
The 6th Romanian Master of Mathematics Competition

Solutions for the Day 1

Problem 1. For a positive integer a, define a sequence of integers x1, x2, . . . by letting x1 = a
and xn+1 = 2xn + 1. Let yn = 2xn − 1. Determine the largest possible k such that, for some
positive integer a, the numbers y1, . . . , yk are all prime.

(Russia) Valery Senderov

Solution. The largest such is k = 2. Notice first that if yi is prime, then xi is prime as well.
Actually, if xi = 1 then yi = 1 which is not prime, and if xi = mn for integer m,n > 1 then
2m − 1 | 2xi − 1 = yi, so yi is composite. In particular, if y1, y2, . . . , yk are primes for some k ≥ 1
then a = x1 is also prime.

Now we claim that for every odd prime a at least one of the numbers y1, y2, y3 is composite
(and thus k < 3). Assume, to the contrary, that y1, y2, and y3 are primes; then x1, x2, x3 are
primes as well. Since x1 ≥ 3 is odd, we have x2 > 3 and x2 ≡ 3 (mod 4); consequently, x3 ≡ 7
(mod 8). This implies that 2 is a quadratic residue modulo p = x3, so 2 ≡ s2 (mod p) for
some integer s, and hence 2x2 = 2(p−1)/2 ≡ sp−1 ≡ 1 (mod p). This means that p | y2, thus
2x2 − 1 = x3 = 2x2 + 1. But it is easy to show that 2t − 1 > 2t + 1 for all integer t > 3. A
contradiction.

Finally, if a = 2, then the numbers y1 = 3 and y2 = 31 are primes, while y3 = 211 − 1 is
divisible by 23; in this case we may choose k = 2 but not k = 3.

Remark. The fact that 23 | 211 − 1 can be shown along the lines in the solution, since 2 is a
quadratic residue modulo x4 = 23.
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Problem 2. We say a pair (g, h) of functions g, h : R → R is a tester pair just when the only
function f : R → R satisfying f(g(x)) = g(f(x)) and f(h(x)) = h(f(x)) for all x ∈ R is the
identity function. Does a tester pair exist?

(United Kingdom) Alexander Betts

Solution 1. Such a tester pair exists. We may biject R with the closed unit interval, so it
suffices to find a tester pair for that instead. We give an explicit example: take some positive
real numbers α, β (which we will specify further later). Take

g(x) = max(x− α, 0) and h(x) = min(x+ β, 1).

Say a set S ⊆ [0, 1] is invariant if f(S) ⊆ S for all functions f commuting with both g and h.
Note that intersections and unions of invariant sets are invariant. Preimages of invariant sets
under g and h are also invariant; indeed, if S is invariant and, say, T = g−1(S), then g(f(T )) =
f(g(T )) ⊆ f(S) ⊆ S, thus f(T ) ⊆ T .

We claim that (if we choose α + β < 1) the intervals [0, nα −mβ] are invariant where n
and m are nonnegative integers with 0 ≤ nα−mβ ≤ 1. We prove this by induction on m+ n.

The set {0} is invariant, as for any f commuting with g we have g(f(0)) = f(g(0)) = f(0),
so f(0) is a fixed point of g. This gives that f(0) = 0, thus the induction base is established.

Suppose now we have some m,n such that [0, n′α −m′β] is invariant whenever m′ + n′ <
m+n. At least one of the numbers (n−1)α−mβ and nα− (m−1)β lies in (0, 1). Note however
that in the first case [0, nα − mβ] = g−1 ([0, (n− 1)α−mβ]), so [0, nα − mβ] is invariant. In
the second case [0, nα−mβ] = h−1 ([0, nα− (m− 1)β]), so again [0, nα−mβ] is invariant. This
completes the induction.

