
Недела, Април 13, 2025

Задача 1. За позитивен цел броj N , нека c1 < c2 < · · · < cm се сите позитивни цели броеви
помали од N што се заемно прости со N . Наjди ги сите N ≥ 3 такви што

НЗД(N, ci + ci+1) ̸= 1

за сите 1 ≤ i ≤ m − 1.

Каде НЗД(a, b) е наjголемиот позитивен цел делител и на a и на b. Целите броеви a и b се заемно
прости ако НЗД(a, b) = 1.

Задача 2. Бесконечна растечка низа a1 < a2 < a3 < · · · од позитивни цели броеви се нарекува
централна ако за секоj позитивен цел броj n, аритметичката средина на првите an членови на
низата е еднаква на an.

Докажи дека постои бесконечна низа b1, b2, b3, . . . од позитивни цели броеви таква што за
секоjа централна низа a1, a2, a3, . . ., постоjат бесконечно многу позитивни цели броеви n за кои
важи an = bn.

Задача 3. Нека ABC е остроаголен триаголник. Точките B, D, E и C лежат на иста права во
тоj редослед и важи BD = DE = EC. Нека M и N се средишни точки на AD и AE, соодветно.
Нека H е ортоцентар за остроаголниот триаглник ADE. Нека P и Q се точки од правите BM
и CN , соодветно, такви што D, H, M и P лежат на иста кружница и по парови се различни, и E,
H, N и Q лежат на иста кружница и по парови се различни. Докажи дека P , Q, N и M лежат
на иста кружница.

Точката во коjа се сечат висините на триаголникот се нарекува ортоцентар.
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Понеделник, Април 14, 2025

Задача 4. Нека ABC е остроаголен триаголник со центар на впишана кружница I и AB ̸= AC.
Нека правите BI и CI jа сечат опишаната кружница околу триаголникот ABC во P ̸= B и
Q ̸= C, соодветно. Точките R и S се такви што AQRB и ACSP се паралелограми (со AQ ∥ RB,
AB ∥ QR, AC ∥ SP , и AP ∥ CS). Нека T е пресечната точка на правите RB и SC. Докажи дека
R, S, T , и I лежат на иста кружница.

Задача 5. Нека n > 1 е природен броj. Во конфигурациjа на табла со димензии n × n , секое од
n2 полиња содржи стрелка, коjа покажува, горе, долу, лево, или десно. За дадената почетната
конфигурациjа, полжавот Турно започнува во едно од полињата на таблата и се движи од поле
во поле. Во секоj потег, Турбо се поместува за едно поле во насока коjа jа покажува стрелката
на полето во кое се наоѓа (притоа може и да излезе и надвор од таблата). После секоj потег,
стрелките во сите полиња се ротираат за 90◦ во обратна насока од стрелките на часовникот.
Полето го нарекуваме добро ако, почнуваjќи од тоа поле, Турбо поминал низ секое поле од
таблата точно еднаш, без да jа напушти таблата, и се враќа во почетното поле. Одреди го, во
однос на n, максималниот броj од добри полиња во однос на сите можни почетни конфигурации.

Задача 6. Во секое поле од 2025 × 2025 табла, се запишува ненегативен реален броj, на таков
начин што збирот на броевите во секоjа редица е еднаков на 1, и збирот на броевите во секоjа
колона е 1. Дефинираме ri да биде наjголемата вредност во i-тата редица, и нека R = r1 +
r2 + · · · + r2025. Слично, дефинираме ci да биде наjголемата вредност во i-тата колона, и нека
C = c1 + c2 + · · · + c2025.
Коjа е наjголемата можна вредност на R

C ?
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EGMO 2025

Problems and Solutions

Day 1

P1. For a positive integer N , let c1 < c2 < · · · < cm be all the positive integers smaller than N that are
coprime to N . Find all N ≥ 3 such that

gcd(N, ci + ci+1) ̸= 1

for all 1 ≤ i ≤ m− 1.

Here gcd(a, b) is the largest positive integer that divides both a and b. Integers a and b are coprime if
gcd(a, b) = 1.

Solution 1. The answer is all even integers and all powers of 3. First we show that these work.

• When N is even, all ci are odd, and so 2 | gcd(N, ci + ci+1) for every i.

• When N is a power of 3, the ci are exactly the numbers in the range 1, 2, . . . , N − 1 that are not
divisible by 3. So, the sequence c1, . . . , cm alternates between numbers congruent to 1 (mod 3)
and 2 (mod 3). Thus 3 | gcd(N, ci + ci+1) for every i.

Now we show that no other positive integer works. For the sake of contradiction, consider an odd
candidate N that is not a power of 3, and suppose it satisfies the problem condition. Then, since
c1 = 1 and c2 = 2, we have gcd(N, 1 + 2) ̸= 1, so 3 | N . Thus, we can write N as 3kM , where k ≥ 1
and gcd(M, 6) = 1. We have M ≥ 5 (as M ̸= 1 by assumption) and M + 2 < N .

We now split into two cases based on M modulo 3.

Case 1. M ≡ 1 (mod 3).

As 3 | M − 1 and M | M , neither M − 1 nor M are in the sequence {ci}. As M is odd and M ≡ 1
(mod 3), M − 2 and M + 1 are congruent to 1 (mod 3), are coprime to M , and are smaller than N .
Thus, both M−2 and M+1 are in the sequence, and they are consecutive terms. However, this means
gcd(N, 2M − 1) ̸= 1. This gives a contradiction, as both 3 and M are coprime to 2M − 1.

Case 2. M ≡ 2 (mod 3).

This case is similar to Case 1. Neither M nor M + 1 are in the sequence, but M − 1 and M + 2 are.
We obtain a similar contradiction from gcd(N, 2M + 1) ̸= 1.

Solution 2. We give an alternative way to show that any odd N has to be the power of 3. Suppose for contradiction
that N has at least 2 distinct prime factors. Choose integers a, b > 1 such that

• ab | N ;

• a and b are coprime;

• Every prime divisor of N divides ab.

We use the Chinese Remainder Theorem, to find an integer n ∈ [1, ab] such that{
n ≡ 1 (mod a),

n ≡ 2 (mod b).

We claim that there is an index i such that ci = n− 3 and ci+1 = n. Indeed, we note the following:
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• n is consecutive to a multiple of a, so gcd(a, n) = 1. In a similar way we get that gcd(b, n−3) = 1.

• n is 2 away from a multiple of b, therefore as 2 ∤ b, gcd(b, n) = 1. In a similar way we get that
gcd(a, n− 3) = 1.

• n ≤ ab ≤ N and n− 3 ≥ (a+ 1)− 3 > 0 as a > 2.

This implies that n and n− 3 coprime with N , whereas neither n− 2 nor n− 1 are coprime with N ,
which proves our claim. Finally, we claim that ci + ci+1 = (n − 3) + n = 2n − 3 is coprime with N .
Indeed we have 2n− 3 ≡ −1 (mod a) and 2n− 3 ≡ 1 (mod b). This implies that N is a prime power.

When N is odd, since c1 = 1 and c2 = 2, we have gcd(N, 1 + 2) ̸= 1, so 3 | N , which implies that N is
necessarily a power of 3. This concludes our proof.
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P2. An infinite increasing sequence a1 < a2 < a3 < · · · of positive integers is called central if for every
positive integer n, the arithmetic mean of the first an terms of the sequence is equal to an.

