= O 2021
i . -’ CYPRUS Language: English

38t Balkan Mathematical Olympiad

Wednesday, September 8, 2021

Problem 1. Let ABC be a triangle with AB < AC. Let w be a circle passing through B,C and
assume that A is inside w. Suppose X, Y lie on w such that ZBXA = ZAY C. Suppose also that
X and C lie on opposite sides of the line AB and that Y and B lie on opposite sides of the line
AC.

Show that, as X,Y vary on w, the line XY passes through a fixed point.

Problem 2. Find all functions f : (0, +o00) — (0, +00) such that

fle+ @)+ fy) =2f(x) +y

holds for all z,y € (0, 400).

Problem 3. Let a, b and c be positive integers satistying the equation
(a,b) + [a,b] = 2021°.

If |a — b| is a prime number, prove that the number (a + b)? + 4 is composite.

Here, (a,b) denotes the greatest common divisor of a and b, and [a, b] denotes the least common
multiple of a and b.

Problem 4. Angel has a warehouse, which initially contains 100 piles of 100 pieces of rubbish
each. Each morning, Angel performs exactly one of the following moves:

(a) He clears every piece of rubbish from a single pile.
(b) He clears one piece of rubbish from each pile.

However, every evening, a demon sneaks into the warehouse and performs exactly one of the
following moves:

(a) He adds one piece of rubbish to each non-empty pile.
(b) He creates a new pile with one piece of rubbish.

What is the first morning when Angel can guarantee to have cleared all the rubbish from the
warehouse?

Time: 4 hours and 30 minutes

Each problem is worth 10 points



BMO 2021 - Problem 1

Let ABC' be a triangle with AB < AC'. Let w be a circle passing through B, C and assume

that A is inside w. Suppose X,Y lie on w such that /BXA = ZAY C. Suppose also that
X and C lie on opposite sides of the line AB and that Y and B lie on opposite sides of the
line AC'.

Show that, as X, Y vary on w, the line XY passes through a fixed point.

Solution 1. Extend X A and Y A to meet w again at X’ and Y respectively. We then have
that:
Y'YC=/AYC = /BXA=/BXX'.

so BCX'Y" is an isosceles trapezium and hence XY’ || BC.

A

Y’ X'

Let ¢ be the line through A parallel to BC and let ¢ intersect w at P,(Q) with P on the
opposite side of AB to C. As X'Y" || BC' || PQ then

LXAP = /XXY' = /XYY = /XY A

which shows that ¢ is tangent to the circumcircle of triangle AXY . Let XY intersect PQ at
Z. By power of a point we have that

ZA*=7X-2Y =7ZP-ZQ.

As P, () are independent of the positions of XY, this shows that Z is fixed and hence XY
passes through a fixed point.



Solution 2. Let B’ and C’ be the points of intersection of the lines AB and AC with w
respectively and let w; be the circumcircle of the triangle AB'C’. Let £ be the tangent to
wy at the point A. Because AB < AC the lines B'C" and ¢ intersects at a point Z which is
fixed and independent of X and Y.

We have
/ZAC" = /C'BA=/C'BB=/C'CB.

Therefore, € || BC.

Let X', Y’ be the points of intersection of the lines X A,Y A with w respecively. From the
hypothesis we have /BX X' = ZY'Y C'. Therefore

BX' =Y'C = BC+CX'=Y'B+BC — CX =Y'B
and so X'Y" || BC' || e. Thus
LXAZ = /XXY' = /XYY = /XY A.

From the last equality we have that ¢ is also tangent to the circmucircle ws of the triangle
XAY.

Consider now the radical centre of the circles w,w;,ws. This is the point of intersection of
the radical axes B'C" (of w and wy), € (of wy and wy) and XY (of w and w,).

This must be point Z and therefore the variable line XY passes through the fixed point Z.

2



BMO 2021 - Problem 2

Find all functions f : (0, +00) — (0, +00) such that

fx+ f(x)+ fy) = 2f(x) +y

holds for all z,y € (0, +00).

Solution 1. We will show that f(z) = x for every x € R*. It is easy to check that this
function satisfies the equation.

We write P(x,y) for the assertion that f(x + f(z) + f(y)) = 2f(z) + y.
We first show that f is injective. So assume f(a) = f(b). Now P(1,a) and P(1,b) show that

2f(D+a=fA+fA)+ fla) = fA+ fQ)+ f(b) =2f(1) +b
and therefore a = b.
Let A={z € Rt : f(x) = z}. Tt is enough to show that A = R*.
P(z,z) shows that x + 2f(x) € A for every x € R*. Now P(z,z + 2f(z)) gives that
fRx+3f(x)) =a+4f(x)
for every x € R, Therefore P(x,2x + 3f(x)) gives that 2z + 5f(x) € A for every x € R*.
Suppose z,y € R such that 2,22 +y € A. Then P(x,y) gives that
fQe+ f(y) = [z + f2) + [(y) = 2f(x) +y =2z +y = [(2z +y)

and by the injectivity of f we have that 2z + f(y) = 22 +y. We conlude that y € A as well.