We claim that if we choose α + β < 1, where 0 < α /∈ Q and β = 1/k for some integer
k > 1, then all intervals [0, δ] are invariant for 0 ≤ δ < 1. This occurs, as by the previous claim,
for all nonnegative integers n we have [0, (nα mod 1)] is invariant. The set of nα mod 1 is dense
in [0, 1], so in particular

[0, δ] =
⋂

(nα mod 1)>δ

[0, (nα mod 1)]

is invariant.

A similar argument establishes that [δ, 1] is invariant, so by intersecting these {δ} is in-
variant for 0 < δ < 1. Yet we also have {0}, {1} both invariant, which proves f to be the
identity.

Solution 2. Let us agree that a sequence x = (xn)n=1,2,... is cofinally non-constant if for every
index m there exists an index n > m such that xm 6= xn.

Biject R with the set of cofinally non-constant sequences of 0’s and 1’s, and define g and h
by

g(ε,x) =

{
ε,x if ε = 0

x else
and h(ε,x) =

{
ε,x if ε = 1

x else

where ε,x denotes the sequence formed by appending x to the single-element sequence ε. Note
that g fixes precisely those sequences beginning with 0, and h fixes precisely those beginning
with 1.

Now assume that f commutes with both f and g. To prove that f(x) = x for all x we
show that x and f(x) share the same first n terms, by induction on n.

The base case n = 1 is simple, as we have noticed above that the set of sequences beginning
with a 0 is precisely the set of g-fixed points, so is preserved by f , and similarly for the set of
sequences starting with 1.
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Suppose that f(x) and x agree for the first n terms, whatever x. Consider any sequence,
and write it as x = ε,y. Without loss of generality, we may (and will) assume that ε = 0, so
f(x) = 0,y′ by the base case. Yet then f(y) = f(h(x)) = h(f(x)) = h(0,y′) = y′. Consequently,
f(x) = 0, f(y), so f(x) and x agree for the first n+ 1 terms by the inductive hypothesis.

Thus f fixes all of cofinally non-constant sequences, and the conclusion follows.

Solution 3. (Ilya Bogdanov) We will show that there exists a tester pair of bijective functions g
and h.

First of all, let us find out when a pair of functions is a tester pair. Let g, h : R → R be
arbitrary functions. We construct a directed graph Gg,h with R as the set of vertices, its edges
being painted with two colors: for every vertex x ∈ R, we introduce a red edge x → g(x) and a
blue edge x→ h(x).

Now, assume that the function f : R→ R satisfies f(g(x)) = g(f(x)) and f(h(x)) = h(f(x))
for all x ∈ R. This means exactly that if there exists an edge x → y, then there also exists an
edge f(x)→ f(y) of the same color; that is — f is an endomorphism of Gg,h.

Thus, a pair (g, h) is a tester pair if and only if the graph Gg,h admits no nontrivial
endomorphisms. Notice that each endomorphism maps a component into a component. Thus,
to construct a tester pair, it suffices to construct a continuum of components with no nontrivial
endomorphisms and no homomorphisms from one to another. It can be done in many ways;
below we present one of them.

Let g(x) = x+ 1; the construction of h is more involved. For every x ∈ [0, 1) we define the
set Sx = x+ Z; the sets Sx will be exactly the components of Gg,h. Now we will construct these
components.

Let us fix any x ∈ [0, 1); let x = 0.x1x2 . . . be the binary representation of x. Define
h(x−n) = x−n+ 1 for every n > 3. Next, let h(x− 3) = x, h(x) = x− 2, h(x− 2) = x− 1, and
h(x− 1) = x+ 1 (that would be a “marker” which fixes a point in our component).

Next, for every i = 1, 2, . . . , we define

(1) h(x+ 3i− 2) = x+ 3i− 1, h(x+ 3i− 1) = x+ 3i, and h(x+ 3i) = x+ 3i+ 1, if xi = 0;

(2) h(x+ 3i− 2) = x+ 3i, h(x+ 3i) = 3i− 1, and h(x+ 3i− 1) = x+ 3i+ 1, if xi = 1.

Clearly, h is a bijection mapping each Sx to itself. Now we claim that the graph Gg,h
satisfies the desired conditions.

