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Problems and Solutions

Problem 1. Find all positive integers n for which there exist three positive divisors a, b, c of n such that
a > b > c and

a2 − b2, b2 − c2, a2 − c2

are also divisors of n.

(Kims Georgs Pavlovs)

Solution. The answer is all positive integers n which are divisible by 60.
Suppose that n is divisible by 60. Let a = 4, b = 2, c = 1. Then a2 − b2 = 12, b2 − c2 = 3, a2 − c2 = 15. All six of those
numbers are divisors of 60, so they’re also divisors of n, so any n which is a multiple of 60 is indeed a solution.

2 points.

Now suppose that n is a number for which such a, b, c exist.
Some two numbers among a, b, c have the same parity. Without loss of generality let a and b be such numbers. Then
a− b and a+ b are both even, so 4 is a divisor of a2 − b2, so 4 also divides n. We conclude that n is divisible by 4.

2 points.

If any of a, b, c is divisible by 3, then n is also divisible by 3. Otherwise, two numbers among a, b, c give the same
remainder upon division by 3. Without loss of generality let a and b be such numbers. Then 3 is a divisor of a2 − b2, so
3 also divides n. We conclude that in any case, n is divisible by 3.

2 points.

If any of a, b, c is divisible by 5, then n is also divisible by 5. Otherwise, none of a, b, c is divisible by 5. However, a
square of a number which isn’t divisible by 5 can only give remainder 1 or 4 upon division by 5.
Thus, some two numbers among a2, b2, c2 have the same remainder upon division by 5, so their difference is divisible by
5. We conclude that in any case, n is divisible by 5.

3 points.

Since 3, 4 and 5 all divide n, then their least common multiple, which is 60, also divides n.

1 point.

Notes on marking:

• If a contestant proves that for some a > 1, all numbers of the form 60 · a · k for k ∈ N are solutions, they should be
awarded 1 point out of possible 2 points for the first part of the solution.

• If a contestant proves that any n which is a solution is even, they should be awarded 1 point out of possible 2
points given for proving divisibility by 4.
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Problem 2. Find all pairs of positive real numbers (x, y) such that xy is an integer and

x+ y = ⌊x2 − y2⌋.

(Ivan Novak)

First Solution. Let (x, y) be a pair satisfying the problem’s condition.
Note that x+ y and xy are both positive integers, so (x− y)2 = (x+ y)2 − 4xy is also a positive integer.

4 points.

Let D = (x− y)2, and let a = x+ y. We have
a = ⌊a

√
D⌋,

where a and D are both positive integers. Furthermore, note that D = (x + y)2 − 4xy gives remainder 0 or 1 upon
division by 4. If D > 1, then D ⩾ 4, and ⌊a

√
D⌋ ⩾ ⌊2a⌋ = 2a > a, which is a contradiction. Thus, D = 1.

3 points.

This means that x− y = 1. Since x+ y = a, we must have

x =
a+ 1

2
,

y =
a− 1

2

for some positive integer a. Since y > 0, we must have a > 1. Since xy is an integer, a2−1
4

must be an integer. Thus, a
is odd. Let a = 2n+ 1 for some positive integer n. Then

(x, y) = (n+ 1, n).

It’s easy to check that all such pairs satisfy the problem’s conditions.

3 points.

Second Solution. Note that x > y since x2 − y2 ⩾ x+ y > 0.
Let a = x+ y and b = xy. We then have x2 − ax+ b = 0 and y2 − ay + b = 0. This means that x and y are the roots of
the polynomial t2 − at+ b, so, since x > y, we have

x =
a+

√
D

2
,

y =
a−

√
D

2
,

where D = a2 − 4b is a positive integer.

2 points.

Direct calculation yields x2 − y2 = a
√
D.

2 points.

Thus, we again obtain the equality
a = ⌊a

√
D⌋.

The rest of the solution is the same as in the First Solution.

6 points.

Third Solution. We let a = x+y (note it must be a positive integer) and then the equality from the statement implies
that a ⩽ x2 − y2 < a+ 1 which upon division by a implies

1 ⩽ x− y < 1 +
1

a
.

1 point.

Adding a = x+ y to both inequalities implies

a+ 1 ⩽ 2x < a+ 1 +
1

a
=⇒ a+ 1

2
⩽ x <

a+ 1

2
+

1

2a
.
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2 points.

Now, write x = a+1
2

+ ε for some ε. We see that y = a−1
2

− ε and also that 0 ⩽ ε < 1
2a

⩽ 1
2
.

We can compute

xy =
a2 − 1

4
− (ε2 + ε) ∈ N

and note that 0 ⩽ ε2 + ε < 3
4
.

2 points.

If a is even, a2 − 1 gives remainder 3 upon division by 4 so the fractional part of a2−1
4

is 3
4

and due to ε2 + ε < 3
4

we
have that xy is not an integer.

2 points.

If a is odd, a2 − 1 is divisible by 4 so we must have ε2 + ε = 0 and ε = 0 and we obtain the solutions

(x, y) =

(
a+ 1

2
,
a− 1

2

)
= (n+ 1, n)

for any odd integer a, that is, any positive integer n.

3 points.

Fourth Solution. Again, denote a = x + y and D = (x − y)2 (both are integers as in the First Solution or Second
Solution). Thus we again have

a = ⌊a
√
D⌋.

4 points.

As in the Third Solution, we have that a = ⌊a
√
D⌋ implies that

1 ⩽ x− y =
√
D < 1 +

1

a

.

1 point.

