ALGEBRA



A1l. Let m and n be integers greater than 2, and let A and B be non-constant polynomials with
complex coeflicients, at least one of which has a degree greater than 1. Prove that, if the degree
of the polynomial A™ — B™ is less than min(m,n), then A™ = B™.

INDONESIA, TOBI MOEKTIJONO

Solution. The conclusion is a consequence of the following version of the Mason—Stothers theo-
rem:

Theorem. If f and g are coprime polynomials with complex coefficients, and deg f + degg > 0,
then max(deg f,deg g) is less than the number of distinct roots of the polynomial fg(f + g).

Back to the problem, we first show that A and B are not coprime. Otherwise, let f = A™
and g = —B" in the Mason—Stothers theorem to infer that m deg A and n deg B are both at most
deg A + deg B + deg(A™ — B™) — 1, so

deg(A™ — B") > (m/2—1)deg A+ (n/2—1)deg B+ 1
> (m/2—-1)+(n/2 —1)+ (min(m,n)/2 - 1) +1
> (m+mn)/2—12>min(m,n) — 1,
contradicting the condition in the statement.
Consequently, C' = ged(A, B) is not constant. Since cmin(m.n) Jivides A™ — B", and

deg C™(™™) > min(m, n) > deg(A™ — B"),
it follows that A™ = B™.
Remark. The conclusion may fail if deg A = deg B = 1. For instance, deg ((X + 1)k — Xk)

k —1 < k = min(k, k). The conclusion still holds in this case, provided that deg(A™ — B™) <
min(m,n) — 1. The argument in the solution applies verbatim.



COMBINATORICS



C1. Call a point in the Cartesian plane with integer coordinates a lattice point. Given a finite
set S of lattice points we repeatedly perform the following operation: given two distinct lattice
points A, B in S and two distinct lattice points C, D not in S such that ACBD is a parallelogram
with AB > CD, we replace A, B by C, D. Show that only finitely many such operations can be
performed.

UNITED KINGDOM, JOE BENTON

Solution. We fix a lattice point O and show that the integer } .5 OX 2 decreases each time

an operation is performed, so the process must stop.
Indeed, if A, B are replaced by C, D, then

OA* + OB? = %(WH OB)? + %(O_fl _0B)? = %(O?+ OD)? + %ABQ
> (00 + OBY + ;0D* = [(OC + OD)’ + L (OC ~ OD)? = 0C* + OD?,

while the other summands are left unchanged. This ends the proof.

Remarks. (1) One may notice that the computation in the solution above is just a double
application of Apollonius’ theorem which expresses the length of a median in a triangle via its
sidelengths.

(2) An alternative integer monovariant is >y yeg X Y2. To check this, notice that the only
terms that change when we replace A, B with C, D are AB? (replaced with C'D?, which must
be smaller), and those of the form PA? + PB? with P € S \ {4, B} (replaced by PC? + PD?,
which is smaller due to the same application of Apollonius’ theorem).



C2. Fix integers n > k > 2. We call a collection of integral valued coins n-diverse if no value
occurs in it more than n times. Given such a collection, a number S is n-reachable if that
collection contains n coins whose sum of values equals S. Find the least positive integer D such
that for any n-diverse collection of D coins there are at least k numbers that are n-reachable.

BULCGARIA, ALEXANDAR [VANOV

Solution. The required number is D = n + k — 1. We first show that n 4+ k — 2 coins are not
enough. Indeed, if a collection consists of n coins of value 1 and k —2(< n) coins of value 2, then
all n-reachable numbers have the form z+2y = n+y (since z+y = n), where y € {0,1,...,k—2}.
Thus, there are only k£ — 1 such numbers.

To prove that the number D = n 4+ k — 1 suffices, we make use of the following lemma. In
the sequel, we denote a coin and its value by the same letter.

Lemma. In any n-diverse collection of D coins one may find D —n disjoint pairs, each consisting
of two coins of distinct values.

Proof. Enumerate the coins ¢; < ¢g < --- < ¢p in a non-decreasing order according to their
values. Then the desired pairs are (1, cnt1), (¢2,Cnt2), - .., (CD—n,cp): they are clearly disjoint,
and the equality ¢; = ¢4 would yield ¢; = ¢;41 = - - - = ¢4, Which contradicts n-diversity of the
collection. O

Now, given any n-diverse collection of D = n 4+ k — 1 coins, apply the lemma to find pairs
(a1,b1), (az,b2), ..., (ag—1,bk—1); the coins in each pair are listed so that a; < b; for every
1=1,2,...,k—1. Let ¢1,...,ch_gy1 be the other coins in the collection.