Consider any homomorphism fx : Sx → Sy (x and y may coincide). Since g is a bijection,
consideration of the red edges shows that fx(x + n) = x + n + k for a fixed real k. Next, there
exists a blue edge (x − 3) → x, and the only blue edge of the form (y + m − 3) → (y + m) is
(y − 3)→ y; thus fx(x) = y, and k = 0.

Next, if xi = 0 then there exists a blue edge (x + 3i − 2) → (x + 3i − 1); then the edge
(y + 3i− 2) → (y + 3i− 1) also should exist, so yi = 0. Analogously, if xi = 1 then there exists
a blue edge (x + 3i − 2) → (x + 3i); then the edge (y + 3i − 2) → (y + 3i) also should exist, so
yi = 1. We conclude that x = y, and fx is the identity mapping, as required.

Remark. If g and h are injections, then the components of Gg,h are at most countable. So the
set of possible pairwise non-isomorphic such components is continual; hence there is no bijective
tester pair for a hyper-continual set instead of R.

3



Problem 3. Let ABCD be a quadrangle inscribed in a circle ω. The lines AB and CD meet
at P , the lines AD and BC meet at Q, and the diagonals AC and BD meet at R. Let M be
the midpoint of the segment PQ, and let K be the common point of the segment MR and the
circle ω. Prove that the circles KPQ and ω are tangent to one another.

(Russia) Medeubek Kungozhin

Solution. Let O be the centre of ω. Notice that the points P , Q, and R are the poles (with
respect to ω) of the lines QR, RP , and PQ, respectively. Hence we have OP ⊥ QR, OQ ⊥ RP ,
and OR ⊥ PQ, thus R is the orthocentre of the triangle OPQ. Now, if MR ⊥ PQ, then the
points P and Q are the reflections of one another in the line MR = MO, and the triangle PQK
is symmetrical with respect to this line. In this case the statement of the problem is trivial.

Otherwise, let V be the foot of the perpendicular from O to MR, and let U be the common
point of the lines OV and PQ. Since U lies on the polar line of R and OU ⊥ MR, we obtain
that U is the pole of MR. Therefore, the line UK is tangent to ω. Hence it is enough to prove
that UK2 = UP · UQ, since this relation implies that UK is also tangent to the circle KPQ.

From the rectangular triangle OKU , we get UK2 = UV ·UO. Let Ω be the circumcircle of
triangle OPQ, and let R′ be the reflection of its orthocentre R in the midpoint M of the side PQ.
It is well known that R′ is the point of Ω opposite to O, hence OR′ is the diameter of Ω. Finally,
since ∠OV R′ = 90◦, the point V also lies on Ω, hence UP ·UQ = UV ·UO = UK2, as required.

A

B
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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U

V

O

R′

ω

Ω

Remark. The statement of the problem is still true if K is the other common point of the
line MR and ω.
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The 6th Romanian Master of Mathematics Competition

Solutions for the Day 2

Problem 4. Suppose two convex quadrangles in the plane, P and P ′, share a point O such that,
for every line ` through O, the segment along which ` and P meet is longer than the segment
along which ` and P ′ meet. Is it possible that the ratio of the area of P ′ to the area of P be
greater than 1.9?

(Bulgaria)

Solution. The answer is in the affirmative: Given a positive ε < 2, the ratio in question may
indeed be greater than 2− ε.

To show this, consider a square ABCD centred at O, and let A′, B′, and C ′ be the
reflections of O in A, B, and C, respectively. Notice that, if ` is a line through O, then the
segments ` ∩ABCD and ` ∩A′B′C ′ have equal lengths, unless ` is the line AC.

Next, consider the points M and N on the segments B′A′ and B′C ′, respectively, such that
B′M/B′A′ = B′N/B′C ′ = (1 − ε/4)1/2. Finally, let P ′ be the image of the convex quadrangle
B′MON under the homothety of ratio (1 − ε/4)1/4 centred at O. Clearly, the quadrangles
P ≡ ABCD and P ′ satisfy the conditions in the statement, and the ratio of the area of P ′ to the
area of P is exactly 2− ε/2.

