2011 APMO PROBLEMS

Time allowed: 4 hours FEach problem is worth 7 points
*The contest problems are to be kept confidential until they are posted on the offi-
cial APMO website (hitp://www.mmgjp.or.jp/competitions/APMQO). Please do not
disclose nor discuss the problems over the internet until that date. Calculators are
not allowed to use.

Problem 1. Let a,b,c be positive integers. Prove that it is impossible to have
all of the three numbers a? + b+ ¢, b2+ c+a, ¢ + a + b to be perfect squares.

Problem 2. Five points Ay, Ay, Az, A4, A5 lie on a plane in such a way that no
three among them lie on a same straight line. Determine the maximum possible
value that the minimum value for the angles ZA;A;Aj can take where i, j, k are
distinct integers between 1 and 5.

Problem 3. Let ABC be an acute triangle with ZBAC = 30°. The internal and
external angle bisectors of ZABC meet the line AC' at By and Bs, respectively, and
the internal and external angle bisectors of ZACB meet the line AB at C; and Cs,
respectively. Suppose that the circles with diameters By By and C7C5 meet inside
the triangle ABC at point P. Prove that ZBPC = 90°.

Problem 4. Let n be a fixed positive odd integer. Take m + 2 distinct points
Py, Py, ,Pyy1 (where m is a non-negative integer) on the coordinate plane in
such a way that the following 3 conditions are satisfied:
(1) Py =(0,1), Ppy1 = (n+1,n), and for each integer i, 1 <i < m, both 2- and
y- coordinates of P; are integers lying in between 1 and n (1 and n inclusive).
(2) For each integer i, 0 < i < m, P;P;y; is parallel to the z-axis if ¢ is even, and
is parallel to the y-axis if i is odd.
(3) For each pair 4,j with 0 < ¢ < j < m, line segments P; P,y and P;P; 1 share
at most 1 point.

Determine the maximum possible value that m can take.

Problem 5. Determine all functions f : R — R, where R is the set of all real
numbers, satisfying the following 2 conditions:

(1) There exists a real number M such that for every real number z, f(x) < M is
satisfied.

(2) For every pair of real numbers x and y,

fxf() +yf(x) =xf(y) + flzy)

is satisfied.



SOLUTIONS FOR 2011 APMO PROBLEMS

Problem 1.

Solution: Suppose all of the 3 numbers a®> +b+c¢, b> +c+a and 2 + a + b are
perfect squares. Then from the fact that a® + b + ¢ is a perfect square bigger than
a? it follows that a® + b+ ¢ > (a + 1)?, and therefore, b + ¢ > 2a + 1. Similarly we
obtainc+a>2b+1and a+b>2c+ 1.

Adding the corresponding sides of the preceding 3 inequalities, we obtain
2(a+b+c) > 2(a+ b+ c)+ 3, a contradiction. This proves that it is impos-
sible to have all the 3 given numbers to be perfect squares.

Alternate Solution: Since the given conditions of the problem are symmetric in
a, b, c, we may assume that a > b > c holds. From the assumption that a>+b+cis a
perfect square, we can deduce as in the solution above the inequality b+c¢ > 2a+ 1.
But then we have

2a >b+c>2a+1,

a contradiction, which proves the assertion of the problem.

Problem 2.

Solution: We will show that 36° is the desired answer for the problem.

First, we observe that if the given 5 points form a regular pentagon, then the
minimum of the angles formed by any triple among the five vertices is 36°, and
therefore, the answer we seek must be bigger than or equal to 36°.

Next, we show that for any configuration of 5 points satisfying the condition of
the problem, there must exist an angle smaller than or equal to 36° formed by a
triple chosen from the given 5 points. For this purpose, let us start with any 5
points, say Aq, Ao, A, Ay, As, on the plane satisfying the condition of the problem,
and consider the smallest convex subset, call it I', in the plane containing all of the
5 points. Since this convex subset I' must be either a triangle or a quadrilateral
or a pentagon, it must have an interior angle with 108° or less. We may assume
without loss of generality that this angle is ZA; A3 A3. By the definition of T it is
clear that the remaining 2 points A4 and As lie in the interior of the angular region
determined by £A;AsAs, and therefore, there must be an angle smaller than or

1
equal to 3 108° = 36°, which is formed by a triple chosen from the given 5 points,

and this proves that 36° is the desired maximum.
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Problem 3.