Applying the inequality of arithmetic and geometric means gives

a = x+ y ⩾ 2
√
xy ⩾ 2

but as x ̸= y equality can not hold. This gives that a ⩾ 3 so
√
D ⩽ 4

3
and as D is an integer, D = 1.

2 points.

The rest of the solution is the same as in the First Solution.

3 points.

Notes on marking:

• In all four solutions, in the final part (last 3 points), minor flaws should result in a 1 point deduction.

• If a contestant has not made the steps prior to the final part of the solution, they can score at most 2 points for
the last part.

• Stating that all pairs of the form (n+ 1, n) are a solution is worth at most 1 point out of the last 3 points.

• Points from different solutions are not additive.
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Problem 3. Let ABC be an acute-angled triangle with |BC| < |AC|. Let I be the incenter and τ the incircle
of ABC, which touches BC and AC at points D and E, respectively. The point M is on τ such that BM
is parallel to DE and M and B are on the same side of the angle bisector of ∠BCA. Let F and H be the
intersections of τ with BM and CM different from M , respectively. Let J be a point on the line AC such that
JM is parallel to EH. Let K be the intersection of JF and τ different from F .

Prove that the lines ME and KH are parallel.

(Steve Vo Dinh)

First Solution. Let T be the intersection of CF and τ different from F . Consider the homotethy centered at C that
sends H to M .
It also sends T to F because of symmetry around the bisector of angle ∠ACB.

1 point.

Furthermore, it sends E to J because JM is parallel to EH.

1 point.

Since CE is tangent to τ , CJ is tangent to the circumcircle of △MFJ using the aforementioned homotethy.

4 points.

By the tangent chord lemma we have ∠CJM = π − ∠MFJ .

1 point.

Now notice that ∠EMH = ∠CEH = ∠CJM = π − ∠MFJ = ∠KFM = ∠MHK.
Thus, ME and KH are parallel, as desired.

3 points.

Second Solution. Let t denote the angle ∠JCF , and let z denote the angle ∠EFC.

We claim that △CJF ∼ △CDH.
We first note that ∠JCF = ∠DCM = t, CD = CE and CM = CF using the symmetry around the bisector of angle
∠ACB. Namely, let ℓ be the mentioned bisector. Then since FM and ED are parallel, we conclude that EDFM is an
isosceles trapezoid, so D and E are symmetric around ℓ, and the same holds for F and M .
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1 point.

Using the fact that JM ∥ EH, the triangles JMC and EHC are similar, and we get CJ
CM

= CE
CH

, or equivalently
CJ
CF

= CD
CH

1 point.

. We are now done by the side-angle-side theorem.

4 points.

Now, notice that from the tangent chord lemma applied to BC and HD, we have ∠HDC = ∠HMD. From this, it
follows ∠EFC = ∠CMD = ∠HMD because of symmetry around angle ∠ACB.
Since we also have ∠HDC = ∠CJF from the aforementioned similarity, we obtain ∠HDC = ∠CJF = ∠EFC = z.

1 point.

From triangle JFC, we have ∠KHE = ∠JFE = π − ∠CJF − ∠JCF − ∠EFC = π − 2z − t.
From triangle CDM we have ∠MDH = π−∠DMH −∠DCH −∠HDC = π− 2z− t. Thus, ∠MDH = ∠EHD, which
implies that ED = HM as the angles across those chords are the same. Thus, EMKH is an isosceles trapezoid, so ME
and KH are parallel, as desired.

3 points.

Notes on marking:

• In both solutions, contestants that have done the angle-chase (final part of the solution), but haven’t done
the previous steps (up to minor flaws), are awarded 1 point out of 3 points for the final part, since it
can be helpful, but it isn’t very useful without the previous steps.

• Points from different solutions are not additive.
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Problem 4. Let X = {1, 2, 3, . . . , 300}. A collection F of distinct (not necessarily non-empty) subsets of X is
lovely if for any three (not necessarily distinct) sets A, B, C in F , at most three out of the following eight sets
are non-empty:

A ∩B ∩ C, A ∩B ∩ C, A ∩B ∩ C, A ∩B ∩ C,

A ∩B ∩ C, A ∩B ∩ C, A ∩B ∩ C, A ∩B ∩ C,

where S denotes the set of all elements of X that are not in S.

What is the greatest possible number of sets in a lovely collection?

(Miroslav Marinov)

First Solution. We claim that |F | ⩽ 8.

If we apply the condition to the triple (A,B,B) for some distinct sets A,B ∈ F we obtain that at most three of the sets
A ∩ B,B \ A,A \ B,X \ (A ∪ B) are nonempty. Therefore, for each pair of distinct sets A,B ∈ F we either have that
A ⊂ B or B ⊂ A or A,B disjoint or A ∪B = X.

1 point.

Now fix an F of maximal size and assume |F | ⩾ 9. Consider G = F \ {∅, X} which has |G| ⩾ 7. We wish to show there
exist A,B ∈ G with A ∪B = X and nonempty intersection. Assume the opposite, that all A,B in G are either disjoint
or contained in each other.

First, assume a pair of sets with A ⊃ B exists in G.
If there exists C ∈ G such that A ⊃ B ⊃ C we obtain that

C = A ∩B ∩ C

B \ C = A ∩B ∩ C

A \B = A ∩B ∩ C

X \A = A ∩B ∩ C

are all nonempty, a contradiction. Similarly, A has no superset in G.

1 point.

If there exist distinct C,D ∈ G such that A ⊃ B,C,D, the previous consideration forces B,C,D to be disjoint and we
obtain that

C = A ∩B ∩ C

B = A ∩B ∩ C

X \A = A ∩B ∩ C

A \ (B ∪ C) = A ∩B ∩ C

and as the first three sets are clearly nonempty, the last one must be empty and we have B ∪ C = A. However, we now
similarly get D ∪B = D ∪ C = A and D disjoint from B,C so B = C, a contradiction, so A has at most two subsets in
G.