A

B

C

D

A′

B′

C ′
M N

O

Remarks. (1) With some care, one may also construct such example with a point O being
interior for both P and P ′. In our example, it is enough to replace vertex O of P ′ by a point on
the segment OD close enough to O. The details are left to the reader.

(2) On the other hand, one may show that the ratio of areas of P ′ and P cannot exceed 2
(even if P and P ′ are arbitrary convex polygons rather than quadrilaterals). Further on, we
denote by [S] the area of S.

In order to see that [P ′] < 2[P ], let us fix some ray r from O, and let rα be the ray from O
making an (oriented) angle α with r. Denote by Xα and Yα the points of P and P ′, respectively,
lying on rα farthest from O, and denote by f(α) and g(α) the lengths of the segments OXα

and OYα, respectively. Then

[P ] =
1

2

∫ 2π

0
f2(α) dα =

1

2

∫ π

0

(
f2(α) + f2(π + α)

)
dα,

and similarly

[P ′] =
1

2

∫ π

0

(
g2(α) + g2(π + α)

)
dα.
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But XαXπ+α > YαYπ+α yields 2 · 1
2

(
f2(α) + f2(π + α)

)
= OX2

α + OX2
π+α ≥ 1

2XαX
2
π+α >

1
2YαY

2
π+α ≥ 1

2(OY 2
α +OY 2

π+α) = 1
2

(
g2(α) + g2(π + α)

)
. Integration then gives us 2[P ] > [P ′], as

needed.

This can also be proved via elementary methods. Actually, we will establish the following
more general fact.

Fact. Let P = A1A2A3A4 and P ′ = B1B2B3B4 be two convex quadrangles in the plane, and
let O be one of their common points different from the vertices of P ′. Denote by `i the line OBi,
and assume that for every i = 1, 2, 3, 4 the length of segment `i ∩ P is greater than the length of
segment `i ∩ P ′. Then [P ′] < 2[P ].

Proof. One of (possibly degenerate) quadrilaterals OB1B2B3 and OB1B4B3 is convex; the same
holds for OB2B3B4 and OB2B1B4. Without loss of generality, we may (and will) assume that
the quadrilaterals OB1B2B3 and OB2B3B4 are convex.

Denote by Ci such a point that `i ∩ P ′ is the segment BiCi; let ai be the length of `i ∩ P ,
and let αi be the angle between `i and `i+1 (hereafter, we use the cyclic notation, thus `5 = `1
and so on). Thus C2 and C3 belong to the segment B1B4, C1 lies on B3B4, and C4 lies on B1B2.
Assume that there exists an index i such that the area of BiBi+1CiCi+1 is at least [P ′]/2; then
we have

[P ′]

2
≤ [BiBi+1CiCi+1] =

BiCi ·Bi+1Ci+1 · sinαi
2

<
aiai+1 sinαi

2
≤ [P ],

as desired. Assume, to the contrary, that such index does not exist. Two cases are possible.

B1

B2B3

B4

C1

C2 C3

C4

O
B1

B2

B3

B4

C1

C2 C3

C4

O

L

Case 1. Assume that the rays B1B2 and B4B3 do not intersect (see the left figure above). This
means, in particular, that d(B1, B3B4) ≤ d(B2, B3B4).

Since the ray B3O lies in the angle B1B3B4, we obtain d(B1, B3C3) ≤ d(C4, B3C3); hence
[B3B4B1] ≤ [B3B4C3C4] < [P ′]/2. Similarly, [B1B2B4] ≤ [B1B2C1C2] < [P ′]/2. Thus,

[B2B3C2C3] = [P ′]− [B1B2C3]− [B3B4C2] = [P ′]− B1C3

B1B4
· [B1B2B4]−

B4C2

B1B4
· [B3B4B1]

> [P ′]

(
1− B1C3 +B4C2

2B1B4

)
≥ [P ′]

2
.