Show that there exists an infinite sequence b1, b2, b3, . . . of positive integers such that for every central
sequence a1, a2, a3, . . ., there are infinitely many positive integers n with an = bn.

Solution 1. We claim that the sequence b1, b2, b3, . . . defined by bi = 2i− 1 has this property.

Let di = ai− bi = ai− 2i+1. The condition ai < ai+1 now becomes di +2i− 1 < di+1 +2i+1, which
can be rewritten as di+1 ⩾ di − 1. Thus, if di+1 < di, then di+1 must be equal to di − 1. This implies
in particular that if di0 ⩾ 0 but di1 ⩽ 0 for some indices i1 > i0, there must be some intermediate
index i0 ⩽ i ⩽ i1 with di = 0.

Because the average of the first an terms of the sequence is equal to an, we know for all n that

an∑
i=1

di =

an∑
i=1

(ai − 2i+ 1) =

an∑
i=1

ai −
an∑
i=1

(2i− 1) = a2n − a2n = 0.

Because the sequence (an) is increasing, this implies that the sequence (di) contains infinitely many
non-negative (di ⩾ 0) and infinitely many non-positive (di ⩽ 0) terms. In particular, we can find
arbitrarily large indices i0 ⩽ i1 such that di0 ⩾ 0 and di1 ⩽ 0. By our earlier observation, it follows
that there are infinitely many i such that di = 0, as desired.

Solution 2. We give an alternative proof that the sequence bi = 2i − 1 works. This proof is by contradiction, so
we assume that there are only finitely many ai such that ai = 2i− 1.

Let S(n) =
n∑

i=1

ai. We have S(an) = a2n and S(an+1) = a2n+1. If an+1 = an + 1, then it follows that

S(an+1)− S(an) = a2n+1 − a2n = a2n+1 − (an+1 − 1)2 = 2an+1 − 1.

On the other hand, if an+1 = an+1, then S(an+1)−S(an) is aan+1 , so it follows that aan+1 = 2an+1−1.
By assumption, this can only happen finitely many times, so for all sufficiently large n we must have
an+1 ⩾ an + 2.

For large enough n, we now know that an > 2n− 1 implies an+1 > (2n− 1) + 2 = 2(n+ 1)− 1. This
means that there are two cases possible:

(A) For all sufficiently large n (say n ⩾ NA) we have an > 2n− 1.

(B) For all sufficiently large n (say n ⩾ NB) we have an < 2n− 1.

In case (A), we know for m > NA that

S(m) = S(NA) +

m∑
i=NA+1

ai ⩾ S(NA) +

m∑
i=NA+1

2i = S(NA) +m(m+ 1)−NA(NA + 1)

= m2 +m+ S(NA)−NA(NA + 1).

For m large enough (e.g. m > NA(NA + 1)), this expression is always larger than m2, contradicting
S(an) = a2n for all n.

Similarly, in case (B), we similarly know for m > NB that

S(m) = S(NB) +

m∑
i=NB+1

ai ⩽ S(NB) +

m∑
i=NB+1

2(i− 1) = S(NB) +m(m− 1)−NB(NB − 1)

= m2 −m+ S(NB)−NB(NB − 1).

For m large enough (e.g. m > S(NB)), this expression is always smaller than m2, again contradicting
S(an) = a2n for all n.
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Solution 3. We claim that the sequence b1, b2, b3, . . . defined by bi = 2i− 1 has this property.

Lemma. If there are no terms aj such that aj − aj−1 = 1, then aj = aj−1 + 2 for all j.

Proof. Let c be such that ad = c for some d. Now

a1 + a2 + · · ·+ ac = c2.

Equality holds for ai = 2i − 1 for 1 ≤ i ≤ c, so if any difference between two consecutive terms is
greater, the left-hand side of the equation is greater than c2, a contradiction.

Lemma. If both d and d+ 1 are terms of the sequence, i.e. ac = d and ac+1 = d+ 1 for some c, then
ad+1 = 2d+ 1 = bd+1.

Proof. We have a1+a2+ · · ·+ad = d2 and a1+a2+ · · ·+ad+1 = (d+1)2. Hence ad+1 = (d+1)2−d2 =
2d+ 1.

From the observations above, we see that we are done if there are infinitely many gaps of size 1. The
only remaining case is one with finitely many gaps of size 1. This will be the subject of the following
lemma.

Lemma. If there are only finitely many indices j such that aj+1 − aj = 1, then there is an index n0

such that for all k > n0, we have ak = 2k − 1.

Proof. Let r and s be indices such that for all the j satisfying aj+1 − aj = 1, we have j < r, s.
Furthermore, assume s > r and that there are i1 and i2 such that ai1 = r and ai2 = s. The first goal
is to show that as ⩾ 2s − 1. If ar ⩾ 2r − 1, this is clearly the case. Assume now ar < 2r − 1. Now
ar ⩾ 2r−1−m, where m is the number of indices j with aj+1−aj = 1. Denote ar+1 = 2r+1−m+θ1,
ar+2 = 2r + 3 − m + θ2, etc. Remember that ar+j+1 − ar+j ⩾ 2 always. Now 0 ⩽ θ1 ⩽ θ2 ⩽ . . . .
Furthermore, write s = r + h. Now

(r + h)2 − r2 = ar+1 + ar+2 + · · ·+ ar+h =

h∑
j=1

2r − 1 + 2j −m+ θj .

From this we deduce

2rh+ h2 = 2rh− h−mh+ h(h+ 1) +

h∑
j=1

θj .

So we obtain
h∑

j=1

θj = mh. Since the sequence θj is increasing, we have θh ⩾ m. Hence, as = ar+h ⩾

2r − 1−m+ 2h+m = 2r + 2h− 1 = 2s− 1.

Now as is exactly the desired shape. If for any t > s, we have at − at−1 > 2, then

as + as+1 + · · ·+ at > t2 − s2,

again a contradiction.
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Solution 4. Note that a1 = 1 because if it is not the case, then a21 = a1 + · · ·+ aa1 > a1 + a1 + · · ·+ a1 = a21.

Assume by contradiction that there are only finitely many indices k such that ak = 2k − 1. Set i to
be the largest integer such that ai = 2i − 1 (which must exist as a1 = 1). Assume that there exists
j ⩾ i such that aj+1 − aj = 1. Then 2aj+1 − 1 = a2j+1 − a2j = aaj+1

and since ak ⩾ k for all k, we
have aj+1 ⩾ j + 1 > i, which contradicts the definition of i. Thus for all j ⩾ i, we have aj+1 ⩾ aj + 2,
which implies by induction that aj ⩾ 2j − 1 for j ⩾ i, and even aj ≥ 2j if j > i.

There are two ways to finish the solution from here.

First way to finish the solution

For all n such that an ⩾ i, we have

a2n+1 − a2n = aan+1
+ aan+1−1 + · · ·+ aan+1 ⩾ 2an+1 + 2(an+1 − 1) + · · ·+ 2(an + 1)

= (an+1 − an)(an+1 + an + 1)

> a2n+1 − a2n.

This gives a contradiction.

