
The 12th Romanian Master of Mathematics Competition

Day 1 — Solutions

Problem 1. Let ABC be a triangle with a right angle at C, let I be its incentre, and let H
be the orthogonal projection of C on AB. The incircle ω of the triangle ABC is tangent to the
sides BC, CA, and AB at A1, B1, and C1, respectively. Let E and F be the reflections of C in
the lines C1A1 and C1B1, respectively, and let K and L be the reflections of H in the same lines.
Prove that the circles A1EI, B1FI, and C1KL have a common point.

Russia, Dmitry Prokopenko

Solution. The line C1A1 is parallel to the external angle bisector of ∠B, so the reflection in C1A1

maps the segment A1C to the segment A1E parallel to AB. Similarly, B1F ‖ AB. Notice also
that A1E = A1C = B1C = B1F = r, where r is the inradius of 4ABC.

Let M be the midpoint of AB. Let X be the point of ω such that
−→
IX �

−−→
CM . Notice that

∠EA1I = 90◦+∠EA1B = 90◦+∠CBM = 90◦+∠BCM = ∠A1IX, and A1E = IA1 = IX; thus,
XIA1E is an isosceles trapezoid. Hence X lies on the circle IA1E, and EX ‖ A1I. Similarly, X
lies on the circle IB1F , and FX ‖ B1I. It remains to show that X lies on the circle C1KL.

Under the symmetry in C1A1, the line CH (perpendicular to AB) maps to the line through E
perpendicular to BC — i.e., CH maps to EX. Therefore, the projection H of C1 onto CH maps
to the projection K of C1 onto EX. Similarly, L is the projection of C1 onto FX. So the
quadrilateral C1KXL is cyclic, due to right angles at K and L.
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Comments. (1) In fact, the quadrilateral C1KXL is a square, since C1K = C1H = C1L
and ∠KC1L = 2∠A1C1B1 = 90◦.

(2) One can easily see that the points C1 and X are symmetric in the angle bisector CI.
This yields that K and L both lie on CI. One can show that this conclusion in fact holds in any,
not necessarily right-angled, triangle.
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Problem 2. Let N be a positive integer, and let a = (a(1), . . . , a(N)) and b = (b(1), . . . , b(N))
be sequences of non-negative integers, each written on a circle (so we assume a(i ± N) = a(i)
and b(i ± N) = b(i)). We say a is b-harmonic, if each a(i) is the arithmetic mean of the
counterclockwise nearest b(i) numbers, the clockwise nearest b(i) numbers, and a(i) itself; that
is,

a(i) =
1

2b(i) + 1

b(i)∑
s=−b(i)

a(i + s). (∗)

(A term of a may appear more than once in the above sum.) Suppose that neither a nor b is
constant, and that both a is b-harmonic, and b is a-harmonic. Prove that more than half of the
2N terms across both sequences vanish.

United Kingdom, Dominic Yeo

Solution 1. Let a = mini a(i) and let b = mini b(i). Since a is not constant, there exists an i
such that a = a(i) < a(i + 1).

Claim 1. If a = a(i) < a(i + 1), then b(i) = 0. Similarly, if a = a(i) < a(i− 1), then b(i) = 0.

Proof. Otherwise the sum in (∗) contains a term a(i + 1) > a but no terms smaller than a, so
the average is greater than a. �

Claim 1 implies b = 0; similarly, a = 0. With reference again to Claim 1, a(i) = b(i) = 0 for
some index i.

Say that [i, j] is an a-segment if a(i) = a(i + 1) = · · · = a(j) = 0 but a(i− 1) 6= 0 6= a(j + 1);
define a b-segment similarly. By Claim 1, the endpoints of any such segment satisfy a(i) = b(i) =
a(j) = b(j) = 0. Since the sequences are non-constant, each i where a(i) = 0 is contained in an
a-segment.

Claim 2. Let [i, j] be a b-segment, and let k ∈ [i, j]. Then a(k) ≤ k − i (and, similarly,
a(k) ≤ j − k).

Proof. Indeed, since b(k) = 0, the elements of b with indices from k − a(k) to k + a(k) must all
be zero as well. �

We now show that every index is contained in either an a- or a b-segment. Since at least one
index is contained in both, the conclusion follows.

Assume, to the contrary, that a(i) and b(i) are both positive for some index i ; call such
indices bad. Among all bad indices i, choose one maximising max(a(i), b(i)); by symmetry, we
may and will assume that this maximum is a(i). We may and will also assume that either the
index i−1 is not bad, or a(i−1) < a(i) (otherwise change i to i−1, repeat if necessary, recalling
that a is not constant).

