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Incarcerating the Euler-Mascheroni constant γ

S. K. Khattri∗

Abstract. In this work, we develop new tight bounds for the Euler-
Mascheroni constant γ in terms of other well-known constants. For
finding various upper and lower bounds, we use Gauss-Legendre and
Lobatto quadrature rules.
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1. Introduction

The Euler-Mascheroni constant also referred to as the Euler constant is defined by
the following limit:

γ = lim
n→∞

[
n∑

k=1

1

k
− ln (n+ 1)

]
(1)

[see 1, and references therein]. The Euler-Mascheroni constant appears, among
other places, in analysis and number theory. There are major open questions re-
garding the Euler-Mascheroni constant. For example, it is not known whether the
number γ is algebraic or transcendental and rational or irrational.

In this work, we present new upper and lower bounds for this constant. We will
notice that for bounding the constant γ, we need to bound ln (1 + 1

n ). For example,
see the inequality (30). Thus, we will develop bounds for both γ and ln (1 + 1

n )
through quadrature rules. Let us first review the quadrature rule, and develop two
quadrature inequalities.

2. Lobatto and Gauss-Legendre quadrature rules

Figure 1 presents a graph of the function 1
x . The area under the graph, and between

the vertical lines x = n and x = n+ 1 is given by the integral:

n+1∫
n

1

x
dx

The exact value of this integral is ln (1 + 1
n ).
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Slika 1: Graph of f(x) = 1
x . The shaded area is equal to ln (1 + 1

n ).

Let us briefly discuss about the Lobatto quadrature [2–4]. Integral of a function
f(x) between the limits a and b through n points Lobatto quadrature is given as:

b∫
a

f(x) dx = k

n∑
i=1

ωi f(c+ k xi)− E (2)

Here, ωi, xi and E are weights, abscissa and error of the quadrature, respectively.
The error is given as:

E =
n(n− 1)322n−1 [(n− 2)!]

4

(2n− 1) [(2n− 2)!]
3 f (2n−2)(ξ) (3)

Here, ξ ∈ [a, b]. For the function f(x) = 1
x , the derivative f (2n−2)(ξ) is given as

follows:

f (2n−2)(ξ) =
(2n− 2)!

ξ2n−1

and which is strictly positive for all ξ > 0. Thus error is positive for a positive
interval of integration. Consequently for positive interval of integration the equation
(2) results in the following inequality:

b∫
a

1

x
dx < k

n∑
i=1

ωi f(c+ k xi). (4)

We may call it the Lobatto inequality. We will use it forming upper bounds for
ln (1 + 1

n ), and lower bounds for the constant γ. The constants k and c are defined
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from a and b:

c =
a+ b

2
and k =

b− a
2

(5)

For our purpose a = n and b = n+ 1 (see the Figure 1), thus:

c =
2n+ 1

2
and k =

1

2
(6)

For the Lobatto quadrature, boundary abscissas are fixed. Thus,

x1 = −1 and xn = 1

The free abscissas xi for i = 2, 3, . . . , n− 1 are the roots of P ′n−1(x). Here, Pn(x) is
a Legendre polynomial of degree n [4]. We are using the Maple software package
for finding the free abscissa [4] through the following commands:

1. First we specify the Legendre polynomial Pn−1(x) of degree n− 1:

Pn := simplify(LegendreP(n-1,x));

2. Then we find the derivative P ′n−1(x) of the above polynomial:

dPn := diff(Pn,x);

3. Finally free abscissas xi, i = 1, . . . , n−2 are obtained by solving P ′n−1(x) = 0:

solve(dPn=0,x);

The weights of the free abscissas are given as:

ωi =
2

n (n− 1)P 2
n−1(xi−1)

, i = 2, . . . , n− 1 (7)

while the weights for the fixed abscissas are the following:

ωi =
2

n (n− 1)
, i = 1, n. (8)

Let us now discuss about the Gauss-Legendre quadrature [5]. Integral of a func-
tion f(x) between the limits a and b through n points Gauss-Legendre quadrature
is given as follows:

b∫
a

f(x) dx = k

n∑
i=1

ωi f(xi) + E (9)
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Here, ωi, xi and E are weights, abscissa and error of the quadrature, respectively.
The error is given as:

E =
22n+1 (n!)4

(2n+ 1) [(2n)!]
3 f

(2n)(ξ) (10)

Here, ξ ∈ [a, b]. For the function f(x) = 1
x , the derivative f (2n)(ξ) is given as

follows:

f (2n)(ξ) =
(2n)!

