Медитеранска математичка олимпијада

29.04.2018 година

Задача 1. Целиот број $a \ge 1$ го нарекуваме *интересен*, ако за секој природен $n \ge 1$ бројот $a^{n+2} + 3a^2 + 1$ е сложен. Докажи дека множеството $\{1, 2, 3, ..., 2018\}$ содржи најмалку 500 интересни броеви.

Задача 2. Нека $a_1,a_2,...,a_n$, $n \ge 2$ се реални броеви такви што $0 \le a_i \le \frac{\pi}{2}$. Докажи дека

$$(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{1+\sin a_i})(1+\prod_{i=1}^{n}(\sin a_i)^{1/n}) \le 1.$$

Кога важи знак за равенство?

Задача 3. Определи го најголемиот природен број N за кој постои $6 \times N$ табела T за која се исполнети следниве својства:

- і) Секоја колона во некој редослед ги содржи броевите 1, 2, 3, 4, 5 и 6.
- ii) За секои две колони $i \neq j$ постои ред r така што T(r,i) = T(r,j).
- iii) За секои две колони $i \neq j$ постои ред s така што $T(s,i) \neq T(s,j)$.

Забелешка. Со T(m,k) е означен елементот кој се наоѓа во пресекот на m-тиот ред и k-тата колона.

Задача 4. Даден е остроаголен $\triangle ABC$. Нека правите AE и AF, $(E,F\in BC)$ се симетрични во однос на симетралата на $\measuredangle A$. Правите AE и AF по вторпат ја сечат опишаната кружница околу $\triangle ABC$ во точките M и N, соодветно. Точките P и R припаѓаат на полуправите AB и AC, соодветно и притоа важи $\measuredangle AER = \measuredangle C$ и $\measuredangle PEA = \measuredangle B$. Нека $L = AE \cap PR$ и $D = BC \cap LN$. Докажи дека

$$\frac{1}{MN} + \frac{1}{EF} = \frac{1}{ED} .$$

Секоја задача се вреднува по 7 поени.

Време за работа 4:30

Користењето на калкулатор не е дозволено.

Медитеранска математичка олимпијада

29.04.2018 година

Problem 1.

An integer $a \ge 1$ is called *Aegean*, if none of the numbers $a^{n+2} + 3a^n + 1$ with $n \ge 1$ is prime. Prove that there are at least 500 Aegean integers in the set $\{1, 2, \ldots, 2018\}$.

Solution

We identify two infinite families of Aegean integers a. The first family consists of the integers of the form $a \equiv 1 \pmod{5}$, as then all $n \geq 1$ satisfy

$$(a^2+3)a^n+1 \equiv (1^2+3)\cdot 1^n+1 \equiv 5 \equiv 0 \pmod{5}.$$

Consequently a = 5b + 1 is Aegean for b = 1, ..., 403.

The second family consists of the integers of the form $a \equiv -1 \pmod{15}$. Indeed if n = 2k+1 is odd, then $a \equiv -1 \pmod{3}$ implies

$$(a^2+3)a^n+1 \ \equiv \ ((-1)^2+3)(-1)^{2k+1}+1 \ \equiv \ -4+1 \ \equiv \ 0 \pmod 3.$$

On the other hand if n = 2k is even, then $a \equiv -1 \pmod{5}$ implies

$$(a^2+3)a^n+1 \equiv ((-1)^2+3)(-1)^{2k}+1 \equiv 4+1 \equiv 0 \pmod{5}.$$

This yields that a = 15c - 1 is Aegean for $c = 1, \ldots, 134$.

Altogether, these two (disjoint) families yield at least 403 + 134 = 537 Aegean integers in the range $\{1, 2, ..., 2018\}$.

Problem 2.