Now since z+2f(z) € A and 22 +5f(x) = 2(x+2f(x))+ f(x) € A we deduce that f(z) € A
for every x € R™. TLe. f(f(x)) = f(z) for every z € R™.

By injectivity of f we now conclude that f(z) =z for every z € RT.



Solution 2. As in Solution 1, f is injective. Furthermore, letting m = 2f(1) we have that
the image of f contains (m, 00). Indeed, if t > m, say t = m+y for some y > 0, then P(1,y)
shows that f(1+ f(1) + f(y)) =t.

Let a,b € R. We will show that f(a) — a = f(b) —b. Define ¢ = 2f(a) — 2f(b) and
d=a+ f(a) —b— f(b). It is enough to show that ¢ = d. By interchanging the roles of a
and b in necessary, we may assume that d > 0.

From P(a,y) and P(b,y), after subtraction, we get

fla+ fla)+ f(y) — f(b+ f(0) + f(y)) = 2f(a) — 2f(b) = c. (1)
so for any ¢ > m (picking y such that f(y) =t in (1)) we get
fla+ fa) +) = f(b+ f(b) +1) = 2f(a) — 2f(b) = c. (2)
Now for any z > m + b+ f(b), taking t = z — b — f(b) in (2) we get
flz+d) = f(z) =c. (3)

Now for any x > m + b+ f(b) from (3) we get that
2f(z+d)+y=2f(x) +y+ 2c.

Also, for any x large enough, (x > max{m + b+ f(b),m + b+ f(b) + ¢ — d} will do), by
repeated application of (3), we have

et dt fl@td)+ 1) = fa+ fle+d) +y)+o
=flr+ flx)+y+c)+e
— fa+ f(x)+y+c—d) + 2.

(In the first equality we applied (3) with z = 2+ f(z+d)+y > x > m+b+ f(b), in the second
with z = x > m+0b+ f(b) and in the third with z = 2+ f (z)+y—c+d > x4+c—d > m+b+f(b).)

In particular, now P(x + d,y) implies that

fla+flx)+y+tc—d)=2f(r)+y=flz+ f(z) +y)

for every large enough x. By injectivity of f we deduce that z+ f(z)+y+c—d = z+ f(z)+y
and therefore ¢ = d as required.

It now follows that f(z) = z + k for every z € R and some fixed constant k. Substituting
in the initial equation we get k = 0.



BMO 2021 - Problem 3

Let a, b and ¢ be positive integers satisfying the equation
(a,b) + [a,b] = 2021° .
If |a — b| is a prime number, prove that the number (a + b)? + 4 is composite.

Here, (a,b) denotes the greatest common divisor of a and b, and [a,b] denotes the least
common multiple of a and b.

Solution. We write p = |a — b| and assume for contradiction that ¢ = (a+b)? +4 is a prime
number.
Since (a,b) | [a,b], we have that (a,b) | 2021¢. As (a,b) also divides p = |a — b|, it follows
that (a,b) € {1,43,47}. We will consider all 3 cases separately:

(1) If (a,b) = 1, then 1 4 ab = 2021¢, and therefore

g=(a+b)?+4=(a—b)*+4(1+ab)=p*+4-2021°. (1)

(a) Suppose ¢ is even. Since ¢ = 1mod 4, it can be represented uniquely (up to
order) as a sum of two (non-negative) squares. But (1) gives potentially two such
representations so in order to have uniqueness we must have p = 2. But then 4|gq
a contradiction.

(b) If ¢ is odd then ab = 2021° — 1 = 1 mod 3. Thus a = b mod 3 implying that
p = |a — b = 0 mod 3. Therefore p = 3. Without loss of generality b = a + 3.
Then 2021¢ = ab+ 1 = a® + 3a + 1 and so

(20 +3)* =4a®> + 120 +9 = 4-2021° + 5.
So 5 is a quadratic residue modulo 47, a contradiction as
(r)=(5)=(5)=~
47 5 5 '
(2) If (a,b) = 43, then p = |a—b| = 43 and we may assume that a = 43k and b = 43(k+1),
for some k € N. Then 2021¢ = 43 + 43k(k + 1) giving that

(2k +1)> =4k> + 4k +4 — 3 =4-431.47-3.
So —3 is a quadratic residue modulo 47, a contradiction as
Sy (DAY (Y2 (2) 2
ar) \4r)\47) \3) \3)
(3) If (a,b) = 47 then analogously there is a k € N such that
(2k +1)% =4-43°.47°1 - 3.