Solution:  Since /ByBBy = 90°, the circle having B;Bs as its diameter goes
through the points B, By, Bs. From B1A : B1C = B3A : BoC = BA : BC, it
follows that this circle is the Apolonius circle with the ratio of the distances from
the points A and C being BA : BC'. Since the point P lies on this circle, we have

PA:PC=BA:BC=sinC: sind,

from which it follows that PAsin A = PC'sinC. Similarly, we have PAsin A =
PBsin B, and therefore, PAsin A = PBsin B = PC'sinC.

Let us denote by D, E, F' the foot of the perpendicular line drawn from P to the
line segment BC, C' A and AB, respectively. Since the points E, F lie on a circle
having PA as its diameter, we have by the law of sines FF = PAsin A. Similarly,
we have FFD = PBsin B and DE = PC'sinC. Consequently, we conclude that
DEF is an equilateral triangle. Furthermore, we have ZCPE = ZC'DFE, since the
quadrilateral CDPF is cyclic. Similarly, we have /FPB = /FDB. Putting these
together, we get

/ZBPC =360° — (LCPE + L/FPB + LEPF)
=360° — {(LCDE + ZFDB) + (180° — LFAE)}
= 360° — (120° + 150°) = 90°,
which proves the assertion of the problem.

Alternate Solution: Let O be the midpoint of the line segment By B;. Then
the points B and P lie on the circle with center at O and going through the point
B1. From

£L0BC = £Z0BB; — ZCBBy = £L0B1B — /B1BA = /ZBAC

it follows that the triangles OC'D and OB A are similar, and therefore we have that
OC -OA = OB? = OP?. Thus we conclude that the triangles OCP and OPA are
similar, and therefore, we have ZOPC = ZPAC. Using this fact, we obtain

/PBC — /PBA = (/B,BC + /PBB,) — (/ABB, — /PBB;)
= 2/PBB, = /POB, = /PCA— /OPC

=/PCA - /LPAC,

from which we conclude that /PAC + /PBC = /ZPBA + ZPCA. Similarly, we
get LZPAB+ /PCB = Z/PBA + ZPCA. Putting these facts together and taking
into account the fact that

(LPAC + /PBC)+ (LPAB+ Z/PCB) + (/PBA+ ZPCA) = 180°,
we conclude that /PBA + ZPCA = 60°, and finally that
/BPC = (/PBA+/PAB)+(/PCA+/PAC) = ZBAC+(LPBA+/PCA) = 90°,

proving the assertion of the problem.

Problem 4.

Solution: We will show that the desired maximum value for m is n(n — 1).
First, let us show that m < n(n—1) always holds for any sequence Py, Py, - -+, Ppt1
satisfying the conditions of the problem.



Call a point a turning point if it coincides with P; for some ¢ with 1 <¢ < m.
Let us say also that 2 points {P, @} are adjacent if {P,Q} = {P,_1, P;} for some
1 with 1 < i < m, and vertically adjacent if, in addition, PQ is parallel to the
y-axis.

Any turning point is vertically adjacent to exactly one other turning point.
Therefore, the set of all turning points is partitioned into a set of pairs of points
using the relation of ”vertical adjacency”. Thus we can conclude that if we fix
ke {1,2,---,n}, the number of turning points having the x-coordinate k must be
even, and hence it is less than or equal to n — 1. Therefore, altogether there are
less than or equal to n(n — 1) turning points, and this shows that m < n(n — 1)
must be satisfied.

