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Problems and Solutions

Problem 1. We are given an n×n board. Rows are labeled with numbers 1 to n downwards and columns are
labeled with numbers 1 to n from left to right. On each field of the board we write the number x2 + y2 where
(x, y) are its coordinates. We are given a figure and can initially place it on any field. In every step we can
move the figure from one field to another if the other field has not already been visited and if at least one of
the following conditions is satisfied:

• the numbers in those 2 fields give the same remainders when divided by n,

• those fields are point reflected with respect to the center of the board.

Can all the fields be visited in case:

a) n = 4,

b) n = 5?

(Josip Pupić)

Solution. a) The answer is NO.

1 2 3 4
1 2 5 10 17
2 5 8 13 20
3 10 13 18 25
4 17 20 25 36

1 2 3 4
1 2 1 2 1
2 1 0 1 0
3 2 1 2 1
4 1 0 1 0

On the left we have the board from the problem, on the right we have the same board, but with remainders of the
values from the board instead of the values themselves.
We will denote field i for a field with number i written on it in the right table. Let’s assume that we can visit all
of the fields. That means that at some point we will visit a field 1. Obviously, when using the first type of move,
we can visit any other field 1 which hasn’t yet been visited. Also, it easy to notice, that for field 1, the reflection
of that field is also a field 1. That means that both types of moves lead to another field 1. Also, in same fashion
we conclude that for the each step, if the figure is on the field 1, then in the step after (if that wasn’t the last one)
and in the step before (if that wasn’t the first one) should be field 1.
Now we conclude that the first visited field 1 must be the field visited in the first step. Same way we conclude
that the last visited field 1 must be the field visited in the last step. But, we know that all of fields 1 are visited
consecutively, in exactly 8 moves (because there are 8 fields 1), while there are exactly 16 moves that we have to
make. This leads to contradiction.

b) The answer is YES.

1 2 3 4 5
1 2 5 10 17 26
2 5 8 13 20 29
3 10 13 18 25 34
4 17 20 25 36 41
5 26 29 34 41 50

1 2 3 4 5
1 2 0 0 2 1
2 0 3 3 0 4
3 0 3 3 0 4
4 2 0 0 2 1
5 1 4 4 1 0

Again, on the left we have the board from the problem, on the right we have the same board, but with remainders
of the values from the board instead of the values themselves.
We can move from any field to another with the same number written on the field in the right table by using the
second move.
One idea to visit all the fields is the following:

1



• Find the 4 pairs of the fields of types field i and field j, such that all 8 fields are different, in each pair i 6= j,
those two field in one pair are symmetric, and the second member of the n-th pair has the same value on the
right board as the first member of the (n+ 1)-th pair. Also, we want that all the values of the right table are
mentioned through members of those pairs. For example:

((2, 2), (4, 4)), ((1, 4), (5, 2)), ((3, 5), (3, 1)), ((2, 1), (4, 5))

• Now, the algorithm is: after second member of n-th pair and before the first member of the (n + 1)-th pair
visit all fields by using the first step. Of course, before first pair and after fourth pair move in similar way.
Jump from the first member of the pair to the second member of the pair by using second step.

This is one of the ways to do it: We start with the field (3, 3). Then we visit all of the fields 3, using the first move,
in any way as long as the last visited field is (2, 2). Then, using the second move, we visit the field (4, 4). Again,
using the first move we visit all fields 2 in any way as long as the last visited field is (1, 4). Using the second move
we visit the field (5, 2). Then, using the first move we visit all fields 4 in any way as long as the last visited field is
(3, 5). In same fashion, using the second move we visit the field (3, 1). After visiting all fields 0 in any way as long
as the last visited field is (2, 1), we visit the field (4, 5) using the second move. We conclude by visiting all fields 1
in any way.
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Problem 2. Let m,n, p be fixed positive real numbers which satisfy mnp = 8. Depending on these constants,
find the minimum of

x2 + y2 + z2 +mxy + nxz + pyz,

where x, y, z are arbitrary positive real numbers satisfying xyz = 8. When is the equality attained?
Solve the problem for:

a) m = n = p = 2,
b) arbitrary (but fixed) positive real m,n, p.

