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Problem 1. For a positive integer m let m? be the product of first m prime numbers.

Determine if there exist positive integers m and n with the following property:

m? = n(n+ 1)(n+ 2)(n+ 3).

(Matko Ljulj)

Solution. Such numbers don’t exist.
Let’s assume the contrary i.e. there are such m and n.
We can note that there is only one prime divisible by 2 and that it 2 itself thus m? isn’t divisble by 4. On the other
hand, the product n(n+1)(n+2)(n+3) is product of 4 consecutive integers so two of them are even making the product
divisble by 4.
Thus equality m? = n(n+ 1)(n+ 2)(n+ 3) gives us a contradiction as LHS is not divisble by 4 while RHS is.

Problem 2. Let P be a point inside a triangle ABC. A line through P parallel to AB meets BC and CA
at points L and F , respectively. A line through P parallel to BC meets CA and BA at points M and D
respectively, and a line through P parallel to CA meets AB and BC at points N and E respectively. Prove

(PDBL) · (PECM) · (PFAN) = 8 · (PFM) · (PEL) · (PDN),

where (XY Z) and (XY ZW ) denote the area of the triangle XY Z and the area of quadrilateral XY ZW .

(Steve Dinh)

Solution.

Let’s denote the areas as on the sketch.
The problem is equivalent to

U · V ·W = X · Y · Z.

Let x and y be lengths of altitudes from I and D in the triangle BID and let a and b be lenghts of sides BI and BD.
We can deduce

X = (PED) =
1

2
· a · y · BC

BA
,

Z = (PIH) =
1

2
· b · x · BA

BC
and
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U = (BID) =
1

2
· a · x =

1

2
· b · y

This gives U2 = X · Z. Analogously we get W 2 = Y · Z and V 2 = X · Y . Multiplying all three equalities we get the
desired equation.

Second solution. Let’s denote the areas of triangles PEL, PFM , PDN as PA, PB , PC respectively and let’s denote the
areas of quadrilaterals PFAN , PDBL, PECM as QA, QB , QC respectively. We want to prove QAQBQC = 8PAPBPC .
Triangles PEL, PFM , and PDN are similar to the triangle ABC (they have respective pairs of sides on parallel lines).
Let’s denote the respective similarity coefficients as kA, kB , kC . As triangles PEL, PFM , and PDN are in the interior
of ABC, all those coefficients are less than 1.
Triangle ENB is similar to the triangle ABC. Its similarity coefficient is

EN

AC
=

EF + FN

AC
=

EF

AC
+

FN

AC
= kA + kC .

From all these similarity relations we get area relations. Namely:

PA : PB = (PA : (ABC)) : (PB : (ABC)) =

(
kA
kB

)2

=⇒ PA =

(
kA
kB

)2

PB ,

PC : PB = (PC : (ABC)) : (PB : (ABC)) =

(
kC
kB

)2

=⇒ PC =

(
kC
kB

)2

PB .

Using this we get:

(PA + PC +QB) : PB = (ENB) : (PFM) = (kA + kC)
2 : (kB)

2

=⇒ PA + PC +QB =
k2
A + 2kAkC + k2

C

k2
B

PB =
k2
A

k2
B

PB +
2kAkC
k2
B

PB +
k2
C

k2
B

PB = PA +
2kAkC
k2
B

PB + PC

=⇒ QB =
2kAkC
k2
B

PB .

Similary by the same process applied to FLC and MDA we get QC = 2kBkA

k2
C

PC i QA = 2kCkB

k2
A

PA. Multiplying what
we got we have

QAQBQC =
2kCkB
k2
A

PA
2kAkC
k2
B

PB
2kBkA
k2
C

PC = 8
k2
Ak

2
Bk

2
C

k2
Ak

2
Bk

2
C

PAPBPC = 8PAPBPC ,

Q.E.D.

Problem 3. We are given a combination lock consisting of 6 rotating discs. Each disc consists of digits
0, 1, 2, . . . , 9, in that order (after digit 9 comes 0). Lock is opened by exactly one combination. A move consists
of turning one of the discs one digit in any direction and the lock opens instantly if the current combination is
correct. Discs are initially put in the position 000000, and we know that this combination is not correct.

a) What is the least number of moves necessary to ensure that we have found the correct combination?

b) What is the least number of moves necessary to ensure that we have found the correct combination, if we
know that none of the combinations 000000, 111111, 222222, . . ., 999999 is correct?

