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Problems and solutions

Problem 1. Let ABC be a triangle and Q a point on the internal angle bisector of ∠BAC. Circle ω1 is
circumscribed to triangle BAQ and intersects the segment AC in point P 6= C. Circle ω2 is circumscribed to
the triangle CQP . Radius of the cirlce ω1 is larger than the radius of ω2. Circle centered at Q with radius QA
intersects the circle ω1 in points A and A1. Circle centered at Q with radius QC intersects ω1 in points C1 and
C2. Prove ∠A1BC1 = ∠C2PA.

(Matija Bucić)

Solution. From the conditions in the problem we have |QC1| = |QC2| and |QA| = |QA1|. Also as Q lies on the internal
angle bisector of∠CAB we have ∠PAQ = ∠QAB =⇒ |QP | = |QB|.
Now noting from this that pairs of points A and A1, C1 and C2, B and P are symmetric in line QS1, where S1 is the
center of ω1. We can directly conclude ∠A1BC1 = ∠APC2 as these is the image of the angle in symmetry.
This way we have avoided checking many cases but there are many ways to prove this problem.

Problem 2. Let S be the set of positive integers. For any a and b in the set we have GCD(a, b) > 1. For any
a, b and c in the set we have GCD(a, b, c) = 1. Is it possible that S has 2012 elements?

GCD(x, y) and GCD(x, y, z) stand for the greatest common divisor of the numbers x and y and numbers x, y
and z respectively.

(Ognjen Stipetić)

Solution. There is such a set.
We will construct it in the following way: Let a1, a2, . . . a2012 equal to 1 in the begining. Then we take 2012·2011

2
different

prime numbers, and assign a different prime to every pair ai, aj (where i 6= j) and multiply them with this assigned
number. (I.e. for the set of 4 elements we can take 2, 3, 5, 7, 11, 13, so S would be {2 · 3 · 5, 2 · 7 · 11, 3 · 7 · 13, 5 · 11 · 13}.
The construction works as we have multiplied any pair of numbers with some prime so the condition gcd(a, b) > 1 is
satisfied for all a, b. As well as each prime divides exactly 2 primes so no three numbers a, b, c can have gcd(a, b, c) > 1.

Problem 3. Do there exist positive real numbers x, y and z such that

x4 + y4 + z4 = 13,

x3y3z + y3z3x+ z3x3y = 6
√
3,

x3yz + y3zx+ z3xy = 5
√
3?

(Matko Ljulj)

Solution. Let’s assume that such x, y, z exist. Let a = x2, b = y2, c = z2. As well, let A = a+ b+ c, B = ab+ bc+ ca,
C = abc. The upper system can be rewritten as:

a2 + b2 + c2 = 13 =⇒ (a+ b+ c)2 − 2(ab+ bc+ ca) = 13 =⇒ A2 − 2B = 13

xyz(x2y2 + y2z2 + z2x2) = 6
√
3 =⇒

√
CB = 6

√
3

xyz(x2 + y2 + z2) = 5
√
3 =⇒

√
CA = 5

√
3.
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We can note that a, b and c are positive reals (They are not negaitve from the definition; and as
√
CB = 6

√
3 they are

not 0).
When we cancel out

√
C from the second and third equation we get 5B = 6A. When we express B in terms of A and

put int the first equation we get a quadratic equation

A2 − 12

5
A− 13 = 0.

with solutions 5 and − 13
5
. As a, b and c are positive reals, and the sum must be positive so their sum is poistive real

number as well. So A = 5 =⇒ B = 6 =⇒ C = 3.
By AM-GM inequality we get

ab+ bc+ ca

3
>

3
√
ab · bc · ca

⇐⇒ B

3
>

3
√
C2

⇐⇒ 6

3
> 3
√
9 /3

⇐⇒ 8 > 9.

so we reached a contradiction, thus such x, y, z don’t exist.

Problem 4. Let k be a positive integer. At the European Chess Cup every pair of players played a game in
which somebody won (there were no draws). For any k players there was a player against whom they all lost,
and the number of players was the least possible for such k. Is it possible that at the Closing Ceremony all
the participants were seated at the round table in such a way that every participant was seated next to both a
person he won against and a person he lost against.