Consider the range of indices ∆ = [i − b(i), i + b(i)], and the values a assumes at those
indices. Some indices j in ∆ are bad; the corresponding values a(j) do not exceed a(i). Other
indices j in ∆ are covered by several a- and b-segments. Each b-segment contributes at most
b(i) members nearest to one of its endpoints, so the average value of a over those indices does
not exceed (b(i)− 1)/2 < a(i) by Claim 2. The remaining indices j in ∆ all lie in a-segments, so
the corresponding values a(j) are all zero.

Combining all this, it follows that the average in the right-hand member of (∗) does not exceed
a(i). Moreover, if some a- or b-segment intersects ∆, then the inequality is strict. Otherwise,
i − 1 is a bad index contained in ∆, and a(i − 1) < a(i), so the inequality is again strict. This
contradiction ends the proof and completes the solution.

Solution 2. The solution has a few well-defined steps:

Lemma 1. Assume that a(i) = M := maxa; then b(i + k) = 0 for all k = −M,−M + 1, . . . ,M .
In particular, b(i− 1) = b(i) = b(i + 1) = 0, as M ≥ 1.
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Proof. Assume that a(j) = a(j + 1) = · · · = a(j + s) = M > 0, and a(j − 1), a(j + s + 1) < M ,
where i ∈ [j, j+s]. Then b(j) = 0, as otherwise a(j) is the mean of at least three terms, all ≤M ,
with at least one < M . For the same reason, b(j + s) = 0 also.

But then b(j) is the mean of 2M + 1 terms of b, which must therefore all also be equal to
0. So b(j + k) = 0 for all k ∈ [−M,M ]. Iterating this argument gives b(j + k) = 0 for all
k ∈ [−M,M + s]. which implies the statement of the lemma. �

Corollary. There exist i such that a(i) = 0 and j such that b(j) = 0. �

Lemma 2. Suppose maxa ≥ maxb. Generate a′ by replacing all copies of M = maxa with 1
in a. Then a′ is b-harmonic, and b is a′-harmonic.

Proof. We start with another consequence of Lemma 1. Assume that a(i) 6= M ; then none of the
terms a(i+ k) with k ∈ [−b(i), b(i)] equals M . Indeed, if a(i+ k) = M with |k| ≤ b(i) ≤M , then
by Lemma 1 we have b(i) = b

(
(i+k)−k

)
= 0, which yields k = 0 and hence a(i) = a(i+k) = M .

We can now check that the harmonic properties are preserved under replacing all copies of
M in a with 1:

If a(i) 6= M , then the harmonic property for b(i) is unchanged. If a(i) = M , then a′(i) = 1
and b(i− 1) = b(i) = b(i + 1) = 0, so b(i) certainly has the a′(i)-harmonic property; and

If a(i) = M , then b(i) = 0, and so a′(i) = 1 has the b(i)-harmonic property. If a(i) 6= M ,
then we have just shown that none of the terms in the statement of a(i)’s harmonic property are
changed by this process, so it remains harmonic.

This check completes the proof of the lemma. �

Lemma 3. We have min(a(i), b(i)) = 0 for all i. Moreover, there exists an i with a(i) = b(i) = 0.

Proof. Both statements in the lemma are invariant under the procedure in Lemma 2. Apply
this procedure repeatedly, to replace all instances of the maximum value in one of the sequences
with 1, until both sequences consist of zeroes and ones. It suffices to check the lemma statement
for the obtained pair of sequences.

Suppose that a(i) = b(i) = 1 for some i. Since the sequences remain non-constant, we may
and will assume that min(a(i − 1), b(i − 1)) = 0, say a(i − 1) = 0. But then the b(i)-harmonic
property is violated for a(i), as a(i + 1) ≤ 1.

Suppose now that there is no i with a(i) = b(i) = 0. This means that for every index i we
have either a(i) = 1 and b(i) = 0, or a(i) = 0 and b(i) = 1. There is a pair of adjacent indices
having different types, so that a(i) = b(i + 1) = 1 and a(i + 1) = b(i) = 0. But then b(i) violates
the a(i)-harmonic property. �

Lemma 3 readily yields that at least N+1 terms across both sequences are zeroes, as required.

Remark. It can be shown that there are at least N + 2 zeroes across both sequences, a bound
achieved if, for instance, a = (0, 0, 1, 1, . . . , 1, 0) and b = (1, 0, 0, . . . , 0).