Second way to finish the solution

For all n such that an ⩾ i, we introduce xn = an+1 − an. We have

x2
n + 2xnan = a2n+1 − a2n = aan+1

+ aan+1−1 + · · ·+ aan+1 ⩾
xn∑
j=1

(aan
+ 2j) ≥ xnaan

+ xn(xn + 1).

By simplifying, we get aan
≤ 2an − 1, which gives a contradiction.

Comment. Proving that a1 = 1 is not necessary for this solution. If there exists no i such that
ai = 2i − 1, then the same argument implies that there exists no j such that aj+1 − aj = 1, thus
aj ⩾ 2j − 1 for j ⩾ 1.
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P3. Let ABC be an acute triangle. Points B, D, E, and C lie on a line in this order and satisfy BD =
DE = EC. Let M and N be the midpoints of AD and AE, respectively. Let H be the orthocentre of
triangle ADE. Let P and Q be points on lines BM and CN , respectively, such that D, H, M , and P
are concyclic and E, H, N , and Q are concyclic. Prove that P , Q, N , and M are concyclic.

The orthocentre of a triangle is the point of intersection of its altitudes.

Solution 1. Denote by B′ and C ′ the reflections of B and C in M and N , respectively. Points C ′, A,B′ are clearly
collinear and DEB′A is a parallelogram. Since EH ⊥ AD, we have EH ⊥ EB′. Also HA ⊥ AB′, so
points H,E,B′, A are concyclic. This gives

∠C ′QH = ∠NQH = ∠NEH = ∠AEH = ∠AB′H = ∠C ′B′H,

and so points C ′, B′, Q,H are concyclic. Analogously points C ′, B′, P,H are concyclic, and so all points
B′, C ′, P,Q,H are. Now we have

∠NMB′ = ∠AB′M = ∠C ′B′P = ∠C ′QP = ∠NQP,

which proves that P,Q,N,M are also concyclic.

A

B CD E

M N

B′
C ′

P

Q

H

Solution 1′. Introduce points B′, C ′ as above. Also define A′ = B′E ∩ C ′D, so that EADA′ is a parallelogram
and ADE is the medial triangle of A′B′C ′. It that follows that the orthocentre H of ADE is the
circumcentre of A′B′C ′, and in particular

∠C ′B′H = 90◦ − ∠B′A′C ′ = 90◦ − ∠DAE = ∠AEH = ∠NEH = ∠NQH = ∠C ′QH.

So again we have that C ′, B′, Q,H are concyclic and conclude as in Solution 1.

Solution 2. Let X be the second intersection of (DHM) and (EHN) and let O′ be the circumcentre of (AMN).
Note that ∠MXN = ∠MDH+∠NEH = 180◦−2∠DAE and since ∠MO′N = 2∠DAE we have that
X,M,O′, N is cyclic and since ∠MXH = ∠NXH it means that HX is the angle bisector of ∠MXN
but since O′M = O′N it means that H,X,O′ are collinear. Let BM and CN intersect at T and let K
and L be the midpoints of MN and BC. Note that L is also the midpoint of DE. Since MN is parallel
to BC it means that T , K, and L are collinear, but since A, K, and L are collinear we get that A, T ,
K, and L are collinear. Now, TL

TK = BC
MN = 6. Since KL = KA it means that AT

TK = TL−2TK
TK = 4 so

by the lemma below, T lies on HO′. Since HO′ is the radical axis of (DHM) and (EHN) we finish
the problem using the Radical Axes Theorem (TM · TP = TN · TQ).
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Lemma. Let A′ be the reflection of A around the orthocentre H of △ABC and O and M be the
circumcentre of △ABC and the midpoint of BC, respectively. Let T be the intersection of A′O and
AM . Then AT

TM = 4.

Proof. Since OM ∥ AA′ we have AT
TM = AA′

OM = 2AH
OM = 4OM

OM = 4. We used here that AH = 2OM .

Solution 2′. As in solution 2, we will prove that O′ is both on line HT and the radical axis of the circles, hence T
is on the radical axis, from which we conclude the required concyclicity. We present alternative proofs
of both facts, discovered by contestants.

Let M1, N1 be the midpoints of AM , AN , respectively, so that AM1 : M1D = AN1 : N1E = 1 : 3. It
is easy to verify (e.g. by applying the theorems of Ceva or Menelaus, or by computing in barycentric
coordinates as in Solution 3) that T lies on EM1 and DN1. Note that M1N1 ∥ DE, and also M1O

′ ∥
HE as both are perpendicular to AMD, and similarly N1O

′ ∥ HD. It follows that DEH and N1M1O
′

are homothetically similar triangles, and the center of their (negative) homothety is T = DN1 ∩EM1.
Therefore T also lies on HO′, as claimed. (We also have that the homothety is by factor M1N1

ED = − 1
4 .)

Now, letM2, N2 be the second intersection points of O′M , O′N with the circumcircles ofHMD, HNE,
respectively. To prove that O′ is on the radical axis, it suffices to show that O′M ·O′M2 = O′N ·O′N2.
But by definition of O′ we have O′M = O′N , so we must show O′M2 = O′N2, which is equivalent to
M2N2 ∥MN . Angle chasing in circle MM2DH gives

∠OM2H = ∠MM2H = ∠MDH = ∠ADH = 90◦ − ∠EAD = 90◦ − ∠NAM = ∠O′MN,

from which it follows that M2H ∥ MN . Similarly, we have N2H ∥ MN , and the two facts together
imply that M2, H,N2 are collinear and the line through them is parallel to MN , as claimed.
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Solution 3. We compute using linear combinations with respect to ADE. We have B = 2D − E, C = 2E − D,
M = A+D

2 , and N = A+E
2 , from which we immediately obtain that the intersection of T = BM ∩CN

is T = 3A+D+E
5 = 6M−B

5 = 6N−C
5 . As in solution 2, we reduce to showing that T is on the radical

axis of HDM and HEN , whence TM · TP = TN · TQ proves the concyclicity of P,Q,N,M .

Synthetic finish, similar to Solution 2. Let O be the circumcentre of ADE and O′ = A+O
2 be the

circumcentre of AMN . As in Solution 2, we have that O′ is on the desired radical axis, so it is enough
to show T ∈ O′H. Let G = A+D+E

3 be the barycentre of ADE. By properties of the Euler line, we

also have G = H+2O
3 . Now using our known identities we find

T =
3A+D + E

5
=

2A+ 3G

5
=

2A+H + 2O

5
=

H + 4O′

5

and in particular T ∈ HO′, as we wanted to show.

Computational finish. Let f(T ) be the power difference at T w.r.t. DHM and EHN . We compute
f(A) and f(L) where L = D+E

2 . Since T = 3A+2L
5 , it is enough to show that 3P (A) + 2P (L) = 0.

In the following all lengths are directed. We compute trigonometrically: Let α, β, γ be the angles of
ADE and assume the diameter of its circumcircle is 1. We have

f(A) =
AD2 −AE2

2
=

sin2(γ)− sin2(β)

2
.

To compute P (L), let D′, E′ be the second intersection points of HMD,HNE with DE, and let
M ′, N ′, F be the feet of the perpendiculars from H to AD,AE,DE, respectively. Note that DM ′ =
sinα cosβ, thus

M ′M = DM −DM ′ =
sin(α+ β)

2
− sinα cosβ =

sin(β − α)

2
.