1 point.

Now, due to |G| ⩾ 7 we can choose distinct C,D ∈ G with C,D both disjoint from A. We now have the sets

C = A ∩B ∩ C

B = A ∩B ∩ C

A \B = A ∩B ∩ C

X \ (A ∪ C) = A ∩B ∩ C

and as the first three sets are clearly nonempty, the last one must be empty so C = A. However, now we have a similar
consideration for D so C = D = A, a contradiction. Therefore, any pair of sets A,B ∈ F are disjoint.

2 points.
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Now, take some A,B,C,D ∈ F and note that

A = A ∩B ∩ C

B = A ∩B ∩ C

C = A ∩B ∩ C

X \ (A ∪B ∪ C) = A ∩B ∩ C

so as the first three are clearly nonempty, the last one must be empty so we have A∪B∪C = X and specially C = A ∪B.
However, the same consideration now applies to D so we obtain D = C, a contradiction.

1 point.

Finally, take a pair A,B ∈ G such that A∪B = X and A∩B ̸= ∅. Consider some other C ∈ G. As all three sets A∩B,
A∩B, A∩B are nonempty, each has to have a nonempty intersection either with C or with C. As we can have at most
three such nonempty intersections, we have that all of them are either a subset of C or a subset of C. As those three
sets partition X, this gives us at most 23 = 8 possible choices for C and as C ∈ G = F \ {∅, X} and C ̸= A,C ̸= B,
we cannot have that they’re all contained in C or in C and we cannot have C = A or C = B so there are at most 4
possibilities for C and we obtain |G| ⩽ 6, a contradiction.

3 points.

Finally, we have that |G| ⩽ 6 so |F | ⩽ 8 as desired.
One example of this is F containing ∅, {1, 2, . . . , 100}, {101, 102, . . . 200}, {201, 300} and their complements. It’s easy to
check that this is a lovely family.

1 point.

Second Solution. Let F be a lovely family with the maximum possible number of sets. We claim that F contains less
than 9 sets. Suppose for the sake of contradiction that it contains more than 8 sets.
Note that the problem’s condition is symmetric under taking complements. In other words, the sets A,B,C satisfy the
problem’s condition if and only if the sets A,B,C satisfy it. Because of this, we may assume that for any A ∈ F we also
have A ∈ F . Since F consists of least 9 sets, it follows that F contains at least 5 sets which all contain the number 1.

1 point.

We’ll prove this is impossible.
We rephrase the problem. Represent each set A ∈ F with a 300 × 1 column consisting of zeroes and ones, so that the
kth number in the column is 0 if k ̸∈ A and 1 if k ∈ A.
Let A,B,C,D,E be five sets from F which all contain 1. Consider a 300× 5 table consisting of 5 columns corresponding
to A,B,C,D,E respectively.
Now note that the problem’s condition rephrases as follows: for any choice of three columns from the table, the 300× 3
table consisting of those three columns contains at most 3 different rows out of possible 8.

1 point.

Lemma. Suppose that there is a row r in the mentioned 300 × 5 table which doesn’t contain all ones and contains at
least two ones. Then for any two columns which contain a one in the row r, one of them contains all ones.
Proof. Without loss of generality we may assume that the row r is of the form 110xy, where x, y ∈ {0, 1}. Since the first
two columns can’t be the same, there must exist a row whose first two entries are distinct. Without loss of generality,
this row is of the form 10uvw where u, v, w ∈ {0, 1}. Now look at the first three columns in the table. They contain rows
111, 10u, 110. Those are three distinct rows, so the first three entries of any row in the table are 111, 10u or 110. This
implies that every row must start with a one, which means that the first column contains all ones.

3 points.

From this lemma, it immediately follows that there is no row which contains more than 2 and less than 5 ones, and if
there is a row which contains exactly 2 ones, then there is a column which contains all ones.
In any case, take a look at the four columns which do not contain all ones. Each of the rows in the corresponding 300×4
table either contains no ones, a single one, or four ones.
Since the columns need to be distinct, there must exist at least three out of four of the following rows:

1000

0100

0010

0001
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2 points.

Without loss of generality we can assume that the table contains the first three among them. The table also contains
the first row with all ones. However, looking at the first three columns then yields a contradiction, since there exist the
following four distinct rows:

111

100

010

001

2 points.

The example which proves that a lovely family can contain 8 sets is the same as in the first solution.

1 point.

Notes on marking:

• In the First Solution, solving the case when there exist A,B whose union is X and intersection is nonempty is
worth 3 points. It is possible to score 1 point or 2 points on this part of the problem if a contestant makes
partial progress or has a minor flaw in their proof of this case.
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Problem 1. Let n ⩾ 3 be a positive integer. Alice and Bob are playing a game in which they take turns
colouring the vertices of a regular n-gon. Alice plays the first move. Both players start the game with 0 points.

In each turn, player picks a vertex V which hasn’t been coloured and colours it. Then, they add k points to
their point tally, where k is the number of neighbouring vertices of V which have already been coloured. (Thus,
k is either 0, 1 or 2.)

The game ends when all vertices have been coloured, and the player with more points wins. For every n ⩾ 3,
determine which player has a winning strategy.

(Josip Pupić)

First Solution. We’ll prove that Alice wins when n is odd and Bob wins when n is even.
Case 1: n is even.
Bob’s strategy is the following. He picks a line ℓ passing through the midpoints of two opposite sides of the n-gon. This
splits the n-gon into two halves.
Then, for any move Alice makes, Bob makes a move which mirrors Alice’s move with respect to this line.