(Ognjen Stipetić, Grgur Valentić)

Solution. We will solve the subproblems seperately.

a) In order to ensure that we have discovered the code we need to check all but one of the combinations (as otherwise
all unchecked codes can be the correct combination). Total number of combinations is 106 (as each of the 6 discs
consists of 10 digits). As we are given that 000000 is not the correct combination we require at least 106− 2 moves.
We will now prove that there is a sequence of 106 − 2 moves each checking a different combination. We will prove
this by induction on the number of wheels where the case n = 6 is given in the problem.
Claim: For a lock of n wheels and for any starting combination of the wheels (a1a2 . . . an) there is a sequence of
moves checking all 106 combinations exactly once, for all n ∈ N.
Basis: For n = 1 and for the starting combination (a), we consider the sequence of moves

a→ a+ 1→ a+ 2→ . . .→ 9→ 0→ 1→ . . .→ a− 1
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Assumption: The induction claim is valid for some n ∈ N.
Step: We will prove that the claim holds for n+1 as well. We consider an arbitrary starting state (a1a2 . . . anan+1).
By the induction hypothesis there is a sequence of moves such that starting from this state we can check all the
states showing an+1 on the last disc. Let this sequence of moves end with the combination (b1b2 . . . bnan+1).
Now we make the move (b1b2 . . . bnan+1)→ (b1b2 . . . bnan+1 + 1) (if an+1 is 9, then we turn the disc to show 0).
We continue in the same way applying the induction hypothesis on first n discs and the rotation the n+ 1-st disc.
This way we get the sequence of moves

(a1a2 . . . anan+1)→ (b1b2 . . . bnan+1)→ (b1b2 . . . bnan+1 + 1)

→ (c1c2 . . . cnan+1 + 1)→ (c1c2 . . . cnan+1 + 2)

. . .

→ (j1j2 . . . jnan+1 − 2)→ (j1j2 . . . jnan+1 − 1).

This sequence checks each combination exactly once finishing the induction and proving our claim.
b) As in the a) part, we conclude that we have to check all the combinations apart from 000000, 111111, ..., 999999

and we can be sure as to what is the solution before the move checking the last combination.
We denote the combination as black if the sum of its digits is even and white if that sum is odd. We can notice
that all the combinations 000000, 111111, ..., 999999 are black and by each move we swap the color of the current
combination.
Number of black combinations all of which we need to check at least once is 106

2
− 10 while number of such white

combinations is 106

2
.

As we are checking white combinations every second move, in order to check all 106

2
white combination swe need

at least 2 106

2
− 1 = 106 − 1 moves, thus we need at least 106 − 2 moves to find the correct combination.

An example doing this in 106 − 2 moves has been given in part a).

Problem 4. Let a, b, c be positive real numbers satisfying

a

1 + b+ c
+

b

1 + c+ a
+

c

1 + a+ b
>

ab

1 + a+ b
+

bc

1 + b+ c
+

ca

1 + c+ a
.

Prove

a2 + b2 + c2

ab+ bc+ ca
+ a+ b+ c+ 2 > 2(

√
ab+

√
bc+

√
ca).

(Dimitar Trenevski)

Solution. We start with the given condition:

a

1 + b+ c
+

b

1 + c+ a
+

c

1 + a+ b
>

ab

1 + a+ b
+

bc

1 + b+ c
+

ca

1 + c+ a
⇐⇒

a+ ab+ bc

1 + b+ c
+

b+ bc+ ba

1 + c+ a
+

c+ ca+ cb

1 + a+ b
>

ab+ ac+ bc

1 + a+ b
+

bc+ ab+ bc

1 + b+ c
+

ca+ bc+ ab

1 + c+ a
⇐⇒

a(1 + b+ c)

1 + b+ c
+

b(1 + c+ a)

1 + c+ a
+

c(1 + a+ b)

1 + a+ b
>

ab+ bc+ ca

1 + a+ b
+

ab+ bc+ ca

1 + b+ c
+

ab+ bc+ ca

1 + c+ a
⇐⇒

a+ b+ c > (ab+ bc+ ca)

(
1

1 + a+ b
+

1

1 + b+ c
+

1

1 + c+ a

)
.