If ¢ > 1 then we get a contradiction in exactly the same way as in (2). If ¢ = 1 then
(2k+1)? = 169 giving k = 6. This implies that a+b = 47-6+47-7 = 47-13 = 1 mod 5.
Thus ¢ = (a + b)? +4 = 0 mod 5, a contradiction.



BMO 2021 - Problem 4

Angel has a warehouse, which initially contains 100 piles of 100 pieces of rubbish each. Each
morning, Angel performs exactly one of the following moves:

(a) He clears every piece of rubbish from a single pile.
(b) He clears one piece of rubbish from each pile.

However, every evening, a demon sneaks into the warehouse and performs exactly one of the
following moves:

(a) He adds one piece of rubbish to each non-empty pile.
(b) He creates a new pile with one piece of rubbish.

What is the first morning when Angel can guarantee to have cleared all the rubbish from
the warehouse?

Solution 1. We will show that he can do so by the morning of day 199 but not earlier.If
we have n piles with at least two pieces of rubbish and m piles with exactly one piece of
rubbish, then we define the value of the pile to be

n m =20,
V= n+% m=1,
n+1l m>=2.

We also denote this position by (n,m). Implicitly we will also write k for the number of
piles with exactly two pieces of rubbish.

Angel’s strategy is the following:
(i) From position (0,m) remove one piece from each pile to go position (0,0). The game
ends.

(ii) From position (n,0), where n > 1, remove one pile to go to position (n — 1,0). Either
the game ends, or the demon can move to position (n — 1,0) or (n —1,1). In any case
V' reduces by at least 1/2.

(iii) From position (n,1), where n > 1, remove one pile with at least two pieces to go to
position (n — 1,1). The demon can move to position (n,0) or (n — 1,2). In any case
V reduces by (at least) 1/2.

(iv) From position (n,m), where n > 1 and m > 2, remove one piece from each pile to go
to position (n — k, k). The demon can move to position (n,0) or (n — k, k+1). In any
case V reduces by at least 1/2. (The value of position (n —k,k+1)isn+ 1 if k =0,
andn—k+1<nifk>1.)

So during every day if the game does not end then V' is decreased by at least 1/2. So after
198 days if the game did not already end we will have V' < 1 and we will be in one of
positions (0,m), (1,0). The game can then end on the morning of day 199.

We will now provide a strategy for demon which guarantees that at the end of each day V'
has decreased by at most 1/2 and furthermore at the end of the day m < 1.



(i) If Angel moves from (n,0) to (n — 1,0) (by removing a pile) then create a new pile
with one piece to move to (n — 1,1). Then V decreases by 1/2 and and m =1 < 1
(ii) If Angel moves from (n,0) to (n—k, k) (by removing one piece from each pile) then add
one piece back to each pile to move to (n,0). Then V stays the same and m = 0 < 1.
(iii) If Angels moves from (n,1) to (n — 1,1) or (n,0) (by removing a pile) then add one
piece to each pile to move to (n,0). Then V decreases by 1/2 and m =0 < 1.
(iv) If Angel moves from (n, 1) to (n — k, k) (by removing a piece from each pile) then add
one piece to each pile to move to (n,0). Then V' decreases by 1/2 and m =0 < 1.

Since after every move of demon we have m < 1, in order for Angel to finish the game in
the next morning we must have n = 1,m = 0 or n = 0,m = 1 and therefore we must have
V' < 1. But now inductively the demon can guarantee that by the end of day N, where
N < 198 the game has not yet finished and that V' > 100 — N/2.

Solution 2.

Define Angel’s score S4 to be Sy = 2n+m — 1. The Angel can clear the rubbish in at most
max {S4, 1} days. The proof is by induction on (n,m) in lexicographic order.

Angel’s strategy is the same as in Solution 1 and in each of cases (ii)-(iv) one needs to check
that Sy reduces by at least 1 in each day. (Case (i) is trivial as the game ends in one day.)

Now define demon’s score Sp to be Sp =2n—1if m =0 and Sp = 2n if m > 1. The claim
is the if (n,m) # (0,0), then the demon can ensure that Angel requires Sp days to clear the
rubbish.

Again, demon’s strategy is the same as in the Solution by PSC and in each of cases (i)-(iv)
one needs to check that Sp reduced by at most 1 in each day.
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