3 points.

If in some move Alice picks a vertex which isn’t an endpoint of a side through which ℓ passes, then Bob wins the same
amount of points as her in his next move, because each half of the n-gon has the same vertices coloured before their
moves.
If Alice picks a vertex which is an endpoint of a side through which ℓ passes, then Bob wins one point more than Alice.
That’s because its neighbour on the same side of ℓ is coloured if and only if the mirroring vertex is coloured, so they get
the same amount of points for the vertices on the same side of ℓ, but Bob gets one extra point since he picks a vertex
adjacent to Alice’s.
Since Bob has to pick such a vertex twice, Bob wins by two points difference in the end.

2 points.

Case 2: n is odd.
Alice’s strategy is the following. She makes an arbitrary first move, and then considers a line ℓ passing through the
vertex she picked and the midpoint of the opposite side of the n-gon. She then uses the same strategy as Bob, mirroring
his moves with respect to ℓ.

3 points.

Similarly to the first solution, they get the same amount od points when Bob chooses a vertex which isn’t an endpoint
of the side through which ℓ passes.
When Bob picks a vertex which is an endpoint of the side through which ℓ passes, Alice wins one more point than Bob
for the same reasons as in the first case.
Since Bob has to pick such a vertex, Alice wins by one point difference in the end.

2 points.
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Second Solution. We’ll prove that Bob wins for even n and Alice wins for odd n.
Case 1: n is even.
Consider vertices labeled from 1 to n in clockwise direction and consider vertices 2a − 1 and 2a paired for each a ∈
{1, 2, . . . , n

2
}.

Bob’s strategy will be to colour a vertex belonging to the same pair as the vertex Alice coloured in her previous turn.

3 points.

After Bob’s turn vertices in each pairing will either both be coloured or both uncoloured so Bob will always be able to
colour the chosen vertex.
Since Alice always colours a vertex adjacent to an uncolored vertex, she gain’s at most 1 point per turn. Similarly Bob
always colours a vertex adjacent to a colored vertex so he gains at least 1 point per turn.
They each play for n

2
turns. However since Alice plays first, she gains 0 points for her first turn because there are no

coloured vertices yet, and Bob plays last so he gains 2 points for his last turn because all vertices are coloured at the
end. Bob wins by at least 2 points difference.

2 points.

Case 2: n is odd.
Label the vertices from 0 to n − 1 in clockwise direction and consider vertices 2a − 1 and 2a paired for each a ∈
{1, 2, . . . , n−1

2
}.

Alice will firstly colour vertex labeled with 0, and all other turns (similarly to Bob’s strategy) colour a vertex belonging
to the same pair as the vertex Bob coloured in his previous turn.

3 points.

She will also always be able to colour the chosen vertex.
Alice now gains 0 points for her first turn, 2 points for her last turn and at least 1 point for all other turns, while Bob
gains at most 1 point for all turns. Alice scores at least n+1

2
points and Bob scores at most n−1

2
points so Alice wins by

at least 1 point.

2 points.

Third Solution. We’ll prove by mathematical induction that Bob wins when n is even and Alice wins when n is odd.
For n = 3, Alice wins by 1 point no matter how they play.
For n = 4, Bob wins by 2 points by choosing a vertex adjacent to the one Alice chooses in the first move.
Suppose that for all k < n, where n ⩾ 5, Alice wins by 1 when k is odd and Bob wins by 2 when k is even.
We now prove the same holds for n. We again split into two cases.
Case 1: n is even.
Bob’s first move is to pick a vertex adjacent to the one Alice picked. He wins one point by doing this. However, note
that if we merge the chosen vertices, we have a same game on an (n− 1)-gon in which Bob has made the first move and
is leading by 1. By inductive hypothesis applied to the (n − 1)-gon, Bob wins the game on the (n − 1)-gon by 1 point,
so he then wins the game by 2 points.

3 points.

Case 2: n is odd.
Alice’s first move is arbitrary.
If Bob plays his first move to a vertex adjacent to the one Alice chose, he scores 1 point, but we can again merge the two
vertices together and get a game on an (n− 1)-gon in which Bob has made the first move, and by inductive hypothesis
Alice wins this game on an (n− 1)-gon by 2 points, so she wins the game on the n-gon by 1 point.
If Bob plays the first move in a vertex such that there is exactly one vertex between the vertices he and Alice chose, then
Alice can pick the vertex in between them. She scores 2 points in that move. Merging the three used vertices gives us a
game on an n− 2-gon in which Alice has played the first move, and she wins that game by the inductive hypothesis, so
she also wins the game on an n-gon.

1 point.

If Bob plays the first move to a vertex which is at distance at least two from the one Alice chose, he doesn’t score any
points. If we connect the two chosen vertices, we’ve split the n-gon into a (k + 1)-gon and an (n+ 1− k)-gon for some
k ⩾ 3, k < n − 2. Merging the two chosen vertices in each of the two polygons gives us a k-gon and an (n − k)-gon,
where k ⩾ 3 and n− k ⩾ 3. Note that exactly one among k and n− k is even. Furthermore, also note that the game is
now split into two games, a game on a k-gon and a game on an n− k-gon, in which the first moves have been played.

2 points.

Note that exactly one among k or n − k is even. Without loss of generality let k be even. Then Alice can make her
first move in a k-gon and every other move in the same polygon in which Bob played his move before her. Doing so
optimally, using the induction hypotheses for k and n− k, Alice wins both the game on the k-gon and the game on the
(n− k)-gon, since she is the first player on the (n− k)-gon and the second player on the k-gon.
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4 points.