We also have HM ′ = cosα cosβ, HF = cosβ cos γ, and HM ′M ∼ HFD′, therefore

FD′ =
HF

HM ′M
′M =

cos γ

cosα

sin(β − α)

2

and similarly

E′F =
cosβ

cosα

sin(γ − α)

2
.
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We also have the standard FD = sin γ cosβ and EF = sinβ cos γ. We can finally compute

f(L) = LD · LD′ − LE · LE′ =
sinα

2
(LD′ + LE′) =

sinα

2
(FD′ + FE′ − FD − FE)

=
sinα

4 cosα
(cos γ sin(β − α)− cosβ sin(γ − α)− 2 cosα(sin γ cosβ − sinβ cos γ))

=
3 sinα sin(β − γ)

4
=

3

4
(sin(β + γ) sin(β − γ)) =

3

8
(cos(2γ)− cos(2β))

=
3

4
(sin2(β)− sin2(γ)) = −3

2
f(A).

Solution 4. Let T = BM ∩ CN , let F be the foot of the altitude from A to BC, let O be the circumcentre of
(ADE), let D′ ̸= D and E′ ̸= E be the second intersections of (DHMP ) and (EHNQ) with line BC,
and let U and V be the antipodes of D and E on (DHMP ) and (EHNQ), respectively.

We begin with a bit of barycentric coordinates. Set barycentric coordinates in △ABC, set so that
A = (1, 0, 0), B = (0, 1, 0), and C = (0, 0, 1). The definitions of D and E give D = (0, 2/3, 1/3)
and E = (0, 1/3, 2/3), whence M = (1/2, 1/3, 1/6) and N = (1/2, 1/6, 1/3). This means that line
BM is given by (1/2 : y : 1/6) while line CN is given by (1/2 : 1/6 : z). So their intersection T is
(1/2 : 1/6 : 1/6) = (3 : 1 : 1), giving T = 3A+B+C

5 = 3A+D+E
5 .

Our next tool is the linearity of the power of a point. Let f : R2 → R be defined by

f(Z) = Pow(DHMP )(Z)− Pow(EHNQ)(Z).

It suffices to show that f(T ) = 0; from there, the required concyclicity will follow from TM · TP =

TN · TQ. The key observation is that f is a linear function. In particular, f(T ) = 3f(A)+f(D)+f(E)
5 .

So, we need only show that 3f(A) + f(D) + f(E) = 0. Pick an arbitrary one-dimensional coordinate
system on the line BC and let τ be the map from a point on BC to its coordinate. We compute

f(A) = AM ·AD −AN ·AE =
AD2 −AE2

2
=

FD2 − FE2

2

= (τ(E)− τ(D))

(
τ(F )− τ

(
D + E

2

))
,

f(D) = −DE ·DE′ = (τ(E)− τ(D))(τ(D)− τ(E′)),

f(E) = ED · ED′ = (τ(E)− τ(D))(τ(E)− τ(D′)).

Rearranging, it suffices to show that 3τ(F ) = τ(D′) + τ(E′) + τ((D+E)/2). This can be rewritten as
3F = D′ +E′ + (D +E)/2. By projecting down to line BC, it suffices to show that the displacement
vector H + 2A− (O + U + V ) is perpendicular to line BC.
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We do this using complex numbers. Let (ADE) be the unit circle with A = a, D = d, and E = e,
so that O = 0 and H = h = a + d + e. Note that U satisfies UM ⊥ AD and UH ⊥ DH ⊥ AE.
Translating these conditions into equations, we have u = adu and u + aeu = h + aeh. Rearranging
gives

(d+ e)u = du+ e(adu) = d(h+ aeh) =⇒ u =
dh+ adeh

d+ e
.

Computing v similarly, we get that

v := H + 2A− (O + U + V ) = h+ 2a− (d+ e)h+ 2adeh

d+ e
= 2

(
a− adeh

d+ e

)
= − 2de

d+ e
.

This displacement vector v satisfies v = dev and so it is orthogonal to line DE, as desired.

Solution 5. This solution uses almost exclusively complex numbers. As in other solutions, we reduce to showing
that H, S := (DHM) ∩ (EHN), and T := BM ∩ CN are collinear; this is all of the synethetic
information we shall use. (If one computes T = 3A+D+E

5 using means other than complex numbers,
the solution becomes much shorter.)

We use complex numbers with A = a, D = d, and E = e on the unit circle. Note that H = a+ d+ e,
M = a+d

2 , and B = 2d− e. We will make great use of the “arbitrary line intersection formula,” which
says that the intersection between lines WX and Y Z can be written explicitly as

(wx− wx)(y − z)− (w − x)(yz − yz)

(w − x)(y − z)− (w − x)(y − z)
.

We first use this to find T = t. We compute

b−m = (2d− e)− a+ d

2
=

3d− a− 2e

2

b−m =
3ae− de− 2ad

2ade

bm− bm =
2e− d

de
· a+ d

2
− (2d− e) · a+ d

2ad

=
a(a+ d)(2e− d)− (2d− e)(a+ d)e

2ade
=

(a+ d)(2ae+ e2 − ad− 2de)

2ade
.

If E is some expression, we use the notation E − {∼} to denote E minus the expression formed by
swapping d and e in E . We now have

t =
(bm− bm)(c− n)− {∼}
(b−m)(c− n)− {∼}

=
(a+ d)(2ae+ e2 − ad− 2de)(3e− a− 2d)− {∼}

(3ae− de− 2ad)(3e− a− 2d)− {∼}

=

[
a3(d− 2e) + a2(3d2 − 7de+ 5e2) + a(2d3 − d2e− 3de2 + 3e3) + de(4d2 − 8de+ 3e2)

]
− {∼}[

a2(2d− 3e) + a(4d2 − 11de+ 9e2) + de(2d− 3e)
]
− {∼}

=
a3(3(d− e))− a2(2(d2 − e2)) + a(−(d3 − e3) + 2de(d− e)) + de(d2 − e2)

a2(5(d− e))− a(5(d2 − e2)) + de(5(d− e))

=
3a3 − 2a2(d+ e)− a(d2 − de+ e2) + de(d+ e)

5
(
a2 − a(d+ e) + de

)
=

(a− d)(a− e)(3a+ d+ e)

5(a− d)(a− e)
=

3a+ d+ e

5
.

(The factorization in the last line can be motivated by noting that the expression, while cubic in a, is
only quadratic in d. When written out as a polynomial in d, each coefficient is divisible by a − e; by
symmetry, the numerator is divisible by a− d as well, and the factorization follows.)
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Computing S = s is slightly harder, as it is the intersection of two circles rather than of two lines.
We get around this by noting that {h, d,m, s} are concyclic if and only if {0, h− d, h−m,h− s} are
concyclic, which happens if and only if { 1

h−d ,
1

h−m , 1
h−s} are collinear. (One can see this by inversion,

or just by writing out the cross-ratio in the special case when one of the points is zero.) Thus 1
h−s

is the intersection of the line through w := 1
h−d and x := 1

h−m and the line through y := 1
h−e and

z := 1
h−n . We compute

w − x =
1

a+ e
− 1

a+d
2 + e

= − a− d

(a+ e)(a+ d+ 2e)

w − x =
ae2(a− d)

(a+ e)(2ad+ ae+ de)

wx− wx =
ae

a+ e
· 2

a+ d+ 2e
− 1

a+ e
· 2ade

2ad+ ae+ de

= 2ae
(2ad+ ae+ de)− d(a+ d+ 2e)

(a+ e)(a+ d+ 2e)(2ad+ ae+ de)

=
2ae(a− d)(d+ e)

(a+ e)(a+ d+ 2e)(2ad+ ae+ de)
.