(Stijn Cambie)

First Solution. a) Use AM-GM and xyz = 8 to get

x2 + y2 + z2 + xy + xy + yz + yz + xz + xz > 9 9
√
x6y6z6 = 36.

We have equality for x = y = z = 2.

b) Using xyz = 8, we can transform the given expression:

x2 + y2 + z2 +mxy + nxz + pyz = x2 +
8p

x
+ y2 +

8n

y
+ z2 +

8m

z

Since all numbers are positive reals, we can apply AM-GM inequality to get:

x2 +
8p

x
= x2 +

4p

x
+

4p

x
> 6 3

√
2p2

When we apply the same procedure for x, y, z and sum the inequalities, we get:

x2 + y2 + z2 +mxy + nxz + pyz = x2 +
8p

x
+ y2 +

8n

y
+ z2 +

8m

z
> 6

3
√
2(

3
√
m2 +

3
√
n2 + 3

√
p2).

In order to get equality, we must have equality in all above inequalities and that happens for

x = 3
√

4p,

y =
3
√
4n,

z =
3
√
4m.

Desired minimum is therefore
6

3
√
2(

3
√
m2 +

3
√
n2 + 3

√
p2).

Second Solution. We only present solution for b) part here, marking scheme for a) part is the same as in first solution.
We use weighted AM-GM:

x2 + y2 + z2 +mxy + nxz + pyz =

3
√
p2

x2

3
√
p2

+
3
√
n2

y2

3
√
n2

+
3
√
m2

z2

3
√
m2

+ 2
3
√
m2

mxy

2
3
√
m2

+ 2
3
√
n2

nxz

2
3
√
n2

+ 2 3
√
p2

pyz

2 3
√
p2
≥

3
(

3
√
m2 +

3
√
n2 + 3

√
p2
)
·

3

(
3√

m2+
3√

n2+
3
√

p2
)
√√√√√( x2

3
√
p2

) 3
√
p2 (

y2

3
√
n2

) 3√
n2 (

z2

3
√
m2

) 3√
m2

·

3

(
3√

m2+
3√

n2+
3
√

p2
)√√√√( 3
√
mxy

2

)2
3√
m2 (

3
√
nxz

2

)2
3√
n2 (

3
√
pyz

2

)2 3
√
p2

= 3
(

3
√
m2 +

3
√
n2 + 3

√
p2
)
·

3

(
3√

m2+
3√

n2+
3
√

p2
)√(xyz

2

)2( 3√
m2+

3√
n2+ 3
√
p2)

= 3(
3
√
m2 +

3
√
n2 + 3

√
p2) · 3

√(xyz
2

)2
= 3(

3
√
m2 +

3
√
n2 + 3

√
p2) · 3

√
42 = 6

3
√
2
(

3
√
m2 +

3
√
n2 + 3

√
p2
)

We have shown that the minimum value the expression can take is 6 3
√
2
(

3
√
m2 +

3
√
n2 + 3

√
p2
)
. Equality can only be

achieved when x = 3
√
4p, y = 3

√
4n, z = 3

√
4m.
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Problem 3. Let d(n) denote the number of positive divisors of n. For positive integer n we define f(n) as

f(n) = d(k1) + d(k2) + . . .+ d(km),

where 1 = k1 < k2 < · · · < km = n are all divisors of the number n. We call an integer n > 1 almost perfect if
f(n) = n. Find all almost perfect numbers.

(Paulius Ašvydis)

First Solution. Alternative way to define f(n) is

f(n) =
∑

k|n,k≥1

d(k).

Let n = pa11 pa22 · · · parr be the prime factorisation of n. We have d(n) =
r∏
i=1

(ai + 1).