Set S=c1+c2+ -+ cp—g+1- Then each of the k sums

=1 i=m+1

is clearly n-reachable. Moreover, the inequalities imposed on the pairs yield Sy < S1 < -+ <
Sk_1, so we have found k distinct n-reachable numbers, as required.

Remark. One may notice that the ideas in the solution above are close to those used in the
classical proof of the celebrated Erd6s—Ginzburg—Ziv theorem.



C3. N teams take part in a league. Every team plays every other team exactly once during the
league, and receives 2 points for each win, 1 point for each draw, and 0 points for each loss. At
the end of the league, the sequence of total points in descending order A = (a; > as > -+ > an)
is known, as well as which team obtained which score. Find the number of sequences A such
that the outcome of all matches is uniquely determined by this information.

UnNITED KiNGDOM, DoOMINIC YEO

Solution. The required number is the (N + 1)st Fibonacci number Fy 1, where F} = Fy = 1,

k k
.- 1+v5 15
and Fy = Fy_1 + Fy_o, k > 3; explicitly, Fy = % ( +2f> — % ( 2‘[> .
In the sequel, a tournament is a collection of all game results. We say that a tournament is
deterministic if its score sequence determines it uniquely. We always assume that the teams in
a tournament are enumerated tq,to,...,ty in a non-decreasing order of their scores a; > ag >

ce > ay,.

The argument is in three stages. First, we describe some deterministic tournaments and their
score sequences. Then, we show no other tournament is deterministic. Finally, we enumerate the
obtained tournaments.

Step 1. Let o be some collection of disjoint pairs of adjacent elements of {1,..., N}. Now we
define a tournament 77 by letting ¢; and ¢;1; make a draw if (7,74 1) € o, and letting ¢; win ¢;,
where 7 < j, otherwise. In other words, we take a transitive tournament, and then clone several
teams in it, letting the team draw with its clone.

The corresponding score sequence A” is defined as af = af, ; = 2N — (20 +1) if (i,i +1) € o,
and af = 2(N —j) for all other indices j. For instance, T is just the usual transitive tournament.

To show that T is deterministic, we induct on N. The base cases N = 1,2 are obvious.
Now, if (1,2) ¢ o, then af = 2N — 2, and so t; must have won all their matches. Since
these matches contribute no points to the remaining N — 1 teams, their scores in their internal
sub-tournament are uniquely reconstructed. Since this sub-tournament is deterministic by the
inductive hypothesis, the whole tournament is also deterministic.

Similarly, if (1,2) € o, then af + a§ = 4N — 6, and so ¢; and t2 must both have defeated all
other teams, and drawn with each other since af = aJ. Again, the application of the inductive
hypothesis finishes the inductive step.

So, any score sequence A% uniquely determines the tournament 7.

Step 2. Consider any deterministic tournament 7. Our aim is to show that it is indeed of the
form T described above. We write + — y and = <+ y to denote {z beats y} and {z,y draw}
respectively.

Lemma. In every ordered triple of teams (x,y, z), one of them won their cyclic successor.

Proof. Assume the contrary. Then one may change the results of the three mentioned games
letting each team get one more point in the game with their successor. This does not affect the
score sequence, so the tournament was not deterministic. O

The Lemma yields the following properties of a deterministic tournament.
(1) a; > aj <= t; — t;. Indeed, otherwise there would exist either a pair (i,7) with t; — t; yet
a; > aj, or a pair (4, j) with t; <> t; yet a; > a;. In both cases, there is a team ¢, whose result in
the game with ¢; is strictly better than that with ¢;. Therefore, the triple (¢;,¢;,t;) violates the
Lemma.

1) There are no three indices i, j, k with a; = a; = ag. Otherwise, by (i) we get t; <> t; >ty <
J J

ti, so (t;,tj,t) violates the Lemma.



Now, given a deterministic tournament 7', we denote by o the set of all pairs (¢, j) with a; = a;.
By property (ii), these pairs are disjoint, and, by monotonicity, each consists of consecutive
indices. Therefore, property (i) yields T = T7, as desired.

Step 3: Let By be the set of suitable os corresponding to N. It remains just to count By =
|By|. There are natural bijections between {¢ € By: (1,2) ¢ o} and By_1, and between
{o0 € Bx: (1,2) € 0} and By_a.

Thus By = By_1 + By_2. Now, it is clear that B; = 1, and after a bit of thought By = 2.
So By = Fn41, the (N + 1)st Fibonacci number.

