
The 4th Romanian Master of Mathematics Competition – Solutions

Day 1: Friday, February 25, 2011, Bucharest

Problem 1. Prove that there exist two functions

f , g : R→R,

such that f ◦ g is strictly decreasing, while g ◦ f is strictly
increasing.

(POLAND) ANDRZEJ KOMISARSKI & MARCIN KUCZMA

Solution. Let

• A =
⋃

k∈Z

([

−22k+1,−22k
)

⋃

(

22k ,22k+1
])

;

• B =
⋃

k∈Z

([

−22k ,−22k−1
)

⋃

(

22k−1,22k
])

.

Thus A = 2B , B = 2A, A =−A, B =−B , A∩B =;, and finally
A∪B ∪ {0} =R. Let us take

f (x) =











x for x ∈ A;

−x for x ∈ B ;

0 for x = 0.

Take g (x) = 2 f (x). Thus f (g (x)) = f (2 f (x)) = −2x and
g ( f (x)) = 2 f ( f (x)) = 2x. ¥

Problem 2. Determine all positive integers n for which
there exists a polynomial f (x) with real coefficients, with the
following properties:

(1) for each integer k, the number f (k) is an integer if and
only if k is not divisible by n;

(2) the degree of f is less than n.

(HUNGARY ) GÉZA KÓS

Solution. We will show that such polynomial exists if and
only if n = 1 or n is a power of a prime.

We will use two known facts stated in Lemmata 1 and 2.

LEMMA 1. If pa is a power of a prime and k is an integer,

then
(k −1)(k −2). . . (k −pa +1)

(pa −1)!
is divisible by p if and only

if k is not divisible by pa .

Proof. First suppose that pa | k and consider

(k −1)(k −2) · · · (k −pa +1)

(pa −1)!
= k −1

pa −1
· k −2

pa −2
· · · k −pa +1

1
.

In every fraction on the right-hand side, p has the same
maximal exponent in the numerator as in the denominator.

Therefore, the product (which is an integer) is not divisible
by p.

Now suppose that pa ∤ k. We have

(k −1)(k −2) · · · (k −pa +1)

(pa −1)!
= pa

k
· k(k −1) · · · (k −pa +1)

(pa)!
.

The last fraction is an integer. In the fraction pa

k
, the denom-

inator k is not divisible by pa . ¤

LEMMA 2. If g (x) is a polynomial with degree less than n

then

n
∑

ℓ=0
(−1)ℓ

(

n

ℓ

)

g (x +n −ℓ) = 0.

Proof. Apply induction on n. For n = 1 then g (x) is a con-
stant and

(

1

0

)

g (x +1)−
(

1

1

)

g (x) = g (x +1)− g (x) = 0.

Now assume that n > 1 and the Lemma holds for n−1. Let
h(x) = g (x +1)−g (x); the degree of h is less than the degree
of g , so the induction hypothesis applies for g and n −1:

n−1
∑

ℓ=0
(−1)ℓ

(

n −1

ℓ

)

h(x +n −1−ℓ) = 0

n−1
∑

ℓ=0
(−1)ℓ

(

n −1

ℓ

)

(

g (x +n −ℓ)− g (x +n −1−ℓ)
)

= 0

(

n −1

0

)

g (x +n)+
n−1
∑

ℓ=1
(−1)ℓ

((

n −1

ℓ−1

)

+
(

n −1

ℓ

))

g (x +n −ℓ)− (−1)n−1

(

n −1

n −1

)

g (x) = 0

n
∑

ℓ=0
(−1)ℓ

(

n

ℓ

)

g (x +n −ℓ) = 0.

¤

LEMMA 3. If n has at least two distinct prime divisors then
the greatest common divisor of

(n
1

)

,
(n

2

)

, . . . ,
( n

n−1

)

is 1.

Proof. Suppose to the contrary that p is a common prime
divisor of

(n
1

)

, . . . ,
( n

n−1

)

. In particular, p |
(n

1

)

= n. Let a be the
exponent of p in the prime factorization of n. Since n has at
least two prime divisors, we have 1 < pa < n. Hence,

( n
pa−1

)

and
( n

pa

)

are listed among
(n

1

)

, . . . ,
( n

n−1

)

and thus p |
( n

pa

)

and

p |
( n

pa−1

)

. But then p divides
( n

pa

)

−
( n

pa−1

)

=
( n−1

pa−1

)

, which
contradicts Lemma 1. ¤
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Next we construct the polynomial f (x) when n = 1 or n is
a power of a prime.