We prove the function f is multiplicative, in particular, given coprime n,m we have f(nm) = f(n)f(m).
Using n,m are coprime for the second inequality and the fact that function d is multiplicative we get:

f(nm) =
∑
k|nm

d(k) =
∑

k1|n,k2|m

d(k1k2) =
∑

k1|n,k2|m

d(k1)d(k2) =

∑
k1|n

d(k1)

∑
k2|n

d(k2)

 = f(n)f(m)

If r = 1 we have n = pa11 . We note that divisors of n are 1, p1, p
2
1, · · · , pa11 so f(n) =

a1∑
i=0

(i+ 1) =
(a1 + 1)(a1 + 2)

2
.

Combining this with the multiplicativity result for f we deduce f(n) =
r∏
i=1

(ai + 1)(ai + 2)

2
.

We now prove that for primes p ≥ 5 and p = 3 provided a ≥ 3 we have f(pa) = (a+1)(a+2)
2

< 2
3
pa by induction on a. As

a basis 3 < 2p
3

for p ≥ 5 and 6 < 2
3
· 33. For the step it is enough to notice that a+3

a+1
≤ 2 < p in both cases.

Similarly we can prove for p = 2 that f(pa) < pa provided a ≥ 4. By explicitly checking the remaining cases p = 2 and
a = 1, 2, 3 and p = 3 a = 1, 2 we conclude f(pa) ≤ 3

2
pa for all p, a and f(pa) ≤ pa for all p ≥ 3 and p = 2, a ≥ 4.

Assuming f(n) = n we would have
k∏
i=1

f(paii )

pai
= 1 so the above considerations imply that only possible prime divisors

are 2, 3. If k = 1 the only possible solution is n = 3. If k = 2 we have p1 = 2, p2 = 3 and 1 ≤ a1 ≤ 2 and 1 ≤ a2 ≤ 2
which give 4 cases to check giving the other 2 solutions n = 18, 36.
So, all almost perfect numbers are 3, 18, 36.

Second Solution. We hereby present one similar but different solution which does not use a lot of properties of the
function f .
Firstly, we will prove the following lemma:
Lemma: For any positive integer n > 1 and prime p we have

f(pn) 6 3f(n).

The equality holds if and only if GCD(p, n) = 1. Proof: For every integer m we have that the set of divisors of the
number pm is the union of the following two sets:

• set of divisors of m,

• set of divisors of m multiplied by p.

Also, those two mentioned sets are disjoint if and only if GCD(p,m) = 1 (if we have that p,m are disjoint, then it is
obvious that none of the divisors of pm are in both sets; if they are not coprime, then the number p belongs to both
sets).
This is why we have d(pm) 6 2d(m) and

f(pn) =
∑
k|pn

d(k) 6
∑
k|n

d(k) +
∑
k|n

d(pk) 6 f(n) +
∑
k|n

2d(k) = 3f(n).

In both inequalities equality holds if and only if sets from before are disjoint, i.e. when GCD(p, n) = 1.

Also, we simply see that f(2k) = d(1) + d(2) + . . .+ d(2k) = 1 + 2 + . . .+ (k + 1) = (k+1)(k+2)
2

.
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Notice that if for some positive integer n we have f(n) < n, then for every p > 3 we have f(pn) 6 3f(n) 6 pf(n) < pn.
Consequently, if f(n) < n, then for every odd m we have f(mn) < mn. Because of this, we will introduce new terms.
Number n is nice multiple of m if m | n and m