Remark. One may perform Steps 2 and 3 in many different ways. Although the general scheme
preserves, the arguments may vary. Below we list several such arguments.

Alternative approaches to Step 2. (a) The Lemma from the Solution above may be split
into cases. E.g., one may list explicitly sub-tournaments on three teams that never appear in
a deterministic tournament, namely: (1) z — y, y = 2, 2z > x; (2) x © y, y < 2z, 2 & x;
Bz yye 2z, 2z—>xand (4) y = 2, 2 =y, < 2z (Indeed, the sub-tournaments
(1) and (2) provide the same input to the score sequence, and so do (3) and (4).) After that,
a similar analysis may be performed in order to show that the only tournaments having no
sub-tournaments of the forms (1)-(4) are those described in Step 1.

(b) An alternative combinatorial description of a deterministic tournament may also be obtained
as follows. We realize a tournament as a directed (multi)graph on [N] = {1,2,..., N}, where
each pair of vertices are connected by two directed edges. These are both directed from loser
to winner, else for a draw, we assign one edge in each direction. In this realization, the score
sequence lists the in-degrees of the vertices.

Now, if the digraph includes a simple cycle with length at least 3, then one may obtain an
alternative tournament with the same score sequence by reverting all arrows in the cycle. Thus,
the only cycles a graph of a deterministic tournament may have are of length 2 (and correspond
to draws). Thus, one may see that no team draws with two others (as they would form a cycle of
length 3), and every pair which draws plays identically to each other team. So, after “de-cloning”
such pairs, we get a usual transitive tournament, which establishes Step 2.

Such framework may also help in performing Step 1.

Alternative approach to Step 3. The number of relevant score sequences including exactly
k pairs is (Nk_ k), for each k = 0,1,...,[N/2]. (Think about choosing k non-adjacent elements

from [N —1].)
Thus
m- s (-2 () ()]
IN/2] o o IN/2) oy
_ kz_o <(N ;) k:> N > <(N kl) k:>
= Bny_2+ Bn_1,

and then one can finish as before.

It is worth mentioning that the obtained relation ), (N E k) = Fn41 is quite known, as well

as the whole enumeration of partitions of [N] into singletons and pairs of consecutive elements.



C4. Let k and s be positive integers such that s < (2k + 1)2. Initially, one cell out of an n x n
grid is coloured green. On each turn, we pick some green cell ¢ and colour green some s out of
the (2k + 1)2 cells in the (2k + 1) x (2k + 1) square centred at c¢. No cell may be coloured green
twice. We say that s is k-sparse if there exists some positive number C' such that, for every
positive integer n, the total number of green cells after any number of turns is always going to
be at most C'n. Find, in terms of k, the least k-sparse integer s.

NIKOLAI BELUHOV

Solution. The least sparse s is s = 3k + 2k. We first show that s = 3k + 2k is sparse, then
prove that no s < 3k? + 2k is sparse. For a cell ¢, denote by N(c) its neighbourhood, i.e., the
(2k 4+ 1) x (2k + 1) square centred at c.

Part 1: s = 3k + 2k is sparse.

Recolour red the initial cell, and the centres of all turns during the game. Draw an arrow
from every red cell ¢ to all red cells that become green on c¢’s turn. This results in an oriented
tree G with red cells as vertices.

Say that a vertex a of G precedes another vertex b of G if there exists an oriented path in
G from a to b. For every red cell ¢, let S(c) be the number of cells in N'(¢) that are not in the
neighbourhood of any cell that precedes c. Notice here that every coloured cell is accounted for
at least one of the S(c).

We have S(initial cell) = (2k-+1)2. Any other red cell ¢ is the target of an arrow from some red
cell b. The neighborhoods of b and ¢ share at least (k-+1)2 cells, so S(c) < (2k+1)%2 —(k+1)% = s.

Let us examine the cases when this bound is achieved. Firstly, this may happen only if
bc = (+k,+tk); call such arrows normal, and all other arrows short. Moreover, if there is a

%
normal in-arrow to b, this arrow should come from a cell a with ab = be, otherwise N (a) and
N (c) meet outside N (b). If the (normal) arrow a — b violates this last condition, we say that
the arrow b — ¢ is jammed.

b b
\

A normal arrow A jammed normal arrow

To summarize, a non-initial red cell ¢ satisfies S(c) = s only if its in-arrow is normal and not
jammed. (Otherwise, as one can see, S(c) < s — k, but this improvement is superfluous for the
solution.)