(Matija Bucić)

Solution. The answer is yes.
In this problem we could use graph theory terminology but as this problem was intended for younger students we shall
avoid mentioning any specific graph theory terms.
Let’s take the largest number of participants whom we can seat around the table as desired. If we have seated all the
participants we are done. Otherwise there is a person not seated at the table. As well there is at least one person seated
at the table so let’s name it a.
WLOG we can assume that for each person seated at the table to his right there is a person he won against and to his
left a person he lost against.
Denote by W the set of people who won against person a, and are not seated at the table. Similarly, let L denote the
set of all people who lost against a and are not seated at the table.
Let’s consider any person p from W . If person p lost against the left neighbour of a, then we could seat p in between a
and his (former) left neighbour, which is a contradiction with the assumption that we have seated the maximal possible
number of people. So p won against the left neighbour of a. Using similar deduction we conclude that p won against the
next left neighbour as well etc. So p must have won against everybody seated at the table.
In the same way if we consider any person q from L and consider the right neighbour of a, we can conclude that q lost
against every person seated at the table.
If some person r from W lost against some person s in L, then instead of seating a we can seat s and r respectively by
which we would reach a contradiction to the number of people seated being maximal.
So we conclude that all the people in W won against all people not in W and all the people in L lost against all people
not in L.
As there is a someone who is not seated either W or L is non-empty. If W is non-empty, we can consider the set W as
an independent chess cup. It is a cup with smaller number of participants but still satisfying problem conditions which
would be the contradiction with the fact that our starting cup is the smallest such cup.
As well if L is non-empty, the smaller cup made by people seated at the table and people in W also satisfies the problem
conditions and gives us a contradiction.
So the only possibility is that both W and L are empty so indeed it is possible to seat everyone at such table.
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Problem 1. Find all positive integers a, b, n and prime numbers p that satisfy

a2013 + b2013 = pn.

(Matija Bucić)

First solution. Let’s denote d = D(a, b), x = a
d
, y = b

d
. With this we get

d2013(a2013 + b2013) = pn.

So d must be a power of p, so let d = pk, k ∈ N0. We can divide the equality by p2013k. Now let’s denote m =
n− 2013k,A = x671, B = y671. So we get

A3 +B3 = pm,

and after factorisation
(A+B)(A2 −AB +B2) = pm.

(From the definition, A and B are coprime.)
Let’s observe the case when some factor is 1: A + B = 1 is impossible as both A and B are positive integers. And
A2 −AB +B2 = 1⇔ (A−B)2 +AB = 1⇔ A = B = 1, so we get a solution a = b = 2k, n = 2013k+ 1, p = 2, ∀k ∈ N0.
If both factors are larger than 1 we have

p | A+B

p | A2 −AB +B2 = (A+B)2 − 3AB

=⇒ p | 3AB.

If p | AB, in accordance with p | A+ B we get p | A and p | B, which is in contradiction with A and B being coprime.
So, p | 3 =⇒ p = 3.
Now we are left with 2 cases:

• First case: A2−AB+B2 = 3⇔ (A−B)2+AB = 3 – so the only possible solutions are A = 2, B = 1 i A = 1, B = 2,
but this turns out not to be a solution as 2 = x671 does not have a solution in positive integers.

• Second case: 32 | A2 −AB +B2 – then we have:

3 | A+B =⇒ 32 | (A+B)2

32 | A2 −AB +B2 = (A+B)2 − 3AB

=⇒ 32 | 3AB
=⇒ 3 | AB.

And as we have already commented the case p - AB =⇒ doesn’t have any solutions.

So all the solutions are given by
a = b = 2k, n = 2013k + 1, p = 2, ∀k ∈ N0.
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Second solution. As in the first solution, we take the highest common factor of a and b (which must be of the form
pk). Factorising the given equality we get

(x+ y)(x2012 − x2011y + x2010y2 − · · · − xy2011 + y2012) = pm.

(We’re using the same notation as in the first solution.) Denote the right hand side factor by A. As x and y are natural
numbers, we have x+ y > 1 =⇒ p | x+ y. So p - x and p - y (as x and y are coprime). Now by applying LTE (Lifting
the Exponent Lemma):

νp(x
2013 + y2013) = νp(x+ y) + νp(2013)

Now we know νp(2013) = 0 fo all primes p except 3, 11, 61, and in the remaining cases νp(2013) = 1. Note A = 1 and
(x, y) = (1, 1) and A > 61 for (x, y) 6= (1, 1). This inequality holds because for (x, y) 6= (1, 1) (WLOG x > y), we can
write A as

x2011(x− y) + x2009y2(x− y) + · · ·+ xy2010(x− y) + y2012,

which is greater than 61 in cases x > y and y 6= 1.