For n = 1, f (x) = 1
2 is such a polynomial.

If n = pa where p is a prime and a is a positive integer
then let

f (x) = 1

p

(

x −1

pa −1

)

= 1

p
· (x −1)(x −2) · · · (x −pa +1)

(pa −1)!
.

The degree of this polynomial is pa −1 = n −1.

The number (k−1)(k−2)···(k−pa+1)
(pa−1)! is an integer for any inte-

ger k, and, by Lemma 1, it is divisible by p if and only if k is
not divisible by pa = n.

Finally we prove that if n has at least two prime divisors
then no polynomial f (x) satisfies (1,2). Suppose that some
polynomial f (x) satisfies (1,2), and apply Lemma 2 for g = f

and x =−k where 1 ≤ k ≤ n −1. We get that

(

n

k

)

f (0) =
∑

0≤ℓ≤n,ℓ6=k

(−1)k−ℓ
(

n

ℓ

)

f (−k +ℓ).

Since f (−k), . . . , f (−1) and f (1), . . . , f (n −k) are all integers,
we conclude that

(n
k

)

f (0) is an integer for every 1 ≤ k ≤ n−1.
By dint of Lemma 3, the greatest common divisor of

(n
1

)

,
(n

2

)

, . . . ,
( n

n−1

)

is 1. Hence, there will exist some integers
u1,u2, . . . ,un−1 for which u1

(n
1

)

+·· ·+un−1
( n

n−1

)

= 1. Then

f (0) =
(

n−1
∑

k=1
uk

(

n

k

))

f (0) =
n−1
∑

k=1
uk

(

n

k

)

f (0)

is a sum of integers. This contradicts the fact that f (0) is not
an integer. So such polynomial f (x) does not exist. ¥

Alternative Solution. (I. Bogdanov) We claim the answer
is n = pα for some prime p and nonnegative α.

LEMMA. For every integers a1, . . . , an there exists an integer-
valued polynomial P (x) of degree < n such that P (k) = ak

for all 1 ≤ k ≤ n.

Proof. Induction on n. For the base case n = 1 one may set
P (x) = a1. For the induction step, suppose that the polyno-
mial P1(x) satisfies the desired property for all 1 ≤ k ≤ n −1.
Then set P (x) = P1(x)+ (an −P1(n))

(x−1
n−1

)

; since
(k−1

n−1

)

= 0 for

1 ≤ k ≤ n −1 and
(n−1

n−1

)

= 1, the polynomial P (x) is a sought
one. ¤

Now, if for some n there exists some polynomial f (x)
satisfying the problem conditions, one may choose some
integer-valued polynomial P (x) (of degree < n −1) coincid-
ing with f (x) at points 1, . . . ,n − 1. The difference f1(x) =
f (x)−P (x) also satisfies the problem conditions, therefore
we may restrict ourselves to the polynomials vanishing at
points 1, . . . ,n − 1 — that are, the polynomials of the form
f (x) = c

∏n−1
i=1 (x − i ) for some (surely rational) constant c.

Let c = p/q be its irreducible form, and q =∏d
j=1 p

α j

j
be the

prime decomposition of the denominator.

1. Assume that a desired polynomial f (x) exists. Since
f (0) is not an integer, we have q ∤ (−1)n−1(n −1)! and hence

p
α j

j
∤ (−1)n−1(n −1)! for some j . Hence

n−1
∏

i=1
(p

α j

j
− i ) ≡ (−1)n−1(n −1)! 6≡ 0 (mod p

α j

j
),

therefore f (p
αi

i
) is not integer, too. By the condition (i), this

means that n | p
αi

i
, and hence n should be a power of a

prime.