ξ2n+1

and which is strictly positive for all ξ > 0. Thus error is positive for a positive
interval of integration. Consequently for a positive interval of integration, equation
(9) results in the following inequality:

b∫
a

1

x
dx > k

n∑
i=1

ωi f(xi) (11)

Here, k = (n+1−n)
2 = 1

2 . We may call it the Gauss-Legendre inequality. We will use
it forming lower bounds for ln (1 + 1

n ), and upper bounds for the constant γ. For
the Gauss-Legendre quadrature the weights are taken from the literature [5].

2.1. Approximation of ln (1 + 1
n
) through the three Point Lo-

batto quadrature

The weights and abscissa are found through the Maple package. Upon substituting
these weights and abscissa in the Lobatto inequality (4), we get the following upper
bound:

ln

(
1 +

1

n

)
<

12n2 + 12n+ 1

12n3 + 18n2 + 6n
(12)

2.2. Approximation of ln (1 + 1
n
) through the four Point Lo-

batto quadrature

The weights and abscissa are found through the Maple package. Upon substituting
these weights and abscissa in the Lobatto inequality (4), we get the following upper
bound:

ln

(
1 +

1

n

)
<

60n3 + 90n2 + 32n+ 1

60n4 + 120n3 + 72n2 + 12n
(13)

Now let us use the Gauss-Legendre inequality (11) for developing lower bounds
for the ln (1 + 1

n ).

2.3. Approximation of ln (1 + 1
n
) through the 2-point Gauss-

Legendre quadrature

ln

(
1 +

1

n

)
>

6n+ 3

6n2 + 6n+ 1
(14)
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2.4. Approximation of ln (1 + 1
n
) through the 3-point Gauss-

Legendre quadrature

ln

(
1 +

1

n

)
>

1

3

[
(60n2 + 60n+ 11)

20n3 + 30n2 + 12n+ 1

]
(15)

In the next section, we develop bounds on the constant γ. First twenty digits of
the constant γ are

γ = 0.57721566490153286061 . . .

3. Trapezoidal rule and lower bound on γ

Now let us develop lower bound for γ through Trapezoidal rule. By the Trapezoidal
rule, the area under the graph and between the vertical lines x = n and x = n+ 1
is given as (see the Figure 1):

n+1∫
n

1

x
dx =

h

2
[f(x1) + f(x2)]− 1

12
f ′′(c)h2 (16)

Here, h = 1, x1 = n, x2 = n+ 1, and the number c lies somewhere between x1 and
x2. The second derivative of the function: f ′′(x) = 2

x3 , which is always positive for
positive values of x. Thus,

[lnx]
n+1
n <

1

2

[
1

n
+

1

n+ 1

]
(17)

ln

(
n+ 1

n

)
<

1

n

[
1

1 + 0.5
n+0.5

]
(18)

1

n
>

[
1 +

0.5

n+ 0.5

]
ln

(
n+ 1

n

)
(19)

⇒ 1

n
> ln (n+ 1)− ln (n) +

[
0.5

n+ 0.5

]
ln

(
1 +

1

n

)
(20)



50 S. K. Khattri

Substituting n = 1, 2, 3, . . . , n in the above inequality gives

1

1
> ln (2)− ln (1) +

[
0.5

1 + 0.5

]
ln

(
1 +

1

1

)
(21)

1

2
> ln (3)− ln (2) +

[
0.5

2 + 0.5

]
ln

(
1 +

1

2

)
(22)

1

3
> ln (4)− ln (3) +

[
0.5

3 + 0.5

]
ln

(
1 +

1

3

)
(23)

... (24)

1

n− 1
> ln (n)− ln (n− 1) +

[
0.5

n− 1 + 0.5

]
ln

(
1 +

1

n− 1

)
(25)