Now using Cauchy-Schwarz inequality we get:

(
1

1 + a+ b
+

1

1 + b+ c
+

1

1 + c+ a

)
(c(1 + a+ b) + a(1 + b+ c) + b(1 + c+ a)) > (

√
a+
√
b+
√
c)2.

Combining the last two inequalities we get:

(a+ b+ c)(a+ b+ c+ 2(ab+ bc+ ca)) >

> (ab+ bc+ ca)

(
1

1 + a+ b
+

1

1 + b+ c
+

1

1 + c+ a

)
(a+ b+ c+ 2(ab+ bc+ ca)) =

= (ab+ bc+ ca)

(
1

1 + a+ b
+

1

1 + b+ c
+

1

1 + c+ a

)
(c(1 + a+ b) + a(1 + b+ c) + b(1 + c+ a)) >

> (ab+ bc+ ca)(
√
a+
√
b+
√
c)2,
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which now by some algebraic manipulation gives:

(a+ b+ c)(a+ b+ c+ 2(ab+ bc+ ca)) > (ab+ bc+ ca)(
√
a+
√
b+
√
c)2 ⇐⇒

(a+ b+ c)2 + 2(a+ b+ c)(ab+ bc+ ca) > (ab+ bc+ ca)(a+ b+ c+ 2(
√
ab+

√
bc+

√
ca)) ⇐⇒

(a2 + b2 + c2) + (2(a+ b+ c) + 2)(ab+ bc+ ca) > (ab+ bc+ ca)(a+ b+ c+ 2(
√
ab+

√
bc+

√
ca)) ⇐⇒

a2 + b2 + c2

ab+ bc+ ca
+ a+ b+ c+ 2 > 2(

√
ab+

√
bc+

√
ca),

where the last inequality is exactly the one we wanted to prove.

Time allowed: 240 minutes.

Each problem is worth 10 points.

Calculators are not allowed.
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Problem 1. In each field of a table there is a real number. We call such n× n table silly if each entry equals
the product of all the number in the neighbouring fields.

a) Find all 2× 2 silly tables.
b) Find all 3× 3 silly tables.

(Two fields of a table are neighbouring if they share a common side.) (Borna Vukorepa)

Solution. We solve the subproblems separately.

a) Denote the numbers in the table as on the picture:

a b

c d

By the problem condition we have the following:

a = bc

b = ad

c = ad

d = bc.

From here we can see a = bc = d and b = ad = c. When we apply this to the upper relations we get a = b2 and
b = a2 and so a = b2 = a4 ⇐⇒ a(a− 1)(a2 + a+ 1) = 0. The real solutions to this problem are a = 0 and a = 1.
Now we can see that all 2× 2 silly tables are those with all element equal and furthermore equal to zero or one.

b) Denote by a, b, c, d the elements in the table which have exactly three neighbours. We denote the remaining elements
in terms of these and get the following table:

ab a ad

b abcd d

bc c cd

Let’s assume that abcd = 0. This implies that the middle element is zero which further implies all its neighbours
are zero and consequently every element in the table is zero. And thus only silly table under in this case is all zeros
table.
Now assume that abcd 6= 0, i.e. none of the table elements is equal to zero. Using the remaining conditions we get:

a = (ab)(abcd)(ad) = a3b2d2c ⇐⇒ a2b2d2c = 1,

Analogously we get a2b2c2d = 1, a2c2d2b = 1 i b2c2d2a = 1 (we are allowed to divide by a, b, c, d as they are all
non-zero). Equating the LHSs of these equations we get a = b = c = d. Inserting this in any of these equations we
get a7 = 1 =⇒ a = 1.
Thus all 3× 3 silly tables are all ones and all zeros tables.

Problem 2. Palindrome is a sequence of digits which doesn’t change if we reverse the order of its digits. Prove
that a sequence (xn)

∞
n=0 defined as

xn = 2013 + 317n

contains infinitely many numbers with their decimal expansions being palindromes.
(Stijn Cambie)
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First solution. We will prove the following lemma providing two proofs:

Lema 1. There is infinitely many numbers divisible with 317 with their decimal expansions consisting only of ones.