• If νp(2013) = 1 =⇒ νp(A) = 1 =⇒ A ∈ {3, 11, 61} which is clearly impossible.

• If νp(2013) = 0 =⇒ νp(A) = 0 =⇒ A = 1 =⇒ (x, y) = (1, 1), so we get a solution

a = b = 2k, n = 2013k + 1, p = 2,∀k ∈ N0.

Problem 2. Let ABC be an acute triangle with orthocenter H. Segments AH and CH intersect segments
BC and AB in points A1 and C1 respectively. The segments BH and A1C1 meet at point D. Let P be the
midpoint of the segment BH. Let D′ be the reflection of the point D in AC. Prove that quadrilateral APCD′

is cyclic.

(Matko Ljulj)

First solution. We shall prove that D is the orthocenter of triangle APC. From that the problem statement follows as

∠AD′C = ∠ADC = 180◦ − ∠DAC − ∠DCA = (90◦ − ∠DAC) + (90◦ − ∠DCA) =

= ∠PCA+ ∠PAC = 180◦ − ∠APC.

We can note that quadrilateral BA1HC1 is cyclic. Lines BA1 and C1H intersect in C, lines BC1 and A1H intersect in
A, lines BH and C1A1 intersect in D, and point P is the circumcenter of BA1HC1. So by the corollary of the Brocard’s
theorem point D is indeed the orthocenter of triangle APC as desired.

Second solution. Denote by B1 the orthogonal projection of B on AC. By cyclic quadrilaterals B1C1PA1 (Euler’s
circle), HA1CB1, AC1A1C and C1HB1A we get the following equations:

∠A1PB1 = ∠DC1B1

∠A1B1P = ∠A1CC1 = ∠A1AC1 = ∠DB1C1.

From these equalities we get that triangles B1PA1 and B1C1D are similar, which implies

|B1D|
|B1A1|

=
|B1C1|
|B1P |

=⇒ |B1A1| · |B1C1| = |B1D| · |B1P |.

Analogously, using cyclic quadrilateral ABA1B1 and C1BCB1 we get the following angle equations:

∠B1AC1 = 180◦ − ∠B1A1B = ∠B1A1C

∠AB1C1 = 180◦ − ∠C1B1C = ∠CBA = 180◦ − ∠A1B1A = ∠A1B1C.

From these equalities we get that triangles B1AC1 and B1AC are similar so

|B1C1|
|B1C|

=
|AB1|
|A1B1|

=⇒ |B1A1| · |B1C1| = |B1A| · |B1C|.

Thus we get |B1D
′| · |B1P | = |B1D| · |B1P | = |B1A1| · |B1C1| = |B1A| · |B1C| so by the reverse of the power of the point

theorem the quadrilateral APCD′ is cyclic as desired.
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Problem 3. Prove that the following inequality holds for all positive real numbers a, b, c, d, e and f :

3

√
abc

a+ b+ d
+ 3

√
def

c+ e+ f
< 3

√
(a+ b+ d)(c+ e+ f).

(Dimitar Trenevski)

Solution. The inequality is equivalent to

3

√
abc

(a+ b+ d)2(c+ e+ f)
+ 3

√
def

(a+ b+ d)(c+ e+ f)2
< 1.

By AM-GM inequality we have

3

√
abc

(a+ b+ d)2(c+ e+ f)
6

1

3

(
a

a+ b+ d
+

b

a+ b+ d
+

c

c+ e+ f

)
,

3

√
def

(a+ b+ d)(c+ e+ f)2
6

1

3

(
d

a+ b+ d
+

e

c+ e+ f
+

f

c+ e+ f

)
.

Adding the inequalities we get

3

√
abc

(a+ b+ d)2(c+ e+ f)
+ 3

√
def

(a+ b+ d)(c+ e+ f)2
6

1

3

(
a+ b+ d

a+ b+ d
+
c+ e+ f

c+ e+ f

)
=

2

3
< 1,

as desired.

Problem 4. Olja writes down n positive integers a1, a2, . . . , an smaller than pn where pn denotes the n-th
prime number. Oleg can choose two (not necessarily different) numbers x and y and replace one of them with
their product xy. If there are two equal numbers Oleg wins. Can Oleg guarantee a win?