Notes on marking:

• In the first two solutions, each case depending on the parity of n is worth 5 points in total. Explaining the strategy
is worth 3 points, while proving that the strategy is winning is worth 2 points. If a contestant provides a different
winning strategy, the same marking scheme applies.

• If a contestant has a minor flaw in their proof that the strategy is winning, they should be deducted 1 point out
of 2 points for that part of the solution.

• Proving that the total number of points in the game is n is worth 1 point out of possible 5 points for the case
when n is odd. This is not additive with the rest of the points given for the odd case.

• Providing a non-losing strategy for the case when n is even is worth 1 point. Proving that the strategy is non-losing
should be awarded additional 1 point. These points are not additive with the rest of the points given for the even
case.
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Problem 2. We say a positive integer n is lovely if there exist a positive integer k and (not necessarily distinct)
positive integers d1, d2, . . . , dk such that n = d1d2 . . . dk and

d2i | n+ di

for all i ∈ {1, . . . , k}.

(a) Are there infinitely many lovely numbers?
(b) Does there exist a lovely number greater than 1 which is a square of an integer?

(Ivan Novak)

Solution. (a) The answer is YES. We prove this using induction. Note that 1 is lovely since 1 = 12 and 12 | 1 + 1.
Suppose that some number n is lovely and let d1d2 . . . dk be the divisors such that d2i | n+ di.
We claim that n(n+ 1) is lovely as well, with the decomposition n(n+ 1) = d1d2 . . . dk(n+ 1). First note that

(n+ 1)2 | (n(n+ 1))2 + n+ 1 = (n+ 1)2(n2 + 1).

Furthermore, for any i ⩽ k, d2i | n2 and d2i | n+ di, so also

d2i | n2 + n+ di.

Thus, n(n+ 1) is indeed lovely, and part (a) is solved.

3 points.

(b) The answer is NO. Suppose that some square number n > 1 is lovely, with the decomposition d1d2 . . . dk. Without loss
of generality we may assume that all di are greater than 1, since adding or removing number 1 from the decomposition
doesn’t affect the problem’s conditions.
Note that the di are pairwise coprime, since if some prime number p divides di and dj , then νp(dj) < νp(n) so νp(n+dj) =
νp(dj) < 2νp(dj), which is impossible since d2j | n+ di. Consequently, since n is a square, all the di are squares.

1 point.

If me multiply the k conditions d2i | n+ di for i = 1, . . . , k, we get

d21d
2
2 . . . d

2
k | (n+ d1)(n+ d2) . . . (n+ dk),

or equivalently
n2 | (n+ d1)(n+ d2) . . . (n+ dk).

1 point.

If we expand the k brackets on the right hand side to get 2k summands, the only summands which are not divisible
by n2 are d1d2 . . . dk = n and those of the form n · d1 · . . . di−1 · di+1 · . . . · dk = n2

di
for some i ∈ {1, . . . , k}. Thus, the

condition can be rewritten as

n2 | n+
n2

d1
+ . . .+

n2

dk
.

2 points.

This means that the number
1

n
+

1

d1
+ . . .+

1

dk
is a positive integer. However, note that for every positive integer N we have

1

22
+

1

32
+ . . .+

1

N2
<

1

1 · 2 +
1

2 · 3 + . . .+
1

(N − 1)N

=
1

1
− 1

2
+

1

2
− 1

3
+ . . .+

1

N − 1
− 1

N

= 1− 1

N
< 1.

This means that the sum 1
d1

+ . . .+ 1
dk

+ 1
n

is less than 1 as well since it is a sum of reciprocals of distinct squares greater
than 1. This means it cannot be a positive integer and we’ve reached a contradiction.

3 points.

Notes on marking:

• In part (a), it’s possible to score partial points as follows. If a contestant tries constructing a lovely number
d1 . . . dkdk+1 by starting from a lovely number d1d2 . . . dk, and writes down that dk+1 should be congruent to 1
modulo di for i ⩽ k, they should receive 1 point for part (a). If they write down the condition dk+1 | d1d2 . . . dk+1
along with the condition dk+1 ≡ 1 (mod di), they should receive 2 points for part (a). Only writing down the
condition dk+1 | d1d2 . . . dk + 1 is worth 0 points on its own.
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• In the induction step in part (a), stating the claim "When n is lovely, then n(n + 1) is lovely" without any proof
should be awarded 1 point out of possible 3 points for part (a). Stating the claim and also providing the
decomposition of n(n + 1) into di, but not checking that they satisfy the conditions should be awarded 2 points
out of possible 3 points. A check doesn’t necessarily need to be explicit, but it has to be written down in some
form.

• In the last step of the solution of part (b), stating the inequality 1
d1

+ . . .+ 1
dk

+ 1
n
< 1 should be awarded 1 point

out of possible 3 points for that part. To prove the inequality, one may also (without proof, of course) use the
well-known identity

∑∞
n=1

1
n2 = π2

6
.
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Problem 3. Let R denote the set of all real numbers. Find all functions f : R → R such that

f(x3) + f(y)3 + f(z)3 = 3xyz

for all x, y, z ∈ R such that x+ y + z = 0.

(Kyprianos-Iason Prodromidis)

First Solution. First of all, for x = y = z = 0, we get that

f(0) + 2f(0)3 = 0 ⇔ f(0)(2f(0)2 + 1) = 0 ⇔ f(0) = 0.

Now, let x = 0 and z = −y. This tells us that

f(y)3 + f(−y)3 = 0 ⇔ f(−y) = −f(y), ∀y ∈ R,

so f is odd.