Using the line intersection formula, we have

1

h− s
=

(wx− wx)(y − z)− {∼}
(w − x)(y − z)− {∼}

=

[
− 2ae(a−d)(d+e)

(a+e)(a+d+2e)(2ad+ae+de) ·
(a−e)

(a+d)(a+2d+e)

]
− {∼}[

− ae2(a−d)
(a+e)(2ad+ae+de) ·

(a−e)
(a+d)(a+2d+e)

]
− {∼}

= 2(d+ e)

[
e(ad+ 2ae+ de)

]
− {∼}[

e2(a+ d+ 2e)(ad+ 2ae+ de)
]
− {∼}

= 2(d+ e)

[
a(de+ 2e2) + de2

]
− {∼}[

a2(de2 + 2e3) + a(d2e2 + 5de3 + 4e4) + de(de2 + 2e3)
]
− {∼}

=
2(d+ e)(a(2(e2 − d2)) + de(e− d))

(a2 + de)(2(e3 − d3) + de(e− d)) + a(4(e4 − d4) + 5de(e2 − e2))

=
2(d+ e)(2a(d+ e) + de)

(a2 + de)(2d2 + 3de+ 2e2) + a(d+ e)(4d2 + 5de+ 4e2)
.

Since h− t = 2a+4d+4e
5 , this gives us

h− s

h− t
=

5

4
· (a

2 + de)(2d2 + 3de+ 2e2) + a(d+ e)(4d2 + 5de+ 4e2)

(d+ e)(2ad+ 2ae+ de)(a+ 2d+ 2e)
.

It is easy to see that this is real by using the symmetry of the expressions (both the numerator and
denominator satisfy E = a2d3e3E . We conclude that H, S, and T are collinear, as desired.

Solution 6. As usual, we reduce to proving T = (3A+D + E)/5 is on the radical axis and compute; this time in
Cartesian coordinates.

LetA(0, h),D(b, 0), E(c, 0) be coordinates forADE. ThenH(0,− bc
h ),M( b2 ,

h
2 ), N( c2 ,

h
2 ) and T ( b+c

5 , 3h
5 ).

We compute OD(xD, yD) the circumcentre of DMH and obtain OE by symmetry. We then have to
verify that ODOE ⊥ HT , which can be done by comparing slopes.

The centre OD can be given by the intersection of perpendicular bisectors of DM and DH. This gives
the following system of equations on xD, yD:
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h · xD + c · yD =
bh

2
− bc2

2h

−b · xD + h · yD = −3b2

4
+

h2

4

Solving the system gives

(h2 + bc)xD =
3b2c

4
− bc2

2
+

h2b

2
− h2c

4

(h2 + bc)yD = −hb2

4
+

h3

4
− b2c2

2h

The formulas for xE , yE will be the same, swapping b ↔ c by symmetry; thus yD − yE and xD − xE

will be antisymmetric in b, c and divisible by b− c, and explicitly:

(h2 + bc)(xD − xE) =
b− c

4
(5bc+ 3h2)

(h2 + bc)(yD − yE) = −
b− c

4
h(b+ c)

So yD−yE

xD−xE
= − h(b+c)

5bc+3h2 .

The other slope is more immediate:

yT − yH
xT − xH

=
3h/5 + bc/h

(b+ c)/5
=

5bc+ 3h2

h(b+ c)
= −xD − xE

yD − yE

so indeed the two slopes correspond to perpendicular lines.
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Day 2

P4. Let ABC be an acute triangle with incentre I and AB ̸= AC. Let lines BI and CI intersect the
circumcircle of ABC at P ̸= B and Q ̸= C, respectively. Consider points R and S such that AQRB
and ACSP are parallelograms (with AQ || RB, AB || QR, AC || SP , and AP || CS). Let T be the
point of intersection of lines RB and SC. Prove that points R, S, T , and I are concyclic.

Solution 1. We will prove that △BIR ∼ △CIS, since the statement then follows from ∠TRI = ∠BRI = ∠CSI =
∠TSI.

Step 1. Let us prove ∠RBI = ∠SCI. We will use directed angles:

(BR,BI) = (BR,AB) + (AB,BI) = (AQ,AB) + (BI,BC)

= (CQ,BC) + (BI,BC) = (CI,CB) + (BI,BC),

which is symmetric in B,C. Therefore, analogously we would obtain the same expression for (CS,CI).

Step 2. Let us prove BR/BI = CS/CI. Clearly BR = AQ and CS = AP . Angle chasing gives
∠ICB = ∠QCB = ∠APQ, and similarly ∠PQA = ∠CBI, and so △IBC ∼ △AQP , from which the
desired AQ/BI = AP/CI follows. This finishes the solution.

Remark. In the alternative solutions below, the notation (ABC) refers to the circle passing through points A,
B, and C. D will refer to the midpoint of arc BC not containing point A, unless stated otherwise.

Let IA be the A-excenter of △ABC. It is well-known that points B, C, I, and IA lie on a circle with
diameter IIA. The center of this circle is point D. It is clear that A, I and D are collinear.

In some of the solutions, some of the facts below may be used:
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• B, T, I, C are concyclic. Indeed, ∠BTC = ∠QAP = A+ B+C
2 = 90◦ + A

2 = ∠BIC, so B, T, I, C
are concyclic.

• ∠QAP = ∠BTC = ∠RTS. Indeed, since QA ∥ BT and PA ∥ CT , then ∠QAP = ∠BTC =
∠RTS.

• RQ and PS are tangents to (ABC). Indeed, ∠RQB = ∠QBA = ∠QAB and similarly for PS.

• △AQP ∼ IBC (see Solution 1 for the proof).

• QP is the perpendicular bisector of AI. Indeed, QA = QI and PA = PI so PQ ⊥ AI and PQ
bisects AI.

Solution 2. We use complex numbers, with (ABC) as the unit circle. Set D = d, P = p, Q = q, so that
A = a = −pq

d , B = b = −dq
p , and C = c = −dp

q . Write z ∼ w if z/w is a nonzero real number. We
observe that

R− T

S − T
∼ R−B

S − C
=

Q−A

P −A
=

q + pq
d

p+ pq
d

=
(d+ p)q

(d+ q)p
.

So, it suffices to show that I−R
I−S ∼

(d+p)q
(d+q)p . Indeed,

I−R = (d+p+q)− (Q+B−A) = d+p+
dq

p
− pq

d
= (d+p)

(
1 +

(d− p)q

dp

)
=

(d+ p)(dp+ dq − pq)

dp
,

so
I −R

I − S
=

d+p
dp

d+q
dq

=
(d+ p)q

(d+ q)p
.

Solution 3. In the following, all segment notations denote vectors.