It remains now to show that for any positive odd number n one can choose a
sequence for which m = n(n — 1). We will show this by using the mathematical
induction on n. For n = 1, this is clear. For n = 3, choose

P0:(071)7 P1:(171)7 P2:(172)u P3:(2a2)7

Py =(2,1), Ps=(3,1), Ps = (3,3), P; = (4,3).
It is easy to see that these points satisfy the requirements (See fig. 1 below).

figure 1

Let n be an odd integer > 5, and suppose there exists a sequence satisfying the
desired conditions for n—4. Then, it is possible to construct a sequence which gives
a configuration indicated in the following diagram (fig. 2), where the configuration
inside of the dotted square is given by the induction hypothesis:

figure 2

By the induction hypothesis, there are exactly (n — 4)(n — 5) turning points for
the configuration inside of the dotted square in the figure 2 above, and all of the
lattice points in the figure 2 lying outside of the dotted square except for the 4
points (n,2), (n—1,n—2), (2,3), (1,n—1) are turning points. Therefore, the total
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number of turning points in this configuration is
(n—4)(n—5)+ (n? — (n —4)> —4) = n(n — 1),

showing that for this n there exists a sequence satisfying the desired properties,
and thus completing the induction process.

Problem 5.

Solution: By substituting = 1 and y = 1 into the given identity we obtain
f(f(1)) = f(1). Next, by substituting x = 1 and y = f(1) into the given identity
and using f(f(1)) = f(1), we get f(1)2 = f(1), from which we conclude that either
f(Q) =0or f(1) = 1. But if f(1) = 1, then substituting y = 1 into the given
identity, we get f(x) = « for all z, which contradicts the condition (1). Therefore,
we must have f(1) = 0.

By substituting = 1 into the given identity and using the fact f(1) = 0, we
then obtain f(f(y)) = 2f(y) for all y. This means that if a number ¢ belongs to the
range of the function f, then so does 2t, and by induction we can conclude that for
any non-negative integer n, 2"t belongs to the range of f if ¢ does. Now suppose
that there exists a real number a for which f(a) > 0, then for any non-negative
integer n 2" f(a) must belong to the range of f, which leads to a contradiction to
the condition (1). Thus we conclude that f(x) < 0 for any real number x.

By substituting § for 2 and f(y) for y in the given identity and using the fact

that f(f(y)) = 2f(y), we obtain
Fafe) + 1w (5) = o) + £ (5/0) -

from which it follows that zf(y) — f(zf(y)) = fF(¥)f (%) — f (£ f(y)) > 0, since the
values of f are non-positive. Combining this with the given identity, we conclude

1
that yf(x) > f(xy). When & > 0, by letting y to be — and using the fact that
x

f(1) =0, we get f(z) > 0. Since f(x) <0 for any real number z, we conclude that
f(z) = 0 for any positive real number z. We also have f(0) = f(f(1)) =2f(1) =0.

If f is identically 0, i.e., f(x) = 0 for all z, then clearly, this f satisfies the given
identity. If f satisfies the given identity but not identically 0, then there exists a
b < 0 for which f(b) < 0. If we set ¢ = f(b), then we have f(c) = f(f(b)) = 2f(b) =
2¢. For any negative real number x, we have cx > 0 so that f(cx) = f(2¢cz) = 0,
and by substituting y = ¢ into the given identity, we get

J(2ex) + ef (2) = 2cx + f(ca),

from which it follows that f(x) = 22 for any negative real x.
We therefore conclude that if f satisfies the given identity and is not identically

if x>
0, then f is of the form f(x) = g ?f o ;8 Finally, let us show that the
x if .

function f of the form shown above does satisfy the conditions of the problem.
Clearly, it satisfies the condition (1). We can check that f satisfies the condition
(2) as well by separating into the following 4 cases depending on whether z,y are
non-negative or negative.

e when both z and y are non-negative, both sides of the given identity are 0.
e when z is non-negative and y is negative, we have zy < 0 and both sides
of the given identity are 4xy.



e when z is negative and y is non-negative, we have zy < 0 and both sides
of the given identity are 2xy.
e when both z and y are negative, we have xy > 0 and both sides of the given
identity are 2xy.
Summarizing the arguments above, we conclude that the functions f satisfying the
conditions of the problem are

0 ifz>0
2x if x <0.

flx)=0 and fz) = {