(Matko Ljulj)

Solution. For n = 1, Oleg won’t be able to write 2 equal numbers on the board as there will be only one number written
on the board. We shall now consider the case n > 2.
Let’s note that as all the numbers are strictly smaller than pn we have all their prime factors are from the set
{p1, p2, . . . , pn−1}, so there are at most n − 1 of them in total. We will represent each number a1, a2, . . . , an by the
ordered (n − 1)-tuple of non-negative integers in the following way if ai = p

αi,1

1 · pαi,2

2 · . . . · pαi,(n−1)

n−1 , then we assign
vi = (αi,1, αi,2, . . . , αi,(n−1)), for all i ∈ {1, 2, . . . , n}.
Let’s consider the following system of equations:

α1,1x1 + α2,1x2 + · · ·+ αn,1xn = 0

α1,2x1 + α2,2x2 + · · ·+ αn,2xn = 0

· · ·
α1,(n−1)x1 + α2,(n−1)x2 + · · ·+ αn,(n−1)xn = 0

There is a trivial solution x1 = x2 = · · · = xn = 0. But as this system has less equalities than variables we can deduce
that it has infinitely many solutions in the set of rational numbers (as all the coefficients are rational). Let (y1, y2, . . . , yn)
be a not trivial solution (so the solution in which not all of yi equal 0). Then we can rewrite the initial system using
a1, a2, . . . , an:

n∏
i=1

ayii =

n∏
i=1

p
αi,1yi
1 · pαi,2yi

2 · . . . · pαi,(n−1)yi
n−1 =

n−1∏
j=1

p
α1,jy1+α2,jy2+···+αn,jyn
j =

n−1∏
j=1

p0j = 1

=⇒
n∏
i=1

ayii = 1.

Considering the numbers y1, y2, . . . , yn as rational numbers in which the respective nominator and denominator are
coprime, Denote by L the lowest common multiplier of their denominators. Taking the L-th power of the upper equality
we get integer exponents in the upper equation (which don’t have a common factor). Furthermore, WLOG we can
assume that a1, a2, . . . , ak are those elements ai whose exponents are negative and numbers ak+1, ak+2, . . . , ak+l are
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those elements with postivie exponent (for some k, l ∈ N, k+ l 6 n). Then, when we shift all ai-s with negative exponent
to the opposite side of the equation and when those with zero exponent get ruled out we get that the following equality

k∏
i=1

arii =

l∏
i=k+1

arii (1)

holds for some positive integers r1, r2, . . . , rk+l for which D(r1, r2, . . . , rk+l) = 1 and for some numbers a1, a2, . . . , ak+l.
(We can note that there is at least one number ai on both sides of the equality otherwise we have only ones on the
board.)
We shall prove that there is a sequence of transformations by which using this relation we will get two equal numbers
among a1, a2, . . . an.

Lemma 1. Let (a, b) ∈ N2 and (x1, x2) ∈ N2 be such that GCD(x1, x2) = 1. Then there exists a sequence of transfor-
mations which replaces the numbers (a, b) with (a′, b′), where one of these numbers a′, b′ is equal to ax1bx2 .

Proof. We’ll prove this by induction on x1 + x2, for all (a, b) ∈ N2. As the basis consider x1 + x2 = 2 =⇒ x1 = x2 = 1.
The number ab we can get by applying transformation (a, b)→ (a, ab).
Let’s assume that the claim holds for all (x1, x2) such that x1 + x2 < n, and for all (a, b). Let’s take some numbers
(x1, x2) such that x1 +x2 = n and some arbitrary numbers (a, b). If x1 = x2 is satisfied, since x1 and x2 are coprime, we
could conclude that both numbers are equal to 1, but we have already proved this case in basis. Let’s assume x1 6= x2.
WLOG x1 > x2. Then we apply the transformation (a, b)→ (a, ab), and then apply the induction hypothesis on numbers
(a, ab) and (x1 − x2, x2):

(a, b)→ (a, ab)→ (γ, ax1−x2(ab)x2) = (γ, ax1bx2),

where γ is some positive integer, what we wanted to prove.

Lemma 2. Let k ∈ N, (b1, b2, . . . bk) ∈ Nk and (x1, x2, . . . xk) ∈ Nk. Then there exists sequence of transformations which
instead of numbers (b1, b2, . . . bk) writes down numbers (b′1, b

′
2, . . . b

′
k) such that one of those numbers is equal to

(bx11 bx22 · · · b
xk
k )

1
d ,

where d denotes greatest common divisor of numbers x1, x2, . . . xk.