1 point.

Moreover, for z = 0 and y = −x, we have

f(x3) + f(−x)3 = 0 ⇔ f(x3) = f(x)3, ∀x ∈ R,

because f is odd.

1 point.

This means that the original equation becomes

f(x)3 + f(y)3 + f(z)3 = 3xyz,

for all x, y, z such that x + y + z = 0, and by substituting z = −x − y we can transform this into the equation (using
also the fact that f is odd),

f(x)3 + f(y)3 + f(−x− y)3 = −3xy(x+ y) ⇔ f(x+ y)3 = f(x)3 + f(y)3 + 3xy(x+ y),∀x, y ∈ R. (1)

Lemma: For all n ∈ N and x ∈ R, the following relation holds:

f(nx)3 = nf(x)3 + (n3 − n)x3.

Proof. We proceed by induction on n. For n = 1 the statement is obvious for all x. Next, if this relation holds for some
n ∈ N and all x, then by putting y → nx in (1), we conclude that

f((n+ 1)x)3 = f(x)3 + f(nx)3 + 3n(n+ 1)x3 = (n+ 1)f(x)3 + (n3 − n+ 3n(n+ 1))x3

(n+ 1)f(x)3 + ((n+ 1)3 − (n+ 1))x3,

and the Lemma follows.

1 point.

Next, we fix x ∈ R and we compute f(n3x3)3 = f(nx)9 in two different ways for all n ∈ N. Of course,

f(n3x3)3 = n3f(x3)3 + (n9 − n3)x9 = n9x9 + n3(f(x)9 − x9).

On the other hand, we have

f(nx)9 = (nf(x)3 + (n3 − n)x3)3

= n3f(x)9 + 3n2(n3 − n)f(x)6x3 + 3n(n3 − n)2f(x)3x6 + (n3 − n)3x9

= n9x9 + 3n7(f(x)3x6 − x9) + 3n5(f(x)6x3 − 2f(x)3x6 + x9)

+ n3(f(x)9 − 3f(x)6x3 + 3f(x)3x6 − x9).

3 points.

This means that the polynomials
px(y) = x9y9 + (f(x)3 − x3)y3 and

qx(y) = x9y9 + 3x6(f(x)3 − x3)y7 + 3x3(f(x)3 − x3)2y5 + (f(x)3 − x3)3y3

are equal for infinitely many values of y, thus they are equal as polynomials. Comparing the coefficients of y7, we get
that f(x)3 = x3 ⇔ f(x) = x,∀x ∈ R. This function obviously satisfies the condition of the problem.

4 points.
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Second Solution. The facts that f(0) = 0, f is odd and f(x3) = f(x)3 are obtained in the same way as in the previous
solution.

2 points.

The same way as in the previous solution, we obtain the following equality for all n ∈ N, x ∈ R:

f(nx)3 = nf(x)3 + (n3 − n)x3.

1 point.

In particular, for n = 8 and x3 ̸= 0, we have

f(8x3)3 = 8f(x3)3 + (83 − 8)x9.

On the other hand, we have
f(8x3)3 = f(2x)9 = (2f(x)3 + (23 − 2)x3)3.

2 points.

Simplifying the equality (2f(x)3 + (23 − 2)x3)3 = 8f(x3)3 + (83 − 8)x9, we obtain:

8f(x)9 + 72f(x)6x3 + 216f(x)3x6 + 216x9 = 8f(x)9 + 504x9,

which, dividing by 72x3, can be simplified to

f(x)6 + 3f(x)3x3 = 4x6.

This can be factored as
(f(x)3 − x3)(f(x)3 + 4x3) = 0.

Thus, for each x, we have either f(x) = x or f(x) = − 3
√
4x.

2 points.

Suppose that there exists some y0 ̸= 0 such that f(y0) = − 3
√
4y0. Then, using the Lemma, we have

f(2y0)
3 = 2f(y0)

3 + 6y3
0 = −8y3

0 + 6y3
0 = −2y3

0 ,

which is impossible since f(2y0)
3 ∈ {2y3

0 ,−8y3
0}. Thus, f(x) = x for all x ∈ R. This function obviously satisfies the

problem’s condition.

3 points.

Third Solution. The facts that f(0) = 0, f is odd and f(x3) = f(x)3 are obtained in the same way as in the previous
solutions.

2 points.

By setting z = −(x+ y), the equation can be rephrased as

f(x3) + f(y3) = f(x+ y)3 − 3xy(x+ y).

Let g(x) := f(x)3 − x3. Then
g(x+ y) = g(x) + g(y).

Also, from f(x3) = f(x)3, we obtain

g(x3) = f(x)9 − x9 = g(x)(x6 + f(x)6 + x3f(x)3),

which can be rewritten in terms of g as

g(x3) = g(x)(g(x)2 + 3x3g(x) + 3x6).

1 point.

Note that f(1)3 = f(1), so f(1) ∈ {0, 1,−1}, which means g(1) ∈ {0,−1,−2}.
We now prove g(1) = 0. Note that g(2) = 2g(1) ∈ {0,−2,−4}, and

4g(2) = g(8) = g(2)(g(2)2 + 24g(2) + 192).