n
is odd number. Analogously, we define nice divisor. Our statement from

above is: if for some n we have f(n) < n, then neither of its nice multiples is almost perfect number. Our strategy will be
the following: check the cases of the "small" numbers and see ratio of numbers n and f(n). When we have that n > f(n),
conclude that there are not almost perfect numbers among their nice multiples. With formula for f(2k) conclude that
for sufficiently big k (when f(2k) < 2k) this is enough to conclude that there are no more almost perfect numbers. By
induction, it is simple to prove that f(2k) < 2k for k > 4. Thus, there are no almost perfect numbers of the form 2k ·m,
where k > 4 and m is odd, since they all have 2k as their nice divisor. We only have to check the numbers of the form
2k ·m, where where k 6 3 and m is odd.
First case: k = 0
For any odd prime p we have f(p) = d(1) + d(p) = 3 6 p. From that we see that n = 3 is solution. Moreover, we do not
have any more solutions: if some odd number has a prime divisor different from 3, since f(p) < p this number can not
be almost perfect number; if it is a power of 3 bigger than 3, since f(9) < 3f(3) = 9, there are no more solutions as well
(9 is nice divisor of every power of 3 bigger that 3).
Second case: k = 1
For any odd prime we have f(2p) = 3f(2) = 9. If p > 5 then we have 2p > f(2p), so for all almost perfect numbers of
the form 21 ·m number m has to have prime divisors 3 and/or 5.
We directly see that neither 6 or 10 is almost perfect. So, in this case, almost perfect number has to have a nice divisor
of the form 2 · 9, 2 · 15 or 2 · 25. For n = 18 we have another solution, in other two cases we have inequality f(n) < n. If
we want to seek new solution in this case, since they cannot be nice multiples of 30 and 50, the only possibility is that
almost perfect number has nice divisor 2 · 27. But we have (equality case in lemma) that f(2 · 27) < 3f(2 · 9) = 2 · 27.
So, there are no more solutions in this case.
Third case: k = 2
For any odd prime we have f(4p) = 3f(4) = 18. If p > 5 then we have 4p > f(4p), so for all almost perfect numbers of
the form 21 ·m number m has to have prime divisors 3 and/or 5.
We directly see that neither 12 or 20 is almost perfect. So, in this case, almost perfect number has to have a nice divisor
of the form 4 · 9, 4 · 15 or 4 · 25. For n = 36 we have another solution, in other two cases we have inequality f(n) < n. If
we want to seek new solution in this case, since they cannot be nice multiples of 60 and 100, the only possibility is that
almost perfect number has nice divisor 4 · 27. But we have (equality case in lemma) that f(4 · 27) < 3f(4 · 9) = 4 · 27.
So, there are no more solutions in this case.
Fourth case: k = 3
For any odd prime we have f(8p) = 3f(8) = 30. Similarly to other cases, we only observe candidates of the form 8 · 3l.
Number 8 · 3 is not almost perfect, all other candidates have nice divisor 8 · 9. But, we have f(72) = 60 < 72. As we
always concluded, we do not have any new solutions.
So, all almost perfect numbers are 3, 18, 36.
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Problem 4. Let ABC be an acute angled triangle. Let B′, A′ be points on the perpendicular bisectors of
AC,BC respectively such that B′A ⊥ AB and A′B ⊥ AB. Let P be a point on the segment AB and O
the circumcenter of the triangle ABC. Let D,E be points on BC,AC respectively such that DP ⊥ BO and
EP ⊥ AO. Let O′ be the circumcenter of the triangle CDE. Prove that B′, A′ and O′ are collinear.

(Steve Dinh)

Solution. Remark We first start by giving some intuition on how the problem can be approached. We won’t go into
detail here but do give partial marks for correct ideas. We believe that any essentially correct solution should have them
in the background so we don’t require them to be written down explicitly.
We notice that if P ≡ A then O′ ≡ B′ while if P ≡ B we have O′ ≡ A′. So the problem is equivalent to showing that as
P varies on the segment AB respective O′ map to a segment and we are now interested in identifying this segment.
It is hence natural to draw a picture not containing anything dependent on P and try to identify the line A′B′. Which
turns out to be perpendicular to CM where M is the midpoint of AB.
Furthermore we note that B′M2 − B′C2 = AM2 = A′M2 − A′C2 and this defines the line uniquely (and shows
A′B′ ⊥ CM).
The following sketch represents the problem setting when we do include the elements depending on P .

We now start with the formal proof.
It is enough to show that O′M2 − O′C2 = AM2 for all P , including P = A,B. Which allows us to draw the following
sketch omitting B′, C′.
We first prove that O′EPD is a cyclic quadrilateral. This follows as EO′D = 2ACB = APE + BPD = π − EPD as
ACB = APE = BPD. This in turn implies PO′ is an angle bisector of the angle EPD and PO′ ⊥ AB.
We now have all the ingredients to show O′M2 − O′C2 = AM2. The following sketch illustrates the last part of the
proof.