As mentioned above, we find △AQP ∼ △IBC, and by definitions of the parallelograms we have
BR = AQ and CS = AP as well as ∠RTS = ∠QAP , so it suffices to show ∠RIS = ∠QAP . From the
similarity △AQP ∼ △IBC, we have a spiral map λ such that IB = λAQ and IC = λAP . It follows
that IR = IB + BR = (λ + 1)AQ and IS = IC + CS = (λ + 1)AP . Because λ + 1 is also a spiral
map, we have △IRS ∼ △AQP and in particular ∠RIS = ∠QAP , as we wanted to show.

Remark. This solution is deeply related to the complex numbers solution; indeed, the vectors can be
interpreted as complex numbers and the spiral map as a complex scalar multiplication. But it only
relies on the additive structure of the complex numbers as a real plane and the linear map acting
on them (rather than, e.g., multiplying two points together), making vectors a slightly more natural
language for the claims.

Remark. The number 1 in the solution above represents the identity map.

Solution 4. Let E, F , G be the midpoints of AI, BQ, CP . As in Solution 1, angle chase shows that △AQP ∼
△IBC.

Note that by the Mean Geometry Theorem we have that 1
2AQP + 1

2IBC = EFG is similar to △IBC.
Homothety with center A and scale-factor 2 maps EFG to IRS. Hence ∠RIS = ∠FEG = ∠QAP =
∠BTC = ∠RTS, so R, T, I, S are concyclic.

Remark. As shown above, E lies on QP and AI ⊥ PQ. One can prove that ∠FEG = ∠BIC in
another way. Let J be the midpoint of PQ. Then ∠BIC = ∠FJG by midlines and ∠FJG = ∠FEG
by the lemma below applied in BCPQ.

Lemma. Let ABCD is a cyclic quadrilateral and E is the intersection of its diagonals. Then the
midpoints of AB, BC, CD and the foot of the perpendicular from E to BC are concyclic.
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Solution 5. Let O be the circumcenter of (ABC). Let M , N , and L be the midpoints of OD, PC, and QB,
respectively.

Claim 1. △OPQ and △DCB are directly similar.
Proof. Clearly DB = DC and OQ = OP . Also note that ∠QOP = 2∠QDP = 2∠QDA+ 2∠PDA =
∠BDA+ ∠CDA = ∠BDC. So the two triangles are directly similar by SAS.

Claim 2. ML = MN and ∠LMN = 180◦ − ∠BAC.
Proof. Note that since △OQP ∼ △DBC by the Mean Geometry Theorem, we have that the average
of the two triangles is also similar to them, therefore △MLN ∼ △DBC ⇒ML = MN and ∠LMN =
∠BDC = 180◦ − ∠BAC.

Let K be the reflection of A over M .

Claim 3. K is the circumcenter of △RTS.
Proof. Note that since AQRB and APSC are parallelograms we have that A − L − R are collinear
and that A−N − S are collinear. The homothety centered at A with scale-factor 2 maps △LMN to
△RKS, therefore KR = KS and ∠RKS = ∠LMN = ∠BDC = 2(180◦ − ∠RTS) (and K and T are
in opposite sides of RS), implying that K is the circumcenter of △RTS.

Claim 4. KT = KI.
Proof. Note that AOKD is a parallelogram. Let BT intersect the (ABC) again at point G. Since
∠ABG = ∠ABT = ∠QAB = ∠QCA ⇒ AQ = AG and also OQ = OG hence AO ⊥ QG. Then by
Reim’s theorem we have that QG ∥ TI and also that AO ∥ DK, so DK ⊥ TI. Since DI = DT , it
means that KD is the perpendicular bisector of TI, therefore KT = KI.

This means that RTIS is cyclic with center K.

Remark. When K and T are on the same side of RS, it can be shown that ∠RKS = 2∠RTS.
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Solution 6. As shown above, we have that BTIC is cyclic. Let D and E be the second intersections of AC
and AB with this circle, respectively. Since the center of this circle lies on AI (by symmetry about
AI), we have that AB = AD and AC = AE, therefore BE = CD. Note that since C − I − Q
and A − B − E are collinear, by Reim’s theorem we have that AQ ∥ EI and since AQ ∥ BT , we
have that BT ∥ EI. Similarly, we get CT ∥ DI. Let F and G be the intersections of ID and
IE with PS and QR, respectively. Clearly, RGEB and FSCD are parallelograms. Since RGEB is
parallelogram and BEIT is isosceles trapezoid, we have that RGIT is isosceles trapezoid. Similarly,
SFIT is isosceles trapezoid. Hence, both of them are cyclic. Note also that QR = AB = AD = PF
and QG = AE = AC = PS. Since QR and PS are tangents to the circumcircle of △ABC we have
that R and F are symmetric (reflections) about the perpendicular bisector of PQ. Similarly, G and
S are symmetric about the perpendicular bisector of PQ. This gives us that QP ∥ RF ∥ GS and
that RFSG is an isosceles trapezoid, hence a cyclic quadrilateral with ∠RGS = 180◦ − ∠GQP =
180◦ − ∠QAP = 180◦ − ∠RTS ⇒ R,G, S, T are concylic. Combining all the facts about the cyclic
quadrilaterals we proved above, we have that R,G, S, F, I, T are concylcic. Therefore R, T, I, S lie on
a circle.
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Solution 7. Let E be the A-excenter of △ABC. Let the midpoints of AQ,QB,CP, PA be the points
F,G,H, J , respectively. Both PD and EC are perpendicular to CI, hence PD ∥ CE.

Since PA = PC we have that AJHC is an isosceles trapezoid so it is cyclic. Let K be the second
intersection of (AJHC) and AI. Then ∠ADP = ∠ACP = ∠ACH = ∠AKH ⇒ DP ∥ KH. So
KH is a line passing through the midpoint of the side CP of trapezoid DPCE and parallel to the
bases, hence K is the midpoint of DE. Similarly, we show that the circle (AFGB) passes through
the midpoint of DE. Homothety centered at A with scale-factor 2 maps (AJH) to (APS), (AFG) to
(AQR), and line AI to line AI. This means that the circles (AQR) and (APS) intersect on AI, call
it point L.
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Now, ∠ILR = 180◦−∠AQR = ∠QAB = ∠QCB = 180◦−∠ITB = 180◦−∠ITR, therefore R,L, I, T
are concyclic. Similarly, we get that S,L, T, I are concyclic. Combining these, it means that R and S
belong to the circle (LIT ). The conclusion follows.
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P5. Let n > 1 be an integer. In a configuration of an n× n board, each of the n2 cells contains an arrow,
either pointing up, down, left, or right. Given a starting configuration, Turbo the snail starts in one
of the cells of the board and travels from cell to cell. In each move, Turbo moves one square unit in
the direction indicated by the arrow in her cell (possibly leaving the board). After each move, the
arrows in all of the cells rotate 90◦ counterclockwise. We call a cell good if, starting from that cell,
Turbo visits each cell of the board exactly once, without leaving the board, and returns to her initial
cell at the end. Determine, in terms of n, the maximum number of good cells over all possible starting
configurations.

Solution. We will show that the maximum number of good cells over all possible starting configurations is

n2

4
if n is even and

0 if n is odd.