1

n
> ln (n+ 1)− ln (n) +

[
0.5

n+ 0.5

]
ln

(
1 +

1

n

)
(26)

Adding all these inequations, we get the following:

n∑
k=1

1

k
> ln (n+ 1) +

n∑
k=1

[
0.5

k + 0.5

]
ln

(
1 +

1

k

)
(27)

n∑
k=1

1

k
− ln (n+ 1) >

n∑
k=1

[
0.5

k + 0.5

]
ln

(
1 +

1

k

)
(28)

The Euler constant γ is defined as:

γ = lim
n→∞

[
n∑

k=1

1

k
− ln (n+ 1)

]
(29)

From the equation (28) and definition of γ, we get the following:

γ > lim
n→∞

[
n∑

k=1

(
0.5

k + 0.5

)
ln

(
1 +

1

k

)]
(30)

Now from the above inequation and the lower bound (14) give the following:

γ > lim
n→∞

[
n∑

k=1

(
0.5

k + 0.5

)
6 k + 3

6 k2 + 6 k + 1

]

We used the following Maple command for finding the sum on the right hand side
of the above inequation: sum((6*n+3)/((2*n+1)*(6*n*n+6*n+1)), n = 1..Infinity).

γ > −3 +

√
3π

2
tan

π
√

3

6
.
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The right side of the above inequality evaluates to 0.4775199588. From equations
(30) and (15), we get the following lower bound:

γ > lim
n→∞

[
n∑

k=1

(
0.5

k + 0.5

)
1

3

[
2 (60k2 + 60k + 11)

40k3 + 60k2 + 24k + 2

]]
Using the following Maple command for finding the sum on the right hand side

of the above inequation:
sum((2/3)*(60*n*n+60*n+11)/((2*n+1)*((40*n*n)*n+60*n*n+24*n+2)), n = 1 .. Infinity):

γ > −11

3
+

5
√

15π

54
tan

π
√

15

10
+
π2

9

The right side of the above inequality evaluates to 0.4778051568.

Three point Lobatto quadrature and lower bound for γ

From equation (12), we can write the following:

1

n
> ln (1 + n)− lnn+

(
6n+ 5

12n2 + 12n+ 1

)
ln

(
1 +

1

n

)
(31)

Substituting n = 1, 2, 3, . . . , n in the above inequation, and adding those inequa-
tions:

n∑
k=1

[
1

k
− ln (1 + n)

]
>

n∑
k=1

(
6 k + 5

12 k2 + 12 k + 1

)
ln

(
1 +

1

k

)
(32)

Using the definition of the Euler constant (1) and the above inequation:

γ >

∞∑
k=1

(
6 k + 5

12 k2 + 12 k + 1

)
ln

(
1 +

1

k

)
(33)

Now using the lower bound (14) and the above inequation:

γ >

∞∑
k=1

(
6 k + 5

12 k2 + 12 k + 1

) (
6 k + 3

6 k2 + 6 k + 1

)
(34)

Using the following Maple command:
sum((6*k+5)*(6*k+3)/((12*k*k+12*k+1)*(6*k*k+6*k+1)), k = 1 .. infinity). The
sum of infinite series on the right of the above expression is given as follows:

γ > −15 + π tan
π
√

6

6
+

√
6π

2
tan

π
√

6

6
+ 2 Ψ

(
1

2
+

√
3

6

)
− 2 Ψ

(
1

2
+

√
6

6

)

−
√

3π

2
tan

√
3π

6
− π tan

π
√

3

6
. (35)

The expression on the right side of the above inequality can be evaluated by using
the Maple command evalf command. And, its value is 0.574823010.
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Four point Lobatto quadrature and lower bound for γ

From equation (13), we can write the following:

1

n
> ln (1 + n)− ln (n) +

(
150n2 + 200n+ 55

300n3 + 450n2 + 160n+ 5

)
ln

(
1 +

1

n

)
(36)

Substituting n = 1, 2, 3, . . . , n in the above inequation, and adding those inequa-
tions:

n∑
k=1

1

k
− ln (1 + n) >

n∑
k=1

(
150 k2 + 200 k + 55

300 k3 + 450 k2 + 160 k + 5

)
ln

(
1 +

1

k

)
(37)