We introduce the point D′ as the second intersection of the line PE and the circumcircle of CDE so that O′P 2−O′C2 =
PE · PD′.
Now as PO′ is the angle bisector of EPD we have PD = PD′ by the extended S − S − K congruency theorem and
the following observation. There is some care needed here, mainly the options we get by S − S −K are PD = PD′ or
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PD = PE but if PD = PE triangles P ′EO′ and P ′DO′ are congruent by S−S−S congruency theorem so in particular
EO′P = DO′P = CAB while EPO′ = DPO′ = π

2
− CAB so PD and PE are tangents so in fact D′ ≡ E so the above

claim is still true.
Now noticing triangles APE and BPD are similar we get PE

AP
= PB

PD
implying AP ·BP = PE · PD = PE · PD′

As PO′ ⊥ AB by using pythagoras theorem we get O′M2−O′C2−AM2 = O′P 2−O′C2 +PM2−AM2 = PD′ ·PE−
AP · BP = 0. Where we used O′P 2 − O′C2 = PE · PD′ by the power of the point P to the circumcircle of CDE and
AM2 − PM2 = (BM + PM)(AM − PM) = AP · PB.
This completes the proof. �
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Problem 1. A = {a, b, c} is a set containing three positive integers. Prove that we can find a set B ⊂ A,
B = {x, y} such that for all odd positive integers m,n we have

10|xmyn − xnym.

(Tomi Dimovski)

Solution. Let f(x, y) = xmyn− xnym. If n = m, the problem statement will be fulfilled no matter how we choose B so
from now on, without loss of generality, we consider n > m. Since m and n are both odd, we have that n −m is even
and we get

f(x, y) = xmym(yn−m − xn−m)

=⇒ f(x, y) = xmym(y2 − x2)Q(x, y)

=⇒ f(x, y) = xmym(y − x)(y + x)Q(x, y),

where Q(x, y) = yn−m−2 + yn−m−4x2 + · · ·+ xn−m−2.
Now if one of x, y is even, f(x, y) is even. If both are odd, then f(x, y) is again even since x + y and x − y are even in
that case. This shows that we only need to consider divisibility by 5. If A contains at least one element divisible by 5,
we can put it in B and that will give us the solution easily. Now we consider the case when none of the elements in A is
divisible by 5. If some two numbers in A give the same remainder modulo 5, we can choose them and then x− y will be
divisible by 5 which solves the problem. Now we consider the case when all remainders modulo 5 in A are different. Take
a look at the pairs (1, 4) and (2, 3). Since we have three different remainders modulo 5 in A, by pigeonhole principle one
of these pairs has to be completely in A (when elements are considered modulo 5). Then if we pick the numbers from A
that correspond to those two remainders we get that x + y is divisible by 5 so the problem statement is fulfilled again.
This completes the proof.
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Problem 2. Let a, b, c be positive real numbers such that abc = 1. Prove that

a+ b+ c+ 3

4
>

1

a+ b
+

1

b+ c
+

1

c+ a
.

(Dimitar Trenevski)

First Solution. Rewrite the left hand side of inequality in following way:

a+ b+ c+ 3

4
=
a+ b+ c+ 3

4
√
abc

=
a+ 1

4
√
abc

+
b+ 1

4
√
abc

+
c+ 1

4
√
abc

.

Rewrite denominators:

a+ 1

4
√
abc

+
b+ 1

4
√
abc

+
c+ 1

4
√
abc

=
a+ 1

2
√
ab · c+ 2

√
ac · b

+
b+ 1

2
√
bc · a+ 2

√
ab · c

+
c+ 1

2
√
ac · b+ 2

√
bc · a

,

and then by artithmetic mean – geometric mean inequality, we have

=
a+ 1

2
√
ab · c+ 2

√
ac · b

+
b+ 1

2
√
bc · a+ 2

√
ab · c

+
c+ 1

2
√
ac · b+ 2

√
bc · a

>
a+ 1

ab+ c+ ac+ b
+

b+ 1

bc+ a+ ab+ c
+

c+ 1

ac+ b+ bc+ a
.