If g(2) = 0, then g(1) = 0. Otherwise, g(2)2 + 24g(2) + 192 = 4. However, checking for values g(2) = −2 and g(2) = −4
gives no solution, a contradiction. Thus, g(2) = 0 and g(1) = 0.
We’ll use the following notation. For a function h : R → R, ∆h(x) will denote h(x+ 1)− h(x).
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Now we express g((x+ 1)3) in two different ways. The first way is the following:

g((x+ 1)3) = g(x+ 1)(g(x+ 1)2 + 3(x+ 1)3g(x+ 1) + 3(x+ 1)2)

= g(x)(g(x)2 + 3(x+ 1)3g(x) + 3(x+ 1)6),

where we used g(x+ 1) = g(x) + g(1) = g(x).
The second way is the following:

g((x+ 1)3) = g(x3) + 3g(x2) + 3g(x)

= g(x)(g(x)2 + 3x3g(x) + 3x6) + 3g(x2) + 3g(x).

Thus, we have the equality

g(x)(g(x)2 + 3(x+ 1)3g(x) + 3(x+ 1)2) = g(x)(g(x)2 + 3x3g(x) + 3x6) + 3g(x2) + 3g(x).

This gives us the following expression for g(x2) via g(x):

g(x2) = g(x)(g(x)∆x3 +∆x6 − 1).

.

2 points.

Now we write g((x+ 1)2) in two different ways.
The first way is

g((x+ 1)2) = g(x)(g(x)∆(x+ 1)3 +∆(x+ 1)6 − 1).

The second way is

g((x+ 1)2) = g(x2) + 2g(x)

= g(x)(g(x)∆x3 +∆x6 + 1).

1 point.

We claim that g(x) = 0 for all x. If this isn’t the case for some x, then

g(x)∆x3 +∆x6 + 1 = g(x)∆(x+ 1)3 +∆(x+ 1)6 − 1.

However, then the same holds for x + n for every positive integer n since g(x + n) = g(x) ̸= 0. We conclude that the
polynomial

p(y) := g(x)∆y3 +∆y6 + 1− (g(x)∆(y + 1)3 +∆(y + 1)6 − 1)

has infinitely many zeroes. But its degree is 4, which gives us a contradiction. Thus, g(x) = 0 for all x, so f(x)3 = x3,
which means f(x) = x. It’s easy to check that this function satisfies the problem’s condition.

4 points.

Notes on marking:

• Points from different solutions are not additive.

• If a contestant doesn’t comment that the function f(x) = x is indeed a solution, they can score at most 9 points
on the problem.

• Obtaining f(1) = 1 (or equivalently g(1) = 0) is worth 1 point. However, this point is only additive with the first
two points, and not additive with the remaining eight points.
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Problem 4. Five points A,B,C,D and E lie on a circle τ clockwise in that order such that AB is parallel to
CE and ∡ABC > 90◦. Let k be a circle tangent to AD,CE and τ such that the circles k and τ touch on the
arc ED which doesn’t contain A,B and C. Let F ̸= A be the intersection of τ and the line tangent to k passing
through A different from AD.

Prove that there exists a circle tangent to BD,BF,CE and τ .

(Steve Vo Dinh)

First Solution. Let us present the main lemma first and we’ll see later how the problem statement follows from this
lemma.
Lemma Let ABCD be a cyclic quadrilateral and γ1 and γ2 be C-mixtilinear and D-mixtilinear incircles of triangles
ABD and ABC respectively. The external common tangent t of circles γ1 and γ2 which is closer to CD is parallel to
CD.
We will divide the proof into a few main claims.
Claim 1 Let ABCD be a cyclic quadrilateral and ω1 and ω2 be incircles of triangles ABD and ABC respectively. The
external common tangent ℓ of circles ω1 and ω2 different from AB is parallel to CD.

Proof: Let I1, I2 be centers of ω1, ω2 and let ℓ touch ω1, ω2 at X1, Y1 respectively. Also let CD intersect AB at E.
We know that ∠AI1B = 90◦ + ∠ADB

2
= 90◦ + ∠ACB

2
= ∠AI2B so AI1I2B is cyclic quadrilateral. We know that lines

AB,X1Y1, I1I2 concurr at the point T which is the center of homothethy between ω1 and ω2. It can be easily seen that
line T − I1 − I2 is the bisector of ∠X1TA so we have that:

∠X1TA = 2 · ∠I1TA = 2 · (∠I1AB − ∠TI1A) = 2 · (∠I1AB − ∠ABI2) = 2 · (∠DAB

2
− ∠ABC

2
) = ∠DAB − ∠ABC

On the other hand ∠DAB − ∠ABC = ∠DAB − ∠ADE = ∠AED. In the end, we have that ∠X1TA = ∠AED which
implies that ℓ ∥ CD.

2 points.

Claim 2: Consider homotethy H1 with center at D which sends ω1 to γ1 and homotethy H2 with center at C which
sends ω2 to γ2. H1 and H2 have the same ratio.
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Proof: Let J1, J2 be centers of γ1, γ2 and let γ1, γ2 touch ⊙(ABCD) at T1, T2 respectively. We know that J1 lies on
the bisector of ∠ADB and that J2 lies on the bisector of ∠ACB so lines D − I1 − J1 and C − I1 − J1 intersect at Q,
midpoint of an arc AB of ⊙(ABCD) which doesn’t contain C and D. We know that Q is the center of ⊙(AI1I2B).
On the other hand it’s the well-known property of the mixtilinear incircle that T1I1 passes through P , midpoint an arc
AB of ⊙(ABCD) which contains C and D. Same holds for T2I2.
Let O be the center of ⊙(ABCD). We know that O, J1, T1 are collinear and that O is the midpoint of PQ. Let line
passing through J1 parallel to PT1 intersect PQ at R. Then T1J1RP is an isosceleces trapezoid so T1J1 = PR. On the
other hand from RJ1 ∥ PI1 we have that I1J1

J1T1
= I1J1

PR
= QI1

QP
.