3



Problem 3. In a country there are n airports and n air companies operating return flights.
Each company operates an odd number of flights forming a closed route. Prove that a traveller
can complete a closed route consisting of an odd number of flights operated by pairwise distinct
companies.

Israel, Ron Aharoni

Solution. In graph-theoretic setting, the statement reads:

Consider a collection of n odd cycles, not necessarily distinct, all on the same vertex
set of size n. Prove that at most one edge can be chosen from each of these cycles to
form a collection that contains the edges of an odd cycle.

Call a set of edges rainbow if it is formed by choosing at most one edge from each cycle. We
have to prove that there exists a rainbow cycle of odd length.

Begin by choosing a maximal rainbow forest F , that is, an acyclic rainbow set of edges.
Since F is acyclic, its size is less than n, so there is a cycle C in the collection no edge of which

lies in F . The forest F contains every vertex of C, for otherwise an edge of C incident with a
vertex outside F could be added to F to form a larger rainbow forest, contradicting maximality.
Moreover, no edge of C joins different components of F , for one such could again be added to F
to contradict maximality.

Consequently, the vertices of C all lie in some component of F , a tree T . As such, T is
bipartite, that is, its vertices split into two disjoint parts, and all edges are between the two.
Since C is an odd cycle, it has an edge whose endpoints both lie in the same part. This edge
then completes an odd rainbow cycle.
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The 12th Romanian Master of Mathematics Competition

Day 2 — Solutions

Problem 4. Let N be the set of all positive integers. A subset A of N is sum-free if, whenever
x and y are (not necessarily distinct) members of A, their sum x + y does not belong to A.
Determine all surjective functions f : N → N such that, for each sum-free subset A of N, the
image {f(a) : a ∈ A} is again sum-free.

India, Sutanay Bhattacharya

Solution. The identity is the only surjection of the positive integers onto themselves sending
every sum-free set onto a sum-free set (no verification is needed, of course).

To prove this, fix a function f satisfying the conditions in the statement, and proceed in
several steps.

Step 1. Notice that a 2-element set {x, y}, where x < y, is not sum-free if and only if y = 2x.
Choose any a ∈ N, and for any i ≥ 0 choose some xi such that f(xi) = 2ia. The set

f({xi, xi+1}) is not sum-free, so neither is {xi, xi+1}, whence xi = 2xi+1 or xi+1 = 2xi. Since the
xi are all distinct, the same option should hold for all i. The former option yields xi = x02

−i

which cannot hold for large enough i. So xi+1 = 2xi for all i.
Therefore, f(2x) = 2f(x) for all x, and, moreover, x is the only argument t with f(t) =

f(2x)/2. Therefore, f is injective (and hence bijective).

Step 2. Say that a 3-element set {a, b, c} is good if it is not sum-free, but each of its 2-element
subsets is (in other words, no element is twice another). It is easily seen that a set {a, b, c}, where
a < b, is good only if c = b ± a. Notice that the pre-image of a good set is also a good set, due
to Step 1.

Now let f(1) = a. We show that f(n) = an by induction on n. The base cases are n =
1, 2, 3, 4, 5; for n = 1, 2, 4 the result follows from Step 1.

Set t = f−1(3a) and s = f−1(5a). The sets {a, 4a, 3a} and {a, 4a, 5a} are good, hence so are
{1, 4, t} and {1, 4, s}. Therefore, {s, t} = {3, 5}. But the set {a, 5a, 6a} is also good, so the pair
{1, s} is contained in one more good set, which is not the case if s = 3, since {1, 3} is contained
in one single good set, namely, {1, 4, 3}. Thus t = 3 and s = 5, which establishes the base.

For the induction step, assume that f(k) = ak for all k ≤ n, where n ≥ 5. Choose t =
f−1((n+ 1)a). Then the pair {a, na} is contained in two good sets, namely, {a, na, (n− 1)a} and
{a, na, (n+ 1)a}. Their pre-images, {1, n, n− 1} and {1, n, t}, are also good, and injectivity of f
forces t = n + 1. This completes the induction step.

Finally, since f is surjective, 1 = f(n) = an for some positive integer n, so a = 1 = n.
Consequently, f is the identity, as claimed at the beginning of the solution.
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Problem 5. A lattice point in the Cartesian plane is a point whose coordinates are both integral.
A lattice polygon is a polygon whose vertices are lattice points. Let Γ be a convex lattice polygon.
Prove that Γ is contained in a convex lattice polygon ∆ exactly one vertex of which is not a vertex
of Γ, and the vertices of Γ all lie on the boundary of ∆.