Let a_1, a_2, \ldots, a_n be $n \geq 2$ real numbers such that $0 \leq a_i \leq \pi/2$. Prove that

$$\left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{1+\sin a_{i}}\right)\left(1+\prod_{i=1}^{n}(\sin a_{i})^{1/n}\right)\leq 1.$$

Solution. First, we write the inequality claimed in the equivalent form

$$\sum_{i=1}^{n} \frac{1}{1 + \sin a_i} \le \frac{n}{1 + \prod_{i=1}^{n} (\sin a_i)^{1/n}},$$

and using induction, we will prove it for all $n = 2^{j}$, where j is a positive integer. Indeed, for j = 1 the inequality claimed is

$$\frac{1}{1+\sin a_1} + \frac{1}{1+\sin a_2} \le \frac{2}{1+\sqrt{\sin a_1 \sin a_2}}$$

or

$$2(1+\sin a_1)(1+\sin a_2) \ge (2+\sin a_1+\sin a_2)(1+\sqrt{\sin a_1}\sin a_2),$$

$$\sin a_1+\sin a_2+2\sin a_1\sin a_2 \ge (2+\sin a_1+\sin a_2)\sqrt{\sin a_1}\sin a_2,$$

$$(\sin a_1+\sin a_2)(1-\sqrt{\sin a_1}\sin a_2)-2\sqrt{\sin a_1}\sin a_2(1+\sqrt{\sin a_1}\sin a_2)$$

from which

$$(\sqrt{\sin a_1} - \sqrt{\sin a_2})^2 (1 - \sqrt{\sin a_1 \sin a_2}) \ge 0$$

follows and the inequality holds.

Assume that it holds

$$\sum_{i=1}^{2^{j}} \frac{1}{1 + \sin a_{i}} \le \frac{2^{j}}{1 + \sqrt[2^{j}]{\sin a_{1} \sin a_{2} \cdot \cdot \cdot \sin a_{2^{j}}}}$$

Then, for 2^{j+1} we have

$$\begin{split} \sum_{i=1}^{2^{j+1}} \frac{1}{1+\sin a_i} &= \sum_{i=1}^{2^j} \left(\frac{1}{1+\sin a_{2i-1}} + \frac{1}{1+\sin a_{2i}} \right) \\ &\leq 2 \sum_{i=1}^{2^j} \frac{1}{1+\sqrt{\sin a_{2i-1} \sin a_{2i}}} \\ &\leq \frac{2^{j+1}}{1+\sqrt{\sin a_1 \sin a_2} \sqrt{\sin a_3 \sin a_4 \dots \sqrt{\sin a_{2j+1} - 1 \sin a_{2j+1}}}} \\ &= \frac{2^{j+1}}{1+\sqrt{2^{j+1}} \sqrt{\sin a_1 \sin a_2 \dots \sin a_{2j+1}}} \end{split}$$

Thus, by PMI the inequality holds for $n = 2^{j}$.

Finally, we will use Backward induction. That is, we prove $P(k) \Rightarrow P(k-1)$ for all $k \geq 3$. Putting

$$\sin a_k = \sqrt[k-1]{\sin a_1 \sin a_2 \cdots \sin a_{k-1}},$$

we have

$$\begin{split} \sum_{i=1}^k \frac{1}{1+\sin a_i} &= \sum_{i=1}^{k-1} \frac{1}{1+\sin a_i} + \frac{1}{1+\sqrt[k-1]{\sin a_1} \sin a_2 \cdots \sin a_{k-1}} \\ &\leq \frac{k}{1+\sqrt[k]{\sin a_1 \cdots \sin a_{k-1}} \cdot \sqrt[k-1]{\sin a_1} \sin a_2 \cdots \sin a_{k-1}} \\ &= \frac{k}{1+\sqrt[k-1]{\sin a_1} \sin a_2 \cdots \sin a_{k-1}} \end{split}$$

from which

$$\sum_{i=1}^{k-1} \frac{1}{1+\sin a_i} \leq \frac{k-1}{1+\sqrt[k-1]{\sin a_1 \, \sin a_2 \cdot \cdot \cdot \sin a_{k-1}}}$$

follows. Equality holds when $a_1 = a_2 = \ldots = a_n$, and we are done.

Problem 3.

Determine the largest integer N, for which there exists a $6 \times N$ table T that has the following properties:

- Every column contains the numbers 1, 2, ..., 6 in some ordering.
- (ii) For any two columns $i \neq j$, there exists a row r such that T(r,i) = T(r,j).
- (iii) For any two columns $i \neq j$, there exists a row s such that $T(s, i) \neq T(s, j)$.

Solution

We show that N=5!=120 is the largest such integer. The lower bound construction is as follows. For every permutation of the integers $1, \ldots, 5$ create a corresponding column whose first 5 entries agree with the permutation and whose last entry (in the 6th row) equals 6.