2. Now let us construct a desired polynomial f (x) for any
power of a prime n = pα. We claim that the polynomial

f (x) = 1

p

(

x −1

n −1

)

= n

px

(

x

n

)

fits. Actually, consider some integer x. From the first repre-
sentation, the denominator of the irreducible form of f (x)
may be 1 or p only. If pα ∤ x, then the prime decomposition
of the fraction n/(px) contains p with a nonnegative expo-
nent; hence f (x) is integer. On the other hand, if n = pα | x,
then the numbers x−1, x−2, . . . , x−(n−1) contain the same
exponents of primes as the numbers n−1,n−2, . . . ,1 respec-
tively; hence the number

(

x −1

n −1

)

=
∏n−1

i=1 (x − i )
∏n−1

i=1 (n − i )

is not divisible by p. Thus f (x) is not an integer. ¥

Problem 3. A triangle ABC is inscribed in a circle ω. A
variable line ℓ chosen parallel to BC meets segments AB ,
AC at points D, E respectively, and meets ω at points K , L

(where D lies between K and E). Circle γ1 is tangent to the
segments K D and BD and also tangent to ω, while circle γ2

is tangent to the segments LE and C E and also tangent to ω.
Determine the locus, as ℓ varies, of the meeting point of the
common inner tangents to γ1 and γ2.

(RUSSIA) VASILY MOKIN & FEDOR IVLEV

Solution. Let P be the meeting point of the common in-
ner tangents to γ1 and γ2. Also, let b be the angle bisec-
tor of ∠B AC . Since K L ∥ BC , b is also the angle bisector
of ∠K AL.

Let H be the composition of the symmetry S with respect
to b and the inversion I of centre A and ratio

p
AK · AL (it is

readily seen that S and I commute, so since S2 = I2 = id,
then also H2 = id, the identical transformation). The ele-
ments of the configuration interchanged by H are summa-
rized in Table I.

Let O1 and O2 be the centres of circles γ1 and γ2. Since
the circles γ1 and γ2 are determined by their construc-
tion (in a unique way), they are interchanged by H, there-
fore the rays AO1 and AO2 are symmetrical with respect
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to b. Denote by ρ1 and ρ2 the radii of γ1 and γ2. Since
∠O1 AB = ∠O2 AC , we have ρ1/ρ2 = AO1/AO2. On the
other hand, from the definition of P we have O1P/O2P =
ρ1/ρ2 = AO1/AO2; this means that AP is the angle bisector
of ∠O1 AO2 and therefore of ∠B AC .

The limiting, degenerated, cases are when the parallel
line passes through A – when P coincides with A; respec-
tively when the parallel line is BC – when P coincides with
the foot A′ ∈ BC of the angle bisector of ∠B AC (or any
other point on BC ). By continuity, any point P on the open
segment A A′ is obtained for some position of the parallel,
therefore the locus is the open segment A A′ of the angle bi-
sector b of ∠B AC . ¥

point K ←→ point L

line K L ←→ circle ω

ray AB ←→ ray AC

point B ←→ point E

point C ←→ point D

segment BD ←→ segment EC

arc BK ←→ segment EL

arc C L ←→ segment DK

TABLE I: Elements interchanged by H.

A

B C

D E
K L

O1

O2P

b

ℓ

ω



The 4th Romanian Master of Mathematics Competition – Solutions
Day 2: Saturday, February 26, 2011, Bucharest

Problem 4. Given a positive integer n =
s∏

i=1
pαi

i , we

write Ω(n) for the total number
s∑

i=1
αi of prime factors of n,

counted with multiplicity. Let λ(n) = (−1)Ω(n) (so, for exam-
ple, λ(12) =λ(22 ·31) = (−1)2+1 =−1).

Prove the following two claims:

i) There are infinitely many positive integers n such that
λ(n) =λ(n +1) =+1;

ii) There are infinitely many positive integers n such that
λ(n) =λ(n +1) =−1.

(ROMANIA) DAN SCHWARZ

Solution. Notice that we have Ω(mn) = Ω(m)+Ω(n) for
all positive integers m,n (Ω is a completely additive arith-
metic function), translating into λ(mn) = λ(m) ·λ(n) (so λ

is a completely multiplicative arithmetic function), hence
λ(p) = −1 for any prime p, and λ(k2) = λ(k)2 = +1 for all
positive integers k.[1]
The start (first 100 terms) of the sequence S= (λ(n))n≥1 is

+1,−1,−1,+1,−1,+1,−1,−1,+1,+1,−1,−1,−1,+1,+1,+1,−1,−1,−1,−1,
+1,+1,−1,+1,+1,+1,−1,−1,−1,−1,−1,−1,+1,+1,+1,+1,−1,+1,+1,+1,
−1,−1,−1,−1,−1,+1,−1,−1,+1,−1,+1,−1,−1,+1,+1,+1,+1,+1,−1,+1,
−1,+1,−1,+1,+1,−1,−1,−1,+1,−1,−1,−1,−1,+1,−1,−1,+1,−1,−1,−1,

