b2$2 o a2y2 B a2b2
Yy =yo + k(z — zo)

has a unique solution. Equivalently, the quadratic equation
b2z? + a*(yo + kz — kzo)? = a%b?

has a unique solution. This equation can be written as Az? + Bz + C = 0,
where A = b% + a%k?, B = 2a%k(yo — kzo) and C = a?|(yo — kzo)? — b%], and
has a unique solution if and only if B2 —4AC = 0. It follows that k; and ko are
the two solutions of the equation

(a® — z2)k? + 2zoyok + b* — Y2 = 0.

As a result, we have
o — v

a? —z§’

klkz =

On the other hand, the lines ¢; and ¢» are orthogonal if and only if k1 k; = —1.
From the last two conditions we gather that z2 + y3 = a® + b*.
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Problem G3

Let 0 < a < ‘ Let Py, be a convex n-gon AyAs---A,. Let By,Bs,... ,B, be
the points of the sides A1 As, AsAs, ..., An A1, respectively, for which

1
AIBI/A1A2 = AQBQ/AQA:; == Aan/AnAl = Q. :‘-’z
We denote by Py+ the n-gon B1Bs - -+ By,. Given a conver n-gon Py, define the
sequence of n-gons Py, P1, P,,.... Prove that there exists a unique point lying

inside Py for allk=0,1,2,....

Solution. Let O be the center of gravity of the points Ay, As,... , A,. Since
5—§;+O_B;+---+O_B,:=O_Ai+m;+---+m= W,Obelongstoeach
one of the polygons Py, P, Ps,....

Let R = max{ OA;, ... ,0A,}, so that Py lies in the ball of radius R centered
at O. Let Cl, i Gl BE the vertices of the polygon Py 1t is easy to check

that OC; = Z,@,OA where ; > 0 and E =1. Let A\ = min f;. Since

i=1 i=1 z-l,...,n

OA, + 04y + -+ OA4, = 0, we have the following;

< Z(ﬂL MNOAi1] < RZ = R(1-n).

i=0

|OC1| = Z(ﬂz—'\)OA1+1

=1

This means that Py, lies in the ball of radius R(1 — nA) centered at O.

Continuing in the same way we see that the polygon Piim,, lies in the ball
of radius R(1 — nA)™ centered at O, therefore O is the unique common point
for Po,Pl, Pg, sl

Note. The problem could be proposed for a = 1/2.



Chapter 5
Number Theory

Problem NT1

Find all positive integers n such that there exist infinitely many pairs of positive
integers (z,y) satisfying the equation

(%) 1"+ 2% 4o 42" = (z+ 1)

Sketch of a Solution We claim that the number of pairs is finite for each n.
Ify >n+1,thenz™l =g.2" > 1" 42" +... 42" = (z+1)¥ > (z+1)**!
- a contradiction.
So, it is sufficient to show that for each y = 1,2,... ,n the set of z satisfying
(%) is finite. This can be seen as follows:

T 1
im
ZT—00 $n+1

1
1 Bl N T R ™ = —
(An+2"+.. + 2" =

but

. 1
IILII;O m(z + l)y =),