The upper bound argument is as follows. Consider a $6 \times N$ table T with the desired properties. For each of its columns c and for every integer x = 1, 2, ..., 6 we define a new column c_x that consists of the 6entries

$$T(1,c) + x$$
, $T(2,c) + x$, $T(3,c) + x$, $T(4,c) + x$, $T(5,c) + x$, $T(6,c) + x$.

Now consider two columns i and j, and two integers x and y with $1 \le x, y \le 6$, and assume that the columns i_x and j_y agree componentwise modulo 6. By condition (ii) there exists a row r such that T(r,i) = T(r,j). This means

$$T(r,i) + x = i_x(r) \equiv j_y(r) = T(r,j) + y = T(r,i) + y \pmod{6},$$

which implies $x \equiv y \mod 6$ and hence x = y. If $i \neq j$, then by condition (iii) there exists a row s such that $T(s,i) \neq T(s,j)$. By using x = y this then would imply the contradiction

$$T(s,i) + x = i_x(s) \equiv j_y(s) = T(s,j) + y = T(s,j) + x \not\equiv T(s,i) + x \pmod{6}.$$

Hence whenever two columns i_x and j_y agree componentwise modulo 6, then i = j and x = y must hold. This implies that the 6N columns c_x with $c \in T$ and x = 1, 2, ..., 6 must be pairwise distinct. By condition (i), these pairwise distinct objects correspond to pairwise distinct permutations of 1, 2, ..., 6. Therefore $6N \le 6!$, so that $N \le 5!$.

Problem 4.

ABC is an acute triangle. AE and AF are isogonal cevians, where $E \in BC$ and $F \in BC$. The straight lines AE and AF intersect again the circumcircle of ABC at points M and N, respectively. In the rays AB and AC we get points P and R such that $\angle PEA = \angle B$ and $\angle AER = \angle C$. Let $L = AE \cap PR$ and $D = BC \cap LN$. Prove, with reasons, that

$$\frac{1}{MN} + \frac{1}{EF} = \frac{1}{ED} .$$

Solution 1

Consider the following diagram:

The following couples of triangles are clearly similar:

 $\triangle AEF$ and $\triangle AMN$, because a general property of isogonal show that MN and BC are parallel; then we have $\frac{AE}{AM} = \frac{EF}{MN}$ (1). By the same rason, $\triangle LED$ and $\triangle LMN$ are also similar, and so we have $\frac{LE}{LM} = \frac{ED}{MN}$ (2).

The following couples of triangles are similar, too:

$$\triangle APE$$
 and $\triangle ABE \Rightarrow AE^2 = AP \cdot AB$

$$\triangle APL$$
 and $\triangle ABM \Rightarrow \frac{AP}{AM} = \frac{AL}{AB} \Rightarrow AM \cdot AL = AP \cdot AB = AE^2$

And so we get

$$\frac{AM}{AE} = \frac{AE}{AL} (3).$$

Then using (2),

$$\frac{1}{MN} = \frac{LE}{LM \cdot ED} .$$

And using (1),

$$\frac{1}{EF} = \frac{AM}{AE \cdot MN} = \frac{AM}{AE} \cdot \frac{LE}{LM \cdot ED}.$$

Therefore,

$$\frac{1}{MN} + \frac{1}{EF} = \frac{1}{ED} \cdot \left[\frac{LE}{LM} \left(1 + \frac{AM}{AE} \right) \right],$$

and so we need just to prove that the last bracket equals 1. To this, we will use (3):

$$\left[\frac{LE}{LM}\left(1+\frac{AM}{AE}\right)\right] =$$

$$\left[\frac{LE}{LM}\left(1+\frac{AM}{AE}\right)\right] = \frac{LE}{LM}\left(1+\frac{AE}{AL}\right) = \frac{(AE-AL)(AE+AL)}{(AM-AL)\cdot AL} = \frac{AE^2-AL^2}{AM\cdot AL-AL^2} =$$

$$= \frac{AE^2-AL^2}{AE^2-AL^2} \text{, and we are done.} \blacksquare$$

Observation

PE and BE are antiparallel with respect to AM and AB, so P and B are homologous in the inversion of pole A and power AE². The same reasoning applies to PL and BM. This means that

 $AP \cdot AB = AL \cdot AM = AE^2$, and continue as in the featured solution.