Proof. Intuitively, this lemma is just Lemma 1 repeated (k − 1) times.
We’ll prove this by induction on k, for all b1, b2, . . . bk and x1, x2, . . . xk. In the basis, for k = 1, it holds d = x1, so it we
don’t have to do any transformation to reach desired situation.
Let’s assume that the claim holds for some k ∈ N. Let’s take arbitrary (b1, b2, . . . bk, bk+1) and (x1, x2, . . . xk, xk+1). Then
we apply Lemma 1 on numbers (bk, bk+1) and (x′k, x

′
k+1), where x

′
k = xk

d1
, x′k+1 =

xk+1

d1
, d1 = GCD(xk, xk+1), and then

we apply the induction hypothesis on numbers (b1, b2, . . . b
x′k
k b

x′k+1

k+1 ) and (x1, x2, . . . xk−1, d1):

(b1, b2, . . . bk, bk+1)→ (b1, b2, . . . bk−1, γk, b
x′k
k b

x′k+1

k+1 )→ (γ1, γ2, . . . , γk, (b
x1
1 bx22 · · · b

xk−1

k−1 (b
x′k
k b

x′k+1

k+1 )d1)
1
d2 ),

where γ1, γ2, . . . , γk are some positive integers and d2 = GCD(x1, x2, . . . xk−1, d) = GCD(x1, x2, . . . xk−1, xk, xk+1) = d.
Notice that last number in upper relation is the one we wanted to get.

Lemma 3. Let (a, b) ∈ N2 and (x1, x2) ∈ N2 such that GCD(x1, x2) = 1. Then there exists sequence of transformations
which instead of numbers (a, b) writes down numbers (a′, b′) for which it is satisfied a′/b′ = ax1/bx2 .

Proof. We’ll prove this by induction on x1 + x2, for all (a, b) ∈ N2. In the basis is x1 + x2 = 2 =⇒ x1 = x2 = 1, so we
don’t have to do any transformation to reach desired situation.
Ler’s assume that the claim hold for all (x1, x2) such that x1+x2 < n, and for all (a, b). Let’s take some numbers (x1, x2)
such that x1 + x2 = n and arbitrary numbers (a, b).

• If one of the numbers x1 and x2 is even (WLOG x1 is even): we apply tranformation (a, b)→ (a2, b), and then we
apply induction hypothesis on numbers (a2, b) and (x1

2
, x2).

• Both numbers x1 and x2 are odd, and they are equal: then they are both equal to 1, which we have already solved
in the basis.

• Numbers x1 and x2 are odd and distinct (WLOG x1 > x2): we make following transformations (a, b)→ (a, ab)→
(a2, ab), and then we apply induction hypothesis on numbers (a2, ab) and (x1+x2

2
, x2):

(a, b)→ (a, ab)→ (a2, ab)→ (c · (a2)
x1+x2

2 , c · (ab)x2) = ((ax2c) · ax1 , (ax2c) · bx2),

where c is some positive integer, what we wanted to prove.
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In the equality (1), let d1 = GCD(r1, r2, . . . , rk), d2 = GCD(rk+1, rk+2, . . . , rk+l), zi = ri
d1
, ∀i ∈ {1, 2, . . . , k}, zi = ri

d2
,

∀i ∈ {k+1, k+2, . . . , k+ l}. As well let A be the left hand side of the equality (1), and let B be the right hand side. Let
A′ = A

1
d1 and B′ = B

1
d2 . We want to do such transformations that we get x i y which will have same ratio as A and B.

If we apply Lemma 2 on the numbers (a1, a2, . . . , ak) and (z1, z2, . . . , zk); we get (among other numbers we get) the
number A′. As well applying the same lemma on the numbers (ak+1, ak+2, . . . , ak+l) and (zk+1, zk+2, . . . , zk+l), we will
get the number B′ on the board.
Numbers d1 and d2 are coprime (otherwise there would be some prime p which would divide d1 and d2 which would
imply it divides r1, r2, . . . , rk+l as well which is in contradiction to the assumption they do not have a common factor).
So we can apply Lemma 3 on the numbers (A′, B′) and (d1, d2). Now we get two numbers with the same ratio as A i B.
But as by (1) we have A = B, we get 2 equal numbers on the board.
Thus Oleg can guarantee a win for any n > 1.

Comment: We can get to the relation (1) by concluding that the set {v1, v2, . . . , vn} is linearly dependant subset of
(n− 1)-dimensional space Qn−1.
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