+1,+1,−1,+1,+1,+1,+1,+1,−1,+1,+1,−1,+1,+1,+1,+1,−1,−1,−1,+1.

i) The Pell equation x2 −6y2 = 1 has infinitely many solu-
tions in positive integers; all solutions are given by (xn , yn),
where xn + yn

p
6 = (5 + 2

p
6)n . Since λ(6y2) = 1 and also

λ(6y2 +1) =λ(x2) = 1, the thesis is proven.
Alternative Solution. Take any existing pair with λ(n) =

λ(n+1) = 1. Then λ((2n+1)2−1) =λ(4n2+4n) =λ(4) ·λ(n) ·
λ(n+1) = 1, and alsoλ((2n+1)2) =λ(2n+1)2 = 1, so we have
built a larger (1,1) pair.

ii) The equation 3x2 − 2y2 = 1 (again Pell theory) has
also infinitely many solutions in positive integers, given by
(xn , yn), where xn

p
3+yn

p
2 = (

p
3+p2)2n+1. Sinceλ(2y2) =

−1 and λ(2y2 +1) =λ(3x2) =−1, the thesis is proven.
Alternative Solution. Assume (λ(n−1),λ(n)) is the largest

(−1,−1) pair, therefore λ(n + 1) = 1 and λ(n2 +n) = λ(n) ·
λ(n + 1) = −1, therefore again λ(n2 +n + 1) = 1. But then
λ(n3 − 1) = λ(n − 1) ·λ(n2 + n + 1) = −1, and also λ(n3) =
λ(n)3 = −1, so we found yet a larger such pair than the one
we started with, contradiction.

Alternative Solution. Assume the pairs of consecutive
terms (−1,−1) in S are finitely many. Then from some rank
on we only have subsequences (1,−1,1,1, . . . ,1,−1,1). By

"doubling" such a subsequence (like at point ii)), we will
produce

(−1,?,1,?,−1,?,−1,?, . . . , ?,−1,?,1,?,−1).

According with our assumption, all ?-terms ought to be 1,
hence the produced subsequence is

(−1,1,1,1,−1,1,−1,1, . . . ,1,−1,1,1,1,−1),

and so the "separating packets" of 1’s contain either one
or three terms. Now assume some far enough (1,1,1,1)
or (−1,1,1,−1) subsequence of S were to exist. Since it
lies within some "doubled" subsequence, it contradicts the
structure described above, which thus is the only prevalent
from some rank on. But then all the positions of the (−1)-
terms will have the same parity. However though, we have
λ(p) = λ(2p2) = −1 for all odd primes p, and these terms
have different parity of their positions. A contradiction has
been reached.[2]

Alternative Solution for both i) and ii). (I. Bogdanov)
Take ε ∈ {−1,1}. There obviously exist infinitely many n such
that λ(2n+1) = ε (just take 2n+1 to be the product of an ap-
propriate number of odd primes). Now, if either λ(2n) = ε

or λ(2n + 2) = ε, we are done; otherwise λ(n) = −λ(2n) =
−λ(2n + 2) = λ(n + 1) = ε. Therefore, for such an n, one of
the three pairs (n,n+1), (2n,2n+1) or (2n+1,2n+2) fits the
bill.

We have thus proved the existence in S of infinitely many
occurrences of all possible subsequences of length 1, viz.
(+1) and (−1), and of length 2, viz. (+1,−1), (−1,+1),
(+1,+1) and (−1,−1).[3] �

Problem 5. For every n ≥ 3, determine all the configu-
rations of n distinct points X1, X2, . . . , Xn in the plane, with
the property that for any pair of distinct points Xi , X j there
exists a permutation σ of the integers {1, . . . ,n}, such that
d(Xi , Xk ) = d(X j , Xσ(k)) for all 1 ≤ k ≤ n.
(We write d(X ,Y ) to denote the distance between points X
and Y .)

(UNITED KINGDOM) LUKE BETTS

Solution. Let us first prove that the points must be con-
cyclic. Assign to each point Xk the vector xk in a system of
orthogonal coordinates whose origin is the point of mass of

the configuration, thus
1

n

n∑
k=1

xk = 0.