A contradiction.

Case 2. Assume now that the rays B1B2 and B4B3 intersect at some point (see the right figure
above). Denote by L the common point of B2C1 and B3C4. We have [B2C4C1] ≥ [B2C4B3],
hence [C1C4L] ≥ [B2B3L]. Thus we have

[P ′] > [B1B2C1C2] + [B3B4C3C4] = [P ′] + [LC1C2C3C4]− [B2B3L]

≥ [P ′] + [C1C4L]− [B2B3L] ≥ [P ′].

A final contradiction.
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Problem 5. Given a positive integer k ≥ 2, set a1 = 1 and, for every integer n ≥ 2, let an be
the smallest solution of the equation

x = 1 +
n−1∑
i=1

⌊
k

√
x

ai

⌋
that exceeds an−1. Prove that all primes are among the terms of the sequence a1, a2, . . . .

(Bulgaria)

Solution 1. We prove that the an are precisely the kth-power-free positive integers, that is,
those divisible by the kth power of no prime. The conclusion then follows.

Let B denote the set of all kth-power-free positive integers. We first show that, given a
positive integer c, ∑

b∈B, b≤c

⌊
k

√
c

b

⌋
= c.

To this end, notice that every positive integer has a unique representation as a product of an
element in B and a kth power. Consequently, the set of all positive integers less than or equal
to c splits into

Cb = {x : x ∈ Z>0, x ≤ c, and x/b is a kth power}, b ∈ B, b ≤ c.

Clearly, |Cb| =
⌊

k
√
c/b
⌋
, whence the desired equality.

Finally, enumerate B according to the natural order: 1 = b1 < b2 < · · · < bn < · · · . We
prove by induction on n that an = bn. Clearly, a1 = b1 = 1, so let n ≥ 2 and assume am = bm
for all indices m < n. Since bn > bn−1 = an−1 and

bn =
n∑
i=1

⌊
k

√
bn
bi

⌋
=

n−1∑
i=1

⌊
k

√
bn
bi

⌋
+ 1 =

n−1∑
i=1

⌊
k

√
bn
ai

⌋
+ 1,

the definition of an forces an ≤ bn. Were an < bn, a contradiction would follow:

an =
n−1∑
i=1

⌊
k

√
an
bi

⌋
=

n−1∑
i=1

⌊
k

√
an
ai

⌋
= an − 1.

Consequently, an = bn. This completes the proof.

Solution 2. (Ilya Bogdanov) For every n = 1, 2, 3, . . . , introduce the function

fn(x) = x− 1−
n−1∑
i=1

⌊
k

√
x

ai

⌋
.

Denote also by gn(x) the number of the indices i ≤ n such that x/ai is the kth power of an
integer. Then fn(x+1)−fn(x) = 1−gn(x) for every integer x ≥ an; hence fn(x)+1 ≥ fn(x+1).
Moreover, fn(an−1) = −1 (since fn−1(an−1) = 0). Now a straightforward induction shows that
fn(x) < 0 for all integers x ∈ [an−1, an).

Next, if gn(x) > 0 then fn(x) ≤ fn(x − 1); this means that such an x cannot equal an.
Thus aj/ai is never the kth power of an integer if j > i.

Now we are prepared to prove by induction on n that a1, a2, . . . , an are exactly all kth-
power-free integers in [1, an]. The base case n = 1 is trivial.

3



Assume that all the kth-power-free integers on [1, an] are exactly a1, . . . , an. Let b be the
least integer larger than an such that gn(b) = 0. We claim that: (1) b = an+1; and (2) b is the
least kth-power-free number greater than an.