Odd n

First, we will prove that there are no good cells if n is an odd number.

For Turbo to reach her goal, she must return to her initial cell after visiting every cell exactly once.
Consider the chessboard coloring of the board. Without loss of generality, we assume that Turbo starts
in a black cell. Since, at every step, Turbo moves to a cell of a different color; she will be in a white
cell after n2 ≡ 1 mod 2 moves. Thus, it is impossible for Turbo to come back to her initial black cell
on her n2-th move, which is a contradiction. Thus there are no good cells.

Lower bound for even n

We will now construct a starting configuration with n2

4 good cells for even n.

Let (i, j) denote the cell in row i and column j. Consider the following cycle

(1, 1)→ (1, 2)→ (1, 3)→ ...→ (1, n)

→ (2, n)→ (2, n− 1)→ ...→ (2, 2)

...

→ (2i− 1, 2)→ (2i− 1, 3)→ ...→ (2i− 1, n)

→ (2i, n)→ (2i, n− 1)→ ...→ (2i, 2)

...

→ (n, n)→ (n, n− 1)→ ...→ (n, 2)

→ (n, 1)→ (n− 1, 1)→ ...→ (2, 1)→ (1, 1).

Note that the cycle returns to the initial cell after visiting every cell exactly once. To prove that (1, 1)
is good, we need to find a starting configuration such that Turbo traverses this cycle.

Let ci be the (i − 1)-th cell on the cycle: so we have c0 = (1, 1), c2 = (1, 2), . . . , cn2−1 = (2, 1). For
every i, we draw an arrow in cell ci pointing towards cell ci+1 (or pointing towards c0 if i = n2 − 1)
and then rotate this arrow i times 90◦ in the clockwise direction. After i moves, the arrow in ci will
have rotated i times 90◦ counterclockwise and be in the same direction as on the path defined above.
Thus, Turbo will traverse the cycle c0, c1, c2, ..., cn2−1, c0 and (1, 1) is good.

Every four moves, all arrows point in the same direction as in the beginning. Moreover, the board
will return to its initial configuration after traversing the full cycle, since n2, the length of the cycle,
is divisible by 4. Therefore Turbo can also start at any ci with 4 | i and follow the same route. Hence

the cells c0, c4, c8, . . . , cn2−4 are good and there are n2

4 of such cells.
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Upper bound for even n

We will prove that for even n and any start configuration there are at most n2

4 good cells.

Let a0 be a good cell. Let a0, a1, a2, . . . , an2−1, an2 = a0 be the sequence of cells that Turbo visits
when she starts at a0. Now suppose there is another good cell b0 and let b0, b1, b2, . . . , bn2−1, bn2 = b0
be the sequence of cells that Turbo visits when she starts at b0.

Note that, since 4 | n2, the arrows are back to their initial configuration after n2 steps. Thus, if Turbo
keeps walking after returning to her initial cell, she would just traverse the same cycle over and over
again.

Consider the upper left corner of the board. With standard row and column numbering, the corner
cell is (1, 1). This cell has only two neighbours, so both the a-route and the b-route must have cells
(2, 1), (1, 1), (1, 2) in that order or (1, 2), (1, 1), (2, 1) in that order. Without loss of generality, ai−1 =
(2, 1), ai = (1, 1) and ai+1 = (1, 2) for some i. Let j be such that bj = (1, 1). If bj−1 = (2, 1) = ai−1,
then the arrow in cell (2, 1) must be pointed in the same direction after i − 1 steps and after j − 1
steps, so i ≡ j mod 4. But then the arrow in cell bj = (1, 1) = ai must also be pointed in the same
direction after i and after j steps, so Turbo moves to bj+1 = ai+1 in both cases, and again finds the
arrow pointed in the same direction in both cases. Continuing, we find that the b-route is actually
identical to a4t, a4t+1, . . . , an2 = a0, a1, . . . , a4t−1, a4t for some t, as any other starting point would have
the arrows in the wrong direction initially.

Now suppose instead that bj+1 = (2, 1) = ai−1. Considering the a-route, the arrows in the upper left
corner after i− 1 steps must be like this:

↓ ←
↑ or

↓ ↑
↑

Considering the b-route instead, the arrows after j − 1 steps must be like this:

← ←
↑ or

← ←
←

From the arrows in cell (1, 1) we see that i ≡ j + 1 mod 4. However, for the cells (2, 1) and (1, 2) this
gives a contradiction.

We conclude that the only possible good cells are a4t for t = 0, 1, . . . , n2

4 − 1, which gives at most n2

4
good cells.
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P6. In each cell of a 2025× 2025 board, a nonnegative real number is written in such a way that the
sum of the numbers in each row is equal to 1, and the sum of the numbers in each column is equal
to 1. Define ri to be the largest value in row i, and let R = r1 + r2 + · · ·+ r2025. Similarly, define
ci to be the largest value in column i, and let C = c1 + c2 + · · ·+ c2025.

What is the largest possible value of R
C ?

Solution 1. Answer: 2025
89 .

In general, if the table is m2 ×m2, the answer is m2

2m−1 .

The example is as follows: label rows and columns from 1 to m2, from top to bottom and left to
right. For the first m columns, write 1

m in all squares whose coordinates have the same residue
modulo m and place 0 everywhere else. For the remaining m2−m columns, place 1

m2 everywhere.
Then R = m2 · 1

m = m, and C = m · 1
m + (m2 −m) · 1

m2 = 2− 1
m . So the ratio is as claimed.

1
2 0 1

4
1
4

0 1
2

1
4

1
4

1
2 0 1

4
1
4

0 1
2

1
4

1
4

In particular, when n := m2 = 2025, we get 2025
89 . Now we need to show that R

C ≤
n

2
√
n−1

.

For each row, select one cell having the largest value appearing in said row and colour it red.
Then, without loss of generality, we may rearrange the columns such that the red cells appear in
the first k columns from the left, and each such column contains at least one red cell, for some
k ≤ n.

For the jth column, for all 1 ≤ j ≤ k, let pj and nj denote the sum and number of red cells in
it, respectively. We observe that cj , the biggest number in the jth column, is at least

pj

nj
, for all

1 ≤ j ≤ k. For all other columns, the largest value they contain is at least 1
n , as their sum is 1.

Thus, C ≥ p1

n1
+ p2

n2
+ · · ·+ pk

nk
+ n−k

n .

We can also observe that R = p1 + p2 + · · ·+ pk.

Therefore we have to show that:

p1 + p2 + · · ·+ pk ≤
n

2
√
n− 1

·
(
p1
n1

+
p2
n2

+ · · ·+ pk
nk

+
n− k

n

)
. (∗)

By construction, n1 + n2 + · · · + nk = n, and, as the numbers in every column are nonnegative,
we see that pj ≤ 1 for every j. Also, since each number in a red cell is at least 1

n , we also have
pj ≥ nj

n .

Since our inequality is linear in each pj , it suffices to prove it when each variable equals one of
its two critical values. By relabeling, we may assume that pj =

nj

n for 1 ≤ j ≤ t, and pj = 1 for
t+ 1 ≤ j ≤ k, for an integer 0 ≤ t ≤ k.