Then d2(Xi , Xk ) = ||xi − xk ||2 = 〈xi −xk , xi −xk〉 =
||xi ||2 − 2〈xi , xk〉 + ||xk ||2, hence

n∑
k=1

d2(Xi , Xk ) = n||xi ||2 −
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2〈xi ,
n∑

k=1
xk〉 +

n∑
k=1

||xk ||2 = n||xi ||2 +
n∑

k=1
||xk ||2 = n||x j ||2 +

n∑
k=1

||xσ(k)||2 =
n∑

k=1
d2(X j , Xσ(k)), therefore ||xi || = ||x j || for all

pairs (i , j ). The points are thus concyclic (lying on a circle
centred at O(0,0)).

Let now m be the least angular distance between any two
points. Two points situated at angular distance m must be
adjacent on the circle. Let us connect each pair of such two
points with an edge. The graph G obtained must be regular,

of degree deg(G) = 1 or 2. If n is odd, since
n∑

k=1
deg(Xk ) =

n deg(G) = 2|E |, we must have deg(G) = 2, hence the config-
uration is a regular n-gon.

If n is even, we may have the configuration of a regular
n-gon, but we also may have deg(G) = 1. In that case, let M
be the next least angular distance between any two points;
such points must also be adjacent on the circle. Let us con-
nect each pair of such two points with an edge, in order to
get a graph G ′. A similar reasoning yields deg(G ′) = 1, thus
the configuration is that of an equiangular n-gon (with al-
ternating equal side-lengths). �

Problem 6. The cells of a square 2011 × 2011 array are
labelled with the integers 1,2, . . . ,20112, in such a way that
every label is used exactly once. We then identify the left-
hand and right-hand edges, and then the top and bottom, in
the normal way to form a torus (the surface of a doughnut).

Determine the largest positive integer M such that, no
matter which labelling we choose, there exist two neigh-
bouring cells with the difference of their labels at least M .[4]

(ROMANIA) DAN SCHWARZ

Preamble. For a planar N ×N array, it is folklore that this
value is M = N , with some easy models shown below. As
such, the problem is mentioned in [BÉLA BOLLOBÁS - The
Art of Mathematics], 21. Neighbours in a Matrix.

This is not necessarily a flaw on the actual problem,
which is presented in a brand novel setting; on the contrary,
some general previous knowledge on such type of prob-
lems (which we think must be encouraged) is beneficial in
searching for the right ideas of a proof.

The idea for a proof goes along the lines of finding a mo-
ment in the consecutive filling with numbers of the array,
when there are at least N pairs of adjacent filled/yet-unfilled
cells (with either distinct filled cells or distinct yet-unfilled
cells). Then, when the cell next to that bearing the least label
is filled, the difference between its label and the one being
filled will be at least N . �

1 2 . . . N
N+1 N+2 . . . 2N

...
...

. . .
...

(N-1)N+1 (N-1)N+2 . . . N2

A planar parallel N ×N model array.

1 2 4 . . . N(N-1)/2 + 1
3 5 . . . N(N-1)/2 + 2
6 . . .
...

...
...

. . .
...

...
N(N+1)/2 - 1 . . . N2 - 2

N(N+1)/2 . . . N2 - 1 N2

A planar diagonal N ×N model array.

Solution. For the toroidal case, it is clear the statement
of the problem is referring to the cells of a ZN ×ZN lat-
tice on the surface of the torus, labeled with the numbers
1,2, . . . , N 2, where one has to determine the least possible
maximal absolute value M of the difference of labels as-
signed to orthogonally adjacent cells.

The toroidal N = 2 case is trivially seen to be M = 2 (thus
coinciding with the planar case).

1 2
3 4

The unique 2×2 toroidal array.

For N ≥ 3 we will prove that value to be at least M ≥
2N − 1. Consider such a configuration, and color all cells
of the square in white. Go along the cells labeled 1, 2, etc.
coloring them in black, stopping just on the cell bearing
the least label k which, after assigned and colored in black,
makes that all lines of a same orientation (rows, or columns,
or both) contain at least two black cells (that is, before col-
oring in black the cell labeled k, at least one row and at least
one column contained at most one black cell). Wlog assume
this happens for rows. Then at most one row is all black,
since if two were then the stopping condition would have
been fulfilled before cell labeled k (if the cell labeled k were
to be on one of these rows, then all rows would have con-
tained at least two black cells before, while if not, then all
columns would have contained at least two black cells be-
fore).