Russia, Maxim Didin

Solution 1. Let T be the extra vertex of a desired polygon ∆; then ∆ is the convex hull of T
and Γ. Thus, a point T fits the bill if and only if this convex hull contains no vertices of Γ in its
interior.

Each segment AB joining two lattice points is partitioned by lattice points into congruent
elementary segments. Define the elementary length `(AB) of AB to be the length of any of those
elementary segments.

Take any three consecutive sides AB, BC, and CD on the boundary of Γ. Consider the
convex region bounded by the segment BC and the rays complementary to the rays BA and CD
(including the boundary). If this region is unbounded (see the left figure below), then it con-

tains some lattice point T (e.g., the point with
−→
BT =

−−→
AB), and any such point T satisfies the

problem requirements. Thus, in what follows we assume that the two rays cross each other at
some point X. Assume further that the triangle BCX contains no lattice points outside the
segment BC, as any other such point would satisfy the requirements.

Let C∗ be a lattice point on the segment BC such that BC∗ = `(BC), let X∗ be the point

on BX such that C∗X∗ ‖ CX, and let D∗ be the point such that
−−−→
C∗D∗ =

−−→
CD (see the right

figure below). Then the triangle BC∗X∗ contains no lattice points apart from B and C∗.
Consider the half-plane determined by the line BC and containing no interior points of Γ. Let

` be the line in that half-plane parallel to BC, containing some lattice points, and nearest to BC
among such. Let the ray AB meet ` at a point A′ which belongs to the elementary segment KL

on ` (we assume that
−−→
KL =

−−→
BC∗; the point A′ may coincide with L but not with K). Then the

ray D∗C∗ crosses the ray LK (excluding L), otherwise L lies in the triangle BC∗X∗.
The only lattice points contained in the parallelogram BKLC∗ are its vertices. This yields

that there are no lattice points strictly indise the strip defined by the parallel lines BK and C∗L.
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Let M and N be the meeting points of the rays BX∗, C∗L and C∗X∗, BK, respectively. Then
the segments BM and C∗N contain no lattice points except their endpoints, so `(AB) ≥ BM
and `(DC) = `(D∗C∗) ≥ C∗N . Therefore,

BX∗
`(AB)

+
C∗X∗
`(CD)

≤ BX∗
BM

+
C∗X∗
C∗N

=
BX∗
BM

+
MX∗
BM

= 1. (∗)

Choose now BC to be a side of largest elementary length. Then

(1 ≥)
BX∗
`(AB)

+
C∗X∗
`(CD)

≥ BX∗ + C∗X∗
`(BC)

=
BX∗ + C∗X∗

BC∗
,
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which contradicts the triangle inequality.

Comments. (1) The usage of elementary length seems to be crucial. In particular, under the
assumption that the triangle BCX contains no lattice points outside BC, an inequality

BX

AB
+

CX

CD
≤ 1

similar to (∗) does not necessarily hold.

(2) Any lattice parallelogram of unit area may be transformed into a unit square by an affine
transform preserving the set of lattice points. If one applies such a transform to the parallelo-
gram BKLC∗, inequality (∗) may become more transparent.

The key inequality (∗) is preserved by affine transforms preserving the lattice, so the above
solution is in some sense “affine”. In contrast, the next solution, although involving similar ideas,
is more “Euclidean”.

Solution 2. We use the same notions of elementary segments and elementary lengths as in
Solution 1. We say that a segment is sloped if it is neither horizontal nor vertical. If Γ has no
sloped sides, then Γ is a rectangle, and the problem statement is trivial: one may choose any
lattice point on the extension of any side. So, in what follows, we assume that Γ has a sloped
side.

Lemma 1. Let BC be a sloped segment of the boundary of Γ with no lattice points in its
interior, and let P be a lattice point such that the segments PB and PC are not sloped, and
the triangle PBC lies outside Γ. Then there exists a unique lattice point X in the triangle PBC
such that the area of the triangle XBC is 1/2.

Proof. Choose a lattice point Q such that PBQC is a rectangle. As in Solution 1, let ` denote the
line through some lattice point parallel to BC, lying outside Γ, and nearest to the line BC under
these constraints (see the left figure below). The line ` crosses the interior of the angle BQC
along an interval of length > BC, so this interval should contain a lattice point X. The triangle
XBC contains no lattice points apart from the vertices, so its area is 1/2 due to Pick’s formula.
Moreover, any such point X should lie within the angle BPC, and ` crosses this angle along a
segment of length < BC. Hence X is the required unique lattice point. �

P

B

C

Q

X

` B

C∗
X

A∗

~c
~x

Denote the point X defined in Lemma 1 by f(AB).