Analogously we can prove that I2J2
J2T2

= QI2
QP

. Because of QI1 = QI2 we can conclude that I1J1
J1T1

= I2J2
J2T2

= k.

Let r1, r2, ρ1, ρ2 be radius of circles ω1, ω2, γ1, γ2 respectively. We know that the ratio of H1 is r1
ρ1

and the ratio of H2 is
r2
ρ2

. Also we have DI1 = r1
sin ∠ADB

2

, DJ1 = ρ1
sin ∠ADB

2

. We know that:

k =
I1J1

J1T1
=

DJ1 −DI1
ρ1

=

ρ1−r1
sin ∠ADB

2

ρ1

which simplifies to r1
ρ1

= 1− k · sin ∠ADB
2

.
Analogously we can get that r2

ρ2
= 1− k · sin ∠ACB

2
so r1

ρ1
= r2

ρ2
because of ∠ADB = ∠ACB.

3 points.

Claim 3: t ∥ ℓ
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Proof: Let ℓ touch ω1, ω2 at X1, X2 respectively. Let Y1, Y2 be points at DX1, CX2 respectively such that I1X1 ∥ J1Y1

and I2X2 ∥ J2Y2. From DI1
DJ1

= r1
ρ1

and I1X1 ∥ J1Y1 we have that J1Y1 = ρ1 so Y1 ∈ γ1. Analogously Y2 ∈ γ2. We know
that DX1

DY1
= r1

ρ1
= r2

ρ2
= DX2

DY2
. This means that because of CD ∥ X1Y1 we have that CD ∥ X1X2 ∥ Y1Y2. Now from

I1X1 ∥ J1Y1 we have that I1X1 ⊥ Y1Y2 so Y1Y2 is tangent to γ1. Analogously Y1Y2 is tangent to γ2 so we conclude that
line Y1Y2 coincides with t.

4 points.

Now let’s conclude why the original problem follows from our main lemma.

We know that CE is the tangent to the mixtilinear incircle of the triangle ADF which is parallel to AB. From our main
lemma, we can conclude that CE has to be the tangent to the mixtilinear incircle of the triangle BDF as well because
there exists a unique tangent line to mixtilinear incircle of the triangle ADF which is parallel to AB and closer to AB
than the center of that circle.

1 point.

Second Solution.
Denote by X,Y,Q respectively the points where k touches CE,AF, τ .
Furthermore, let Z be the point where k touches AD, and X1 the intersection of τ and AX.
Let r be the circle tangent to BF ,BD and CE at points Z1,Y1 and Q1. We claim that X1 is the touching point of r and
τ .

Define:
L := BF ∩ CE , M := BD ∩ CE
F1 := AF ∩ CE , D1 := AD ∩ CE
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Claim 1: △BDF ∼ AF1D1 and △AFD ∼ BML

Proof: We have ∠D1AF1 = ∠FAD = ∠FBD and ∠AD1F1 = ∠D1AB = ∠BAD = ∠BFD, so the triangles △BDF and
△AF1D1 have the same angles, which proves the first part of the claim.
The second part of the claim follows by the same logic.

1 point.

Claim 2: Q , Q1 and B are collinear
Proof: Due to the mixtilinear incircle lemma and Claim 1 applied to △AFD and τ , we know that ∠LBQ1 = ∠FAQ,
from which the claim follows.

1 point.

Consider the inversion I with center B and radius R :=
√
BD ·BF , I(X) = X∗.

1 point.

From the properties of inversion we know that △BFD ∼ △BD∗F ∗, so by Claim 1 we have AD1F1 ∼ BD∗F ∗.

Let H be the homothety that sends △BD∗F ∗ to the △AD1F1.

Let f = H ◦ I. This function preserves angles, lines and circles after the inversion.
We can see that f(B) = A , f(D) = D1, f(F ) = F1.

1 point.

The circle τ goes trough B,F and D, so because of inversion properties and because of the fact that F1 and D1 lie on
CE, we conclude that f(τ) = CE.

1 point.

f(L) is a point on the line AF , because of the inversion and homothety properties for distance we know that

BL ·BL∗ = BD ·BF

BL∗ =
BD ·BF

BL
.

We multiply this this by the homothety coefficient
AD1

BD∗ =
AD1

BF
and we get

BL∗ =
BD ·BF

BL
· AD1

BF
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BL∗ =
BD ·AD1

BL

BL∗ =
BD ·AD1

BL
.

Beacause of Claim 1 we have
BL

BM
=

AD

AF
, so we have

BL∗ =
BD ·AD1 ·AF

BM ·AD

Because AB || CE || D1M , we have
AD1

BM
=

AD

BD
We conclude that BL∗ = AF . Applying the same logic again, we conclude BM∗ = AD.

Because of this, we know f(L) = F and f(M) = D. This implies that f(CE) = τ .

2 points.

Because of Claim 2, we have ∠MBQ1 = ∠DBQ = ∠DAQ, and so by the properties of f we have f(Q1) = Q because
f(Q1) is on τ and AQ.

1 point.

The function f preserves tangency because H and I also do, so r is sent to a circle tangent to τ at Q, which is also
tangent to AF and AD so f(r) = k, f(Z1) = Z and f(Y1) = Y .
The point X1 is on τ , but we also have ∠X1BD = ∠X1AD, so we know that f(X1) is on the lines CE and AX1, so we
conclude f(X1) = X.
Because f(τ) = CE is tangent to f(r) = k at the point X, the touching point must be preserved, so X1 is the touching
point of r and τ , which proves the claim.

2 points.

Notes on marking:

• Points from different solutions are not additive.
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