To prove (1), notice first that all the numbers of the form aj/ai with 1 ≤ i < j ≤ n are
not kth powers of rational numbers since ai and aj are kth-power-free. This means that for
every integer x ∈ (an, b) there exists exactly one index i ≤ n such that x/ai is the kth power
of an integer (certainly, x is not kth-power-free). Hence fn+1(x) = fn+1(x − 1) for each such x,
so fn+1(b − 1) = fn+1(an) = −1. Next, since b/ai is not the kth power of an integer, we have
fn+1(b) = fn+1(b− 1) + 1 = 0, thus b = an+1. This establishes (1).

Finally, since all integers in (an, b) are not kth-power-free, we are left to prove that b is
kth-power-free to establish (2). Otherwise, let y > 1 be the greatest integer such that yk | b; then
b/yk is kth-power-free and hence b/yk = ai for some i ≤ n. So b/ai is the kth power of an integer,
which contradicts the definition of b.

Thus a1, a2, . . . are exactly all kth-power-free positive integers; consequently all primes are
contained in this sequence.
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Problem 6. A token is placed at each vertex of a regular 2n-gon. A move consists in choosing
an edge of the 2n-gon and swapping the two tokens placed at the endpoints of that edge. After
a finite number of moves have been performed, it turns out that every two tokens have been
swapped exactly once. Prove that some edge has never been chosen.

(Russia) Alexander Gribalko

Solution. Step 1. Enumerate all the tokens in the initial arrangement in clockwise circular
order; also enumerate the vertices of the 2n-gon accordingly. Consider any three tokens i < j < k.
At each moment, their cyclic order may be either i, j, k or i, k, j, counted clockwise. This order
changes exactly when two of these three tokens have been switched. Hence the order has been
reversed thrice, and in the final arrangement token k stands on the arc passing clockwise from
token i to token j. Thus, at the end, token i + 1 is a counter-clockwise neighbor of token i
for all i = 1, 2, . . . , 2n − 1, so the tokens in the final arrangement are numbered successively in
counter-clockwise circular order.

This means that the final arrangement of tokens can be obtained from the initial one by
reflection in some line `.

Step 2. Notice that each token was involved into 2n−1 switchings, so its initial and final vertices
have different parity. Hence ` passes through the midpoints of two opposite sides of a 2n-gon; we
may assume that these are the sides a and b connecting 2n with 1 and n with n+ 1, respectively.

During the process, each token x has crossed ` at least once; thus one of its switchings has
been made at edge a or at edge b. Assume that some two its switchings were performed at a
and at b; we may (and will) assume that the one at a was earlier, and x ≤ n. Then the total
movement of token x consisted at least of: (i) moving from vertex x to a and crossing ` along a;
(ii) moving from a to b and crossing ` along b; (iii) coming to vertex 2n + 1 − x. This tales at
least x+ n+ (n− x) = 2n switchings, which is impossible.

Thus, each token had a switching at exactly one of the edges a and b.

Step 3. Finally, let us show that either each token has been switched at a, or each token has
been switched at b (then the other edge has never been used, as desired). To the contrary, assume
that there were switchings at both a and at b. Consider the first such switchings, and let x and y
be the tokens which were moved clockwise during these switchings and crossed ` at a and b,
respectively. By Step 2, x 6= y. Then tokens x and y initially were on opposite sides of `.

Now consider the switching of tokens x and y; there was exactly one such switching, and
we assume that it has been made on the same side of ` as vertex y. Then this switching has
been made after token x had traced a. From this point on, token x is on the clockwise arc from
token y to b, and it has no way to leave out from this arc. But this is impossible, since token y
should trace b after that moment. A contradiction.

Remark. The same statement for (2n−1)-gon is also valid. The problem is stated for a polygon
with an even number of sides only to avoid case consideration.

Let us outline the solution in the case of a (2n − 1)-gon. We prove the existence of line `
as in Step 1. This line passes through some vertex x, and through the midpoint of the opposite
edge a. Then each token either passes through x, or crosses ` along a (but not both; this can be
shown as in Step 2). Finally, since a token is involved into an even number of moves, it passes
through x but not through a, and a is never used.
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