Lemma 2. Let AB and BC be two consecutive sides on the boundary of Γ, and let BA∗ and BC∗
be elementary segments on the sides BA and BC, respectively. Assume that both coordinates of−−→
BC are positive, and that the line AB strictly separates the points C and X = f(BC∗). Then

both coordinates of the vector
−−→
A∗B are also positive, and BA∗ > BC∗.

Proof. Since AB separates X and C, the vector
−−→
A∗B is a linear combination of ~c =

−−→
BC∗ and

~x =
−−→
BX with positive coefficients; so the coordinates of

−−→
A∗B are positive. Since the area of the

triangle BXC equals 1/2, the vectors ~c and ~x span the whole lattice, so the coefficients of the

linear combination are integers. Finally, the angle between ~c and ~x is acute, so BA∗ = |
−−→
A∗B| ≥√

|~c|2 + |~x|2 > |~c| = BC∗, as desired. �
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Now, choose a sloped side BC of Γ of a maximal elementary length, and let ABCD be the
corresponding part of the boundary of Γ. Let C∗ and B∗ be the points on the segment BC such
that BC∗ = B∗C = `(BC). Let X = f(BC∗) and X ′ = f(B∗C). Then, due to Lemma 2, the line
AB does not separate X and C, and the line CD does not separate X ′ and B. Therefore, the
segment XX ′ lies in the same angle of the lines AB and CD as Γ, so X may serve as a suitable
vertex T of ∆.
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Problem 6. For an integer n > 1, let gpf(n) denote the greatest prime factor of n. A strange
pair is an unordered pair of distinct primes p and q such that {p, q} = {gpf(n), gpf(n + 1)} for
no integer n > 1. Prove that there exist infinitely many strange pairs.

Russia, Dmitry Krachun

Solution. We show that there are infinitely many strange pairs of the form {2, q} where q is an
odd prime.

The Lemma below provides a sufficient condition for such a pair to be strange. For an odd
prime q, let ordq(2) denote the multiplicative order of 2 modulo q, i.e., the least positive integer s
satisfying q | 2s − 1.

Lemma. If some primes 2 < q1 < q2 satisfy ordq1(2) = ordq2(2), then {2, q1} is a strange pair.

Proof. Arguing indirectly, suppose first that 2 = gpf(n) and q1 = gpf(n+1); in particular, n = 2k

for some positive integer k, and q1 | 2k + 1. This yields q1 | 22k − 1, so ordq2(2) = ordq1(2) | 2k.
Therefore, q2 | 22k − 1 = (2k − 1)(2k + 1), but q2 - 2k − 1, hence q2 | 2k + 1. So gpf(n + 1) ≥ q2,
which is a contradiction.

Similarly, but easier, if 2 = gpf(n + 1) and q1 = gpf(n), then n + 1 = 2k, so ordq2(2) =
ordq1(2) | k and hence q2 | 2k − 1. Therefore, gpf(n + 1) ≥ q2, a contradiction. �

It remains to show that there exist infinitely many disjoint pairs of primes q1 < q2 satisfying
the conditions in the Lemma.

Let p = 2r − 1 > 5 be a prime, and let N = 22p + 1. We prove that:

(1) N has at least two distinct prime factors greater than 5; and

(2) ordq(2) = 4p for every prime factor q > 5 of N .

Thus, every prime p > 5 provides a pair of odd primes satisfying the conditions in the Lemma.
Moreover, (2) shows that distinct primes p > 5 provide disjoint such pairs, whence the conclusion.

To prove (1), notice that 3 - N , and write N = (4+1) · (4p−1−4p−2 + · · ·+1) ≡ 5p (mod 25),
to infer that 25 - N .

Next, write N = (2p + 1)2 − 2p+1 = (2p − 2r + 1)(2p + 2r + 1). The two factors are coprime
(since they are odd, and their difference is 2r+1), and each is larger than 5. Hence each has a
prime factor greater than 5. This establishes (1).

To prove (2), consider a prime factor q > 5 of N , and notice that ordq(2) | 4p, since q | N |
24p − 1. If ordq(2) < 4p, then either ordq(2) | 2p or ordq(2) | 4. The former is impossible due to
22p − 1 = N − 2 ≡ −2 (mod q), the latter — due to q - 15 = 24 − 1. This establishes (2) and
completes the proof.
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