This problem is now solved, because

a+ 1

ab+ c+ ac+ b
+

b+ 1

bc+ a+ ab+ c
+

c+ 1

ac+ b+ bc+ a
=

a+ 1

(a+ 1)(b+ c)
+

b+ 1

(b+ 1)(a+ c)
+

c+ 1

(c+ 1)(a+ b)
=

=
1

a+ b
+

1

b+ c
+

1

c+ a

Second Solution. We introduce change of variables: a = x3, b = y3, c = z3. We now have the condition xyz = 1.
We apply Schur inequality (with exponent r = 1) to the numerator of the left hand side:

x3 + y3 + z3 + 3xyz > x2y + x2z + y2x+ y2z + z2x+ z2y,

to obtain inequality
x2y + x2z + y2x+ y2z + z2x+ z2y

4
>

1

x3 + y3
+

1

y3 + z3
+

1

z3 + x3
.

We apply arithmetic mean – geometric mean inequality for the denominators of the right hand side:

x3 + y3 > 2x3/2y3/2 =⇒ 1

x3 + y3
6

1

2x3/2y3/2
=

1

2
z2
√
yz,

and similarly to the other terms. We now have to prove

x2y + x2z + y2x+ y2z + z2x+ z2y

2
> x2

√
yz + y2

√
xz + z2

√
xy.

We apply arithmetic mean – geometric mean inequality in pairs on the left hand side:

x2y + x2z

2
> x2

√
yz,

y2x+ y2z

2
> y2

√
xz,

z2x+ z2y

2
> z2
√
xy.

Summing up inequalities from above finishes the proof.
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Problem 3. Circles k1 and k2 intersect in points A and B, such that k1 passes through the center O of the
circle k2. The line p intersects k1 in points K and O and k2 in points L and M , such that the point L is between
K and O. The point P is orthogonal projection of the point L to the line AB. Prove that the line KP is
parallel to the M -median of the triangle ABM .

(Matko Ljulj)

Solution. Let the point C be the midpoint of the line segment AB. We have to prove MC ‖ KP .

Let us introduce angle α := ∠BKA. Notice that

∠BLA = 180− ∠BMA = 180− 1

2
∠BOA = 180− 1

2
(180− ∠BKA) = 90 +

1

2
α.

Also, notice that the point O is midpoint of the arc
_

AB. Thus the line KO is bisector of the angle ∠BKA. From the
two claims above, we deduce that L is incenter of the triangle ABK. Moreover, notice that ML is diameter of the circle
k2, thus ∠ABM = 90. Since BL is angle bisector of the angle ∠ABK, we deduce that BM is exterior angle bisector
of the same angle. Thus, since M lies on angle bi sector KM and exterior angle bisector BM , M is the center of the
excircle for the triangle ABK. Thus, we have to prove that the line passing through the incenter L of the triangle ABK
and point of the tangency of incircle of the same triangle is parallel to the line passing through the center of the excircle
M and the midpoint C of the line segment AB. This is a well known lemma, which completes the proof.
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Problem 4. A group of mathematicians is attending a conference. We say that a mathematician is k-content
if he is in the room with at least k people he admires or if he is admired by at least k other people in the room.
It is known that when all participants are in the same room then they are all at least 3k + 1-content. Prove
that you can assign everyone into one of the 2 rooms in a way that everyone is at least k-content in his room
and neither room is empty. Admiration is not necessarily mutual and no one admires himself.

(Matija Bucić)

