| 1 | Let $ABCDEF$ be a convex hexagon such that all of its vertices are on a circle. Prove that AD , BE and CF are concurrent if and only if $\frac{AB}{BC} \cdot \frac{CD}{DE} \cdot \frac{EF}{FA} = 1$. | |---|---| | 2 | Determine whether there exist two infinite point sequences A_1, A_2, \ldots and B_1, B_2, \ldots in the plane, such that for all i, j, k with $1 \le i < j < k$, (i) B_k is on the line that passes through A_i and A_j if and only if $k = i + j$. (ii) A_k is on the line that passes through B_i and B_j if and only if $k = i + j$. (Proposed by Gerhard Woeginger, Austria) | | 3 | Let n be a positive integer. Calculate the sum $\sum_{k=1}^{n} \sum_{1 \le i_1 < \dots < i_k \le n} \frac{2^k}{(i_1+1)(i_2+1)\dots(i_k+1)}$ | | 4 | The sequence of polynomials (a_n) is defined by $a_0 = 0$, $a_1 = x + 2$ and $a_n = a_{n-1} + 3a_{n-1}a_{n-2} + a_{n-2}$ for $n > 1$. (a) Show for all positive integers k, m : if k divides m then a_k divides a_m . (b) Find all positive integers n such that the sum of the roots of polynomial a_n is an integer. |