Using the definition of the Euler constant (1) and the above inequation:

γ >

∞∑
k=1

(
150 k2 + 200 k + 55

300 k3 + 450 k2 + 160 k + 5

)
ln

(
1 +

1

k

)
(38)

Now using the lower bound (14) and the above inequation:

γ >

∞∑
k=1

(
150 k2 + 200 k + 55

300 k3 + 450 k2 + 160 k + 5

) (
6 k + 3

6 k2 + 6 k + 1

)
(39)

Upper bound on γ through the 2-point Gauss-Legendre quadra-
ture

From equation (14):

ln

(
1 +

1

n

)
>

6n+ 3

6n2 + 6n+ 1
(40)

⇒ 1

n
< ln (1 + n)− lnn+

(
3n+ 1

6n2 + 3n

)
ln

(
1 +

1

n

)
(41)

Substituting n = 1, 2, 3, . . . , n in the above inequation, and adding those inequa-
tions, we get

n∑
k=1

[
1

k
− ln (1 + n)

]
<

n∑
k=1

(
3k + 1

6 k2 + 3 k

)
ln

(
1 +

1

k

)
(42)

Now from the above inequation and the definition of the Euler constant (1):

γ <

∞∑
k=1

(
3k + 1

6 k2 + 3 k

)
ln

(
1 +

1

k

)
(43)
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Using the upper bound (12) and the above inequation gives our first upper bound:

γ <

n∑
k=1

(
3k + 1

6 k2 + 3 k

) (
12k2 + 12k + 1

12k3 + 18k2 + 6k

)
(44)

Using the following Maple command for finding the sum on the right hand side of the
above inequation: sum((3*n+1)*(12*n*n+12*n+1)/((6*n*n+3*n)*((12*n*n)*n+18*n*n+6*n)),
n = 1 .. infinity):

γ <
5

9
+

7

108
π2 − 8

9
ln 2 (45)

The right side of the above expression evaluates to 0.5791213099.

Upper bound on γ through the 3-point Gauss-Legendre quadra-
ture

From equation (15), we can write:

ln
(
1 + 1

n

)
< 1

n

 1

1+

(
30n+25+ 3

n

60n2+60n+11

)
 (46)

⇒ 1
n < ln (1 + n)− ln (n) +

(
30n+25+ 3

n

60n2+60n+11

)
ln
(
1 + 1

n

)
(47)

Substituting n = 1, 2, 3, . . . , n in the above inequation, and adding those inequa-
tions, we get

n∑
k=1

[
1
k − ln (1 + n)

]
<

n∑
k=1

(
30 k+25+ 3

k

60 k2+60 k+11

)
ln
(
1 + 1

k

)
(48)

Now from the above inequation and the definition of the Euler constant (1):

γ <

∞∑
k=1

(
30 k+25+ 3

k

60 k2+60 k+11

)
ln
(
1 + 1

k

)
(49)

Using the upper bound (12) and the above inequation gives the following upper
bound:

γ <

∞∑
k=1

(
30 k+25+ 3

k

60 k2+60 k+11

) (
12k2+12k+1

12k3+18k2+6k

)
(50)

Using the following command in the computer algebra system Maple:
sum((30*n+25+3/n)*(12*n*n+12*n+1)/((60*n*n+60*n+11)*((12*n*n)*n+18*n*n+6*n)),

n = 1 .. infinity), we can find the sum of the series on the right hand side of
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the above inequation. Accordingly, we obtain

γ <
136

1331
+

π2

132
− 30

121
γ − 30

121
Ψ

(
1

2
+

√
15

15

)
+

15π

121
tan

π
√

15

15

+

√
15π

242
tan

π
√

15

15
− 4

3
ln 2. (51)

Here, Ψ is the digamma function. Further simplifying the above expression, we
obtain

γ <
136

1661
+

11π2

1812
− 484

453
ln (2)− 30

151
Ψ

(
1

2
+

√
15

15

)
+

15

151
π tan

(√
15

15
π

)

+
15

302

√
15π tan

(√
15

15
π

)
. (52)

The right side of the above inequality is 0.57772570 which is γ accurate til five
decimal places.
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