Proof. Considering the sequence 1, 11, 111, . . . consisting of infinitely many numbers. This numbers have some residues
modulo 317. By The Pigeonhole Principle there are at least two numbers in this sequence with the same residue modulo
317. Let the smaller of these two have l digits and larger k. Their difference is

111 . . . 1︸ ︷︷ ︸
k times

− 111 . . . 1︸ ︷︷ ︸
l times

= 111 . . . 1︸ ︷︷ ︸
(k−l) times

000 . . . 0︸ ︷︷ ︸
l times

divisible by 317. It will also remain divisible by 317 if we divide it by 10l (as 10 and 317 are coprime). This way we get
a number consisting only of ones divisible by 317. Let’s denote the number of its digits by k. We get infinitely many
such numbers by considering numbers consisting of k, 2k, 3k, . . . ones.

Proof. As 317 is prime, and as it is coprime with 10 by Fermat’s Little Theorem

10316 ≡ 1 (mod 317) =⇒ 317 | 10316m − 1, ∀m ∈ Z,m > 1.

As 9 is coprime with 317 as well, numbers of the form 1
9
(10316m − 1), m ∈ Z,m > 1 have the property we desire.

Continuing with the solution we can note that some integer m is in the sequence (xn)
∞
n=0 if and only if m > 2013 and

m ≡ 2013 ≡ 111 (mod 317). Let (yn)∞n=0 be a sequence of infinitely many positive integers with their decimal expansions
consisting only of ones and each being divisible by 317 (we are using our lemma here). Now numbers

1000yn + 111

are in the sequence (as they have the remainder 111 modulo 317) and their decimal expansions are palindromes. Thus
there is infinitely many members of the sequence (xn)

∞
n=0 whose decimal expansions are palindromes.

Second solution. We will prove the generalised version of the problem for the sequence (xn)
∞
n=0 defined as xn = a+nb,

where a, b are arbitrary positive integers with the property that b is coprime with 10. The problem is a special case of
this for a = 2013 i b = 317.
We define the sequence (yn)

∞
n=0 in the following way: yn = 10nϕ(b). Using The Euler’s Theorem, yn ≡ 1 (mod b).

Considering the number 1 + yn + y2
n + . . . ya−1

n , its decimal expansion is:

1 000 . . . 0︸ ︷︷ ︸
nϕ(b)−1 times

1 000 . . . 0︸ ︷︷ ︸
nϕ(b)−1 times

. . . 1 000 . . . 0︸ ︷︷ ︸
nϕ(b)−1 times

1

where the digit one is repeated a times. It is clear now that the decimal expansion of this number is a palindrome. On
the other hand 1 + yn + y2

n + . . . ya−1
n ≡ 1 + 1 + . . . 1 = a (mod b), so this number is in the sequence (xn)

∞
n=0, for each

number n. Thus we have found infinitely many members of the sequence (xn)
∞
n=0 with their decimal expansions being

palindromes as we wanted.

Problem 3. We call a sequence of n digits one or zero a code. Subsequence of a code is a palindrome if it is
the same after we reverse the order of its digits. A palindrome is called nice if its digits occur consecutively in
the code.(Code (1101) contains 10 palindromes, of which 6 are nice.)

a) What is the least number of palindromes in a code?

b) What is the least number of nice palindromes in a code?

(Ognjen Stipetić)

Solution. We will consider the two subproblems separately:

a) Consider any code. Assume there is k digits one and n− k digits zero. We now transform this code into

111 . . . 1︸ ︷︷ ︸
k puta

000 . . . 0︸ ︷︷ ︸
n−k puta

by preserving the order among same digits. Lets note that each palindrome consisting of same digits is in the initial
code if and only if it is in the transformed code. The transformed code doesn’t have a palindrome not consisting
of same digits and thus the transformed code has less or equal palindromes than the initial one.
Thus we conclude that it is enough to consider only the codes starting with k digits one and ending in n− k zeros,
for some k ∈ {0, 1, . . . n}.
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Let us fix a k ∈ {0, 1, . . . n}. The code consisting of k ones and n− k zeros has 2k − 1 + 2n−k − 1 = 2k + 2n−k − 2
palindromes. We now seek k which minimizes this expression.
If n is even (n = 2m), by the AM-GM inequality 2k + 2n−k > 2 ·