Now color in red all those black cells adjacent to a white
cell. Since each row, except the potential all black one, con-
tained at least two black and one white cell, it will now con-
tain at least two red cells. For the potential all black row, any
of the neighbouring rows contains at least one white cell,
and so the cell adjacent to it has been colored red. In total
we have therefore colored red at least 2(N −1)+1 = 2N −1
cells.

The least label of the red cells has therefore at most the
value k +1− (2N −1). When the white cell adjacent to it will
eventually be labeled, its label will be at least k+1, therefore
their difference is at least (k +1)− (k +1− (2N −1)) = 2N −1.
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d dt d d tt t d d t tt t t d t t tt t d d t tt d d td k

Example of coloring the array.

The models are kind of hard to find, due to the fact that
the direct proof offers little as to their structure (it is difficult
to determine the equality case during the argument involv-
ing the inequality with the bound, and then, even this is not
sure to be prone to being prolonged to a full labeling of the
array).

The weaker fact the value M is not larger than 2N is
proved by the general model exhibited below (presented so
that partial credits may be awarded).

N+1 N+2 . . . 2N
3N+1 3N+2 . . . 4N

...
...

. . .
...

(2`-1)N+1 (2`-1)N+2 . . . 2`N
...

...
. . .

...
2kN+1 2kN+2 . . . (2k+1)N

...
...

. . .
...

2N+1 2N+2 . . . 3N
1 2 . . . N

A general model for M = 2N in a N ×N array.

By examining some small N > 2 cases, one comes up with
the idea of spiral models for the true value M = 2N −1 .
The models presented are for odd N (since 2011 is odd);
similar models exist for even N (but are less symmetric).
The color red (preceded by green) marks the moment where
the largest difference M = 2N −1 first appears. �

7 2 6
3 1 5
8 4 9

TABLE I: The spiral 3×3 array.

16 14 7 13 16
12 8 2 6 12
9 3 1 5 9

15 10 4 11 15
16 14 7 13

TABLE II: The spiral 4×4 array.

23 16 7 15 22
17 8 2 6 14
9 3 1 5 13

18 10 4 12 21
24 19 11 20 25

TABLE III: The spiral 5×5 array.

47 40 29 16 28 39 46
41 30 17 7 15 27 38
31 18 8 2 6 14 26
19 9 3 1 5 13 25
32 20 10 4 12 24 37
42 33 21 11 23 36 45
48 43 34 22 35 44 49

TABLE IV: The spiral 7×7 array.

(2n+1)2-2 (2n+1)2-9 . . . n(2n-1)+1 . . . (2n+1)2-10 (2n+1)2-3
(2n+1)2-8 . . . n(2n-1)+2 n(2n-1) . . . (2n+1)2-11

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . . 2n(n+1)+3
.
.
.

2n2 . . . 8 2 6 . . . 2n(n-1)+2 2n(n+1)+2
2n2 + 1 . . . 3 1 5 . . . 2n(n+1)+1

2n2+2 . . . 10 4 12 . . . 2n(n+1)

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
(2n+1)2-7 . . . n(2n+1) n(2+1)+2 . . . (2n+1)2-4
(2n+1)2-1 (2n+1)2-6 . . . n(2n+1)+1 . . . (2n+1)2-5 (2n+1)2

TABLE V: The general spiral N ×N array for N = 2n +1 ≥ 5.

[1] Also see Sloane’s Online Encyclopædia of Integer Sequences
(OEIS), sequence A001222 for Ω and sequence A008836 for
λ, which is called Liouville’s function. Its summatory function∑
d |n

λ(d) is equal to 1 for a perfect square n, and 0 otherwise.

Pólya conjectured that L(n) :=
n∑

k=1
λ(k) ≤ 0 for all n, but this

has been proven false by Minoru Tanaka, who in 1980 com-
puted that for n = 906,151,257 its value was positive. Turán

showed that if T (n) :=
n∑

k=1

λ(k)

k
≥ 0 for all large enough n, that

will imply Riemann’s Hypothesis; however, Haselgrove proved
it is negative infinitely often.

[2] Using the same procedure for point i), we only need notice that
λ((2k +1)2) = λ((2k)2) = 1, and these terms again are of differ-
ent parity of their position.

[3] Is this true for subsequences of all lengths ` = 3,4, etc.? If no,
up to which length `≥ 2?

[4] Cells with coordinates (x, y) and (x′, y ′) are considered to be
neighbours if x = x′ and y − y ′ ≡ ±1 (mod 2011), or if y = y ′
and x −x′ ≡±1 (mod 2011).
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