Solution. We will for simplicity and clarity of presentation use some basic graph theoretic terms, this is in no way
essential.
We represent the situation by a directed graph (abbr. digraph) G(V,E) where each vertex v ∈ V (G) represents a
mathematician and each edge e ∈ E(G) represents an admiration relation. Given v ∈ V (G) we define out-degree of v
denoted o(v) as the number of edges starting in v (so the number of mathematicians v admires) and in-degree i(v) as
the number of edges ending in v (so the number of mathematicians who admire v). Given X ⊆ V by G(X) we denote
the induced subgraph (a graph with vertex set X and edges inherited from G). We say that a digraph is a k-digraph if
for every v ∈ V (G) we have i(v) ≥ k or o(v) ≥ k.
So the question can be reformulated as: Given G is a 3k+1-digraph we can split its vertices into 2 vertex disjoint classes
such that each induced subgraph on class is a k digraph.
We call a subset X of vertices of G k-tight if for any Y ⊆ X we have a vertex v ∈ Y such that iG(Y )(v) ≤ k and
oG(Y )(v) ≤ k. A partition of V , (A1, A2) is feasible if A1 is k-tight and A2 is k-tight.
We first assume there are no feasible partitions.
In this case consider a minimal size subset A1 ⊆ V (G) subject to G(A1) being a k-digraph, we define A2 ≡ V (G)−A1.
Given a subset X ⊂ A1, G(X) is not a k-digraph so there is a vertex v ∈ X such that oG(X)(v) < k and iG(X)(v) < k
which shows that any proper subset of A1 satisfies the condition of k-tightness. For the case of X ≡ A1 by removing
any vertex v ∈ A1 the graph G′ ≡ G(A1 − {v}), by minimality assumption on A1, must contain a vertex w such that
oG′(w) < k and iG′(w) < k so as there is only one extra vertex in G(A1), namely v oG(A1)(w) ≤ k, iG(A1)(w) ≤ k. In
particular this shows A1 is k-tight.
This implies A2 is not k-tight by our assumption so there exists an A′2 ⊆ A2 such that A′2 is a k + 1 digraph. Now
applying the following proposition to extend the pair (A1, A

′
2) to a full partition which satisfies the conditions of the

problem.
Given disjoint subsets A,B ⊆ V (G) we say (A,B) is a solution pair if both G(A) and G(B) are k-digraphs.
Proposition: If a 2k+1 digraph G admits a solution pair it admits a partition with both induced graphs of both classes
being k-digraphs.
Proof. Take a maximal solution pair (A,B), the condition in the lemma guaranteeing it exists. Let C = V (G)−(A∪B),
if C is empty we are done so assume |C| > 0. By our assumption (A,B ∪ C) is not a solution pair so there is some
x ∈ C such that oG(B∪C)(x), iG(B∪C)(x) < k so as G is 2k + 1 digraph iG(x) ≥ 2k + 1 or oG(x) ≥ 2k + 1 so either
oG(A∪{x})(x) > k + 1 or iG(A∪{x})(x) > k + 1 so in particular (A ∪ {x}, B) is a solution pair contradicting maximality
and completing our argument. �
Hence we are left with the case in which we have at least one feasible partition. We pick the feasible partition (A,B)
maximizing w(A,B) = |E(G(A))| + |E(G(B))|. The fact that A is k-tight implies there is an x with oG(A)(x) ≤ k,
iG(A)(x) ≤ k so x needs to have at least k + 1 edges in or out of B so |B| ≥ k + 1 and by symmetry |A| ≥ k + 1.
We now prove that there exist an X ⊆ A such that G(X) is a k-digraph, by contradiction. Assuming the opposite we
notice that for any x ∈ B, B−{x} is still k-tight while B being k-tight implies there is an x ∈ B such that oG(B)(x) ≤ k,
iG(B)(x) ≤ k so for this x we have A∪{x} is also k-tight. Hence, for A′ = A∪{x} and B′ = B−{x}, (A′, B′) is a feasible
partition. We considering the change in edges which moving x causes we have w(A′, B′)−w(A,B) ≥ 3k+1−k−k−k = 1
as we know iG(x) ≥ 3k + 1 or oG(x) ≥ 3k + 1 so moving x from B to A increases number of edges in A by at least
3k + 1− k while the choice of x in B means we lose at most k + k edges in B. This is a contradiction to maximality of
(A,B).
Analogously we can find Y ⊆ B with G(Y ) a k-digraph. Now applying the above proposition yet again we are done. �
Remark: The same argument with slightly modified weight function can be used to show the result for non symmetric
rooms, in particular if the graph is a k + l + max(k, l) + 1 digraph it can be partitioned into k- digraph and l digraph
parts.
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