√
2k+n−k = 2m + 2m =⇒ the least possible

number of palindromes in the code with 2m digits is 2m + 2m − 2 = 2m+1 − 2, and this number is clearly attained
for the code with m digits one and ending in m digits zero.
If n is odd (n = 2m+ 1) we have the following inequality for each k ∈ {0, 1, . . .m− 1}:

2k + 2n−k > 2k+1 + 2n−k−1 (⇐⇒ 2n−k−1 > 2k)

From this we also get 2k + 2n−k−1 < 2k−1 + 2n−k+1 for all k ∈ {m+ 1,m+ 2, . . . 2m+ 1}. So:

20 + 2n > 21 + 2n−1 > . . . > 2m + 2m+1 = 2m+1 + 2m < 2m+2 + 2m−1 < . . . < 2n + 20

Now it is clear that the least number of palindromes in the code with 2m + 1 digits is 2m + 2m+1 − 2 and this
number is attained by the code of m digits one and m+ 1 digits zero.

b) For n = 1 we clearly see that the answer is 1. From now on we assume n > 2.
As well for simplicity of the write-up we will not consider the one-digit palindromes as nice as we know that each
code of n digits consists of n one-digit palindromes, each of which is nice. So we will find the smallest possible
number of multi-digit nice palindromes and we will add n to this number to get the desired solution.
As a last remark: in this part of the solution for brevity we will denote as palindromes only those that are nice by
the definitions in the problem statement.
Code consisting of n digits 1 contains one n-digit palindrome, two (n − 1)-digit palindromes, ..., n − 2 three digit
palindromes and n − 1 two digit palindromes. After summing up we get that this code has n(n−1)

2
palindromes.

Analogously the code consisting of n digits 0 contains the same number of palindromes.
We now consider the code which contains at least one digit one and at least one digit zero. Then each digit 1 except
the rightmost one is the start of at least one palindrome (the sequence of digits starting with it and ending in the
first digit one to the right of it is of the form 100 . . . 01 and is thus a palindrome). Analogously we conclude that
each digit 0 apart from the rightmost one is a start of at least one palindrome. As we have at least one digit 1 and
one digit 0 we conclude that each code consists of at least n − 2 palindromes (where we have deducted 2 for the
rightmost digit 1 and 0).
By induction on n we will show that for each n ∈ N, n > 2 we can find a code with exactly n − 2 palindromes.
We can note that for n = 2, 3, 4 this is possible as the examples are (10), (101), (1101). Now let’s assume that the
induction claim holds for some n ∈ N, n > 4, and let (x1 . . . xn) be a code with exactly n− 2 palindromes.
That code is certainly not (011 . . . 1) or (100 . . . 0) (similarly as in the case with all digits equal we conclude that
these codes have (n−1)(n−2)

2
> n− 2 palindromes).

We now that each of the digits one/zero apart from the rightmost ones is the start of at least one palindrome.
In order for total number of palindromes to be n − 2 all such digits are starts of exactly one palindrome. As
(x1 . . . xn) 6= (011 . . . 1) and (x1 . . . xn) 6= (100 . . . 0), digit x1 is not the rightmost digit one/zero =⇒ x1 is the
start of exactly one palindrome.
We now show that we can choose a digit x0 such that (x0x1x2 . . . xn) contains exactly n− 1 palindromes. As there
are n − 2 palindromes (x1x2 . . . xn) we need to show that we can choose x0 such that x0 is a start of exactly one
palindrome in (x0x1 . . . xn). We know that x0 is a start of at least one palindrome so we actually only have to show
it is a start of at most one palindromes.
Let’s consider to which palindromes can x0 be a start:

• (x0x1) is a palindrome⇐⇒ x0 = x1

• (x0x1x2) is a palindrome⇐⇒ x0 = x2

• (x0x1x2 . . . xkxk+1) is a palindrome, for some k ∈ {2, 3, 4, . . . , n−1} ⇐⇒ x0 = xk+1 and (x1x2 . . . xk) is a palindrome