First, if t = k, we observe that p1+p2+· · ·+pk = n1

n +n2

n +· · ·+nk

n = 1, and that p1

n1
+ p2

n2
+· · ·+ pk

nk
=

k
n , so the inequality becomes 1 ≤ n

2
√
n−1

, which is true.

From now on we may assume that t < k. We need to show that:

n1 + · · ·+ nt

n
+ k − t ≤ n

2
√
n− 1

·
(
t

n
+

1

nt+1
+ · · ·+ 1

nk
+

n− k

n

)
.

By Cauchy–Schwarz inequality we have that:

1

nt+1
+ · · ·+ 1

nk
≥ (k − t)2

nt+1 + · · ·+ nk
=

(k − t)2

n− (n1 + · · ·+ nt)
. (CS)
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Let n1 + · · ·+ nt = n · q, where 0 ≤ q < 1. Thus, it is now enough to show that:

q + k − t ≤ n

2
√
n− 1

(
t

n
+

(k − t)2

n− nq
+

n− k

n

)
.

Let k − t = ℓ ≥ 1. The inequality becomes:

q + ℓ ≤ 1

2
√
n− 1

·
(
n− ℓ+

ℓ2

1− q

)
.

Rearranging this we get:

n+ q +
ℓ2

1− q
≥ 2(q + ℓ)

√
n.

If q = 0 the inequality is trivially true by AM − GM . Suppose now that 0 < q < 1. Then, by
Cauchy-Schwarz, we have:

q +
ℓ2

1− q
=

q2

q
+

ℓ2

1− q
≥ (q + ℓ)2.

It is therefore enough to show that n + (q + ℓ)2 ≥ 2(q + ℓ)
√
n, which is true by AM − GM ,

completing the proof.

Remark. Another way to show n+ q + ℓ2

1−q ≥ 2(q + ℓ)
√
n is to split it into two AM −GM ’s, as:(

n(1− q) +
ℓ2

1− q

)
+ (nq + q) ≥ 2ℓ

√
n+ 2q

√
n.

Solution 1′. We prove the main inequality (∗) in a slightly different manner. Instead of the strong lower bound
pj ≥ nj

n , we use the weaker, simpler and more immediate lower bound pj ≥ 0 (thus proving the
inequality in a larger regime).

As in Solution 1, suppose pj = 0 for 1 ≤ j ≤ t and pj = 1 for t+ 1 ≤ j ≤ k, with ℓ = k − t. We
also denote by m = nt+1+ · · ·+nk and note that m ≤ n− t, since nj ≥ 1 for each i ≤ t. We need
to prove that:

ℓ ≤ n

2
√
n− 1

·
(

1

nt+1
+ · · ·+ 1

nk
+

n− k

n

)
.

Rearranging and using the same Cauchy-Schwarz (CS) as in Solution 1, we see it suffices to show
that:

(2
√
n− 1)ℓ ≤ n− k +

nℓ2

m
,

or equivalently, that:

2
√
nℓ ≤ n− t+

nℓ2

m
.

But since n− t ≥ m this immediately follows from 2
√
nℓ ≤ m+ nℓ2

m , which is a simple application
of AM −GM .

(Note that in Solution 1 the case t = k, which is equivalent tom = ℓ = 0, was dealt with separately,

to avoid the appearance of 0
0 terms such as nℓ2

m . It is easy to verify that the corresponding term
should in fact be 0 and the final AM − GM replaced with 0 ≤ 0, and all transitions are valid.
Alternatively, the case can be argued directly by simply noting that (∗) evaluates to 0 ≤ n−k

2
√
n−1

,

which is obvious.)

Solution 1′′. This is an alternative way of getting the upper bound on R
C from

R

C
≤ p1 + p2 + . . .+ pk

p1

n1
+ p2

n2
+ . . .+ pk

nk
+ n−k

n

.

Using the fact that
∑k

j=1 nj = n, we can rewrite the above right hand side as follows:
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∑k
j=1 pj∑k

j=1

(
pj

nj
+

nj−1
n

) .
We notice that this is a quotient of affine functions in the pj ’s, for which the denominator does
not vanish over the set defined by 0 ≤ pj ≤ 1. Therefore the maximum of this function is attained
when a certain number of pj ’s are 1 and the others are 0. Without loss of generality we may
assume that the first t are equal to 1 and the other k − t are 0 for some 0 ≤ t ≤ k. Then one has
that the previous expression is at most

t∑
1≤j≤t

(
1
nj

+
nj−1
n

)
+
∑

t<j≤k
nj−1
n

.

We now lower bound the denominator by observing that the second sum is non negative, while
each term of the first sum can be bounded by AM −GM as follows:

1

nj
+

nj − 1

n
≥ 2√

n
− 1

n
.

We therefore have

R

C
≤ max

1≤t≤k

t∑
1≤j≤t(

2√
n
− 1

n )
=

n

2
√
n− 1

,

which finishes the proof.

Solution 1′′′. We follow the same notation as above. First, we apply Cauchy-Schwarz as follows :(
k∑

i=1

pi
ni

)(
k∑

i=1

pini

)
≥

(
k∑

i=1

pi

)2

= R2.

We now write zi = 1−pi for all 1 ≤ i ≤ k, and observe that all zi are positive. Moreover, we have
that

∑k
i=1 zi = k −R, and

∑k
i=1 pini = n−

∑k
i=1 pizi. Thus, from our last inequality we get

p1
n1

+ · · ·+ pk
nk
≥ R2

n−
∑k

i=1 nizi
.

As before we have C ≥ p1

n1
+ · · ·+ pk

nk
+ n−k

n , and so

C ≥ R2

n−
∑k

i=1 nizi
+

n− k

n
=

R2

n−
∑k

i=1 nizi
+

n−R−
∑k

i=1 zi
n

.

Putting everything together we get

R

C
≤ R

R2

n−
∑k

i=1 nizi
+

n−R−
∑k

i=1 zi
n

=
n

Rn
n−

∑k
i=1 nizi

+
n−

∑k
i=1 zi
R − 1

.

Applying AM − GM to the denominator we get
R

C
≤ n

2

√
n

n−
∑k

i=1 zi
n−

∑k
i=1 nizi

− 1

, which finishes the

proof by noting that
n−

∑k
i=1 zi

n−
∑k

i=1 nizi
≥ 1.
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Solution 2. This is an alternative approach that goes via an intermediary quantity in order to establish to
the upper bound on R/C.

Let xij be the entry in row i and column j. Let n = 2025. The key idea is to analyze the
expression:

T :=
∑
i,j

xij max

(
xij ,

1

n

)
.

On one hand, since cj ≥ 1/n, we have xij max(xij ,
1
n ) ≤ xijcj for every (i, j). So

T ≤
∑
j

∑
i

xijcj =
∑
j

cj = C.

On the other hand, let ji be one of the indices for which ri = xiji . We therefore have:

T =
∑
i

xiji max

(
xiji ,

1

n

)
+
∑
j ̸=ji

xij max

(
xij ,

1

n

)
≥
∑
i

r2i +
1

n

∑
j ̸=ji

xij


=
∑
i

(
r2i −

1

n
ri +

1

n

)
≥
∑
i

(
2√
n
ri −

1

n
ri

)
=

(
2√
n
− 1

n

)
R.

This gives the claimed result.
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