As there is exactly one palindrome for which x1 is the start we conclude there is at most one palindrome such that
x0 is its start and it has the form as in the third case above. Thus there are at most three palindromes to which
x0 can be the first digit as we have two options for the choice of x0 ∈ {0, 1}. Thus, by The Pigeonhole Principle
we can choose a digit such that x0 is a start of at most one palindrome, as desired.
Now using this and the remarks given before we have shown that the smallest possible number of nice palindromes
with n digits is 1 (for n = 1) and 2n− 2 (for n > 2).

Problem 4. Given a triangle ABC let D,E, F be orthogonal projections from A,B,C to the opposite sides
respectively. Let X,Y, Z denote midpoints of AD,BE,CF respectively. Prove that perpendiculars from D to
Y Z, from E to XZ and from F to XY are concurrent.

(Matija Bucić)
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First solution. Let H be the orthocenter of the triangle ABC. We denote the midpoint of EF as P . As PZ is a midline
of the triangle CEF we have PZ||AC, and as Y H is perpendicular to AC, we get that Y H is perpendicular to PZ.
Analogously we conclude that the line ZH is perpendicular to PY , so H has to be the orthocenter of the triangle PY Z.
From this we can deduce that the line PH is perpendicular to Y Z, and thus PH is parallel to the line perpendicular to
Y Z which passes through D.
Now denote as N the tangency point of the incircle of the triangle DEF with its side EF . Let N ′ be the point symmetric
to N with respect to H and let M be the tangency point of the D-excircle of the triangle DEF with the side EF . As
P is the midpoint of NM and as is H the midpoint of NN ′, we have that PH is parallel to N ′M . As we know that M
is the map of the point N ′ under the homothety with centre D which maps the incircle to excircle of the triangle DEF ,
we can conclude that D, N ′ and M are collinear.
We can now conclude that the line perpendicular to Y Z passing through D is parallel to PH while this line is parallel
to N ′M . As D lies on N ′M we conclude that DM is the line through D perpendicular to Y Z.
Analogously we can conclude that perpendiculars from E to XZ and from F to XY are lines joining vertices with the
corresponding excircle tangency point of the triangle DEF . Using the Ceva’s Theorem gives us the result.

Remark: The intersection of the lines connecting the vertices of the triangle respective tangency points intersect in the
point which is called Nagel’s point of the triangle (so we have proved that the three lines in the problem intersect in the
Nagel’s point of the triangle DEF ).

Second solution. By applying The Carnot’s Theorem to the triangle XY Z and points D,E, F , three lines in the
problem are concurrent if and only if:

FX2 − FY 2 +DY 2 −DZ2 + EZ2 − EX2 = 0 (1)

In the triangle AFD and EFB lines FX and FY are medians, so

FX2 =
1

4
(2AF 2 + 2FD2 −AD2)

FY 2 =
1

4
(2FB2 + FE2 − EB2).
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Noting that the other sides on the LHS of (1) are medians in the respective triangles we deduce:

FX2 − FY 2 +DY 2 −DZ2 + EZ2 − EX2 =

1

4
[(2AF 2 +���2FD2 −HHHAD2)− (2FB2 +���2FE2 −HHHEB2)+

+(2DB2 +���2DE2 −HHHEB2)− (2DC2 +���2DF 2 −HHHCF 2)+

+(2EC2 +���2EF 2 −HHHCF 2)− (2EA2 +���2ED2 −HHHAD2)] =

1

2
(AF 2 − FB2 +DB2 −DC2 + EC2 − EA2).

From right-angled triangles AFC and FBC we get:

AF 2 − FB2 = (AC2 − FC2)− (BC2 − FC2) = AC2 −BC2.

Applying this analogously to triangles AEB,EBC,ADC,ADB we get:

FX2 − FY 2 +DY 2 −DZ2 + EZ2 − EX2 =

1

2
(AF 2 − FB2 +DB2 −DC2 + EC2 − EA2) =

1

2
(AC2 −BC2 +AB2 −AC2 +BC2 −AB2) = 0,

Q.E.D.
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