Let now v be the number of red cells, and let x be the total number of non-normal and
jammed normal arrows. The total number of coloured cells is at least vs + 1; on the other hand,
this number does not exceed

k+1)2+(w—-—z—Ds+az(s—1)=vs+ (k+1)? —z.

Comparing these two bounds, we obtain z < (k + 1) — 1.

Now remove all z exceptional arrows. After that, we are going to have at most z+1 < (k+1)?
(weakly) connected components, with all remaining arrows being normal and non-jammed. This
means that the cells in each component are translates of each other by the same vector (£k, £k),



so every component contains at most [n/k] < n cells. Therefore, v < n(k + 1), and hence the
total number of green cells does not exceed (2k + 1)?v < (k + 1)2(2k + 1)?n. Thus, s is sparse.

Part 2: No s < 3k? + 2k is sparse.

To this end, set up graph G to be a path that zigzags all over the grid, whose arrows are all
normal, and jammed arrows are always at least 2k steps apart — see the figure below. Even the
red cells in this path have a density bounded away from 0, that is, there are at least Cn? of them
for some positive constant C. So, it suffices to show that this graph G can be realized via the
process in the problem, which is what we aim to do. For this purpose, we may — and will —
assume that s takes its maximal value, i.e., s = (2k +1)? — (k +1)? — 1.

Zigzag path

Let ¢; — ¢2 — --- — ¢p be our path. We say that P(c;) = N(¢;) ~ N (ci1) is the preference
set for ¢; (notice that P(c¢;) contains s 4+ 1 cells). This means that, when performing a move
centred at ¢;, we colour ¢;4+1, and as many cells in P(¢;) as possible. In particular, if ¢; belongs
to the initial straight segment of the path, we colour just ¢;11 and some cells outside N (¢;11).

Now let us check what happens after a jammed arrow c;_1 — c¢; appears. The set P(c;)
meets P(cj—2) by k cells which could have been coloured before. Thus, we may need to colour at
most k — 1 cells (except for ¢j11) in N(¢j41) on the jth move. Similarly, on the (j + 1)st move
we colour at most k — 2 cells in N (cj;2) (except for ¢jio itself), and so on. The figure below
exemplifies this process for k = 3.

Since the jammed arrows are at least 2k steps apart, if ¢, — c¢41 is the next jammed arrow,
we colour just ¢gq1 and some cells in P(cg) on the ¢th turn. Therefore, we may proceed on in the
way described above. This completes the proof.

Remark. We provide a sketch of a different (though ideologically similar) proof of Part 1,
visualizing the counting argument.

Let us modify the process in the following way. When we pick a green cell ¢ and color green
s cells in its neighbourhood, we also recolour ¢ red (as above), and we colour yellow all other yet
uncoloured cells in this neighbourhood. This way, a yellow cell may be recoloured green, but a
cell cannot be coloured green twice, as before. We also use the construction of graph G from the
solution.

At any moment in the process, we denote by Y the total number of yellow cells. After the
first turn, we have s + 1 green, so Y = (2k +1)?> — (s +1) = (k4 1)2 — 1. On each next turn
centred at some cell ¢, the square A(c) already contains at least (k + 1)? coloured cells, so the
total number of coloured cells increases by at most s. Since the number of green cells increases
by exactly s, this yields that the value of ¥ does not increase.

Since the initial value of Y does not depend on n, we need many turns on which Y remains
constant. On such turn centred at ¢, the previously coloured cells in A (¢) must form only a
(k+1) x (k+ 1) square at a corner of A/(c). As the above analysis shows, this implies that the
in-arrow at ¢ must be normal and non-jammed.
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Exemplified process

Thus, the total number z of non-normal and jammed normal turns does not exceed the initial
value of Y, i.e., (k+ 1)2 — 1. Now one may finish as in the solution above.

The concept of yellow cells may also help in constructing an example for Part 2. Say, in the
case s = (2k +1)2 — (k + 1)2 — 1, a turn may increase the value of Y by 1, if the previously
coloured cells in N(c) form exactly a (k4 1) x (k+ 1) corner (call such a turn perfect). When
a zigzag path rotates, the value of Y decreases by k; so we just need k perfect turns in order to
recover the value. This is what happens in a sample process described in the solution.
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GEOMETRY



G1. Let ABC be a triangle and let H be the orthogonal projection of A on the line BC. Let
K be the point on the segment AH such that AH = 3KH. Let O be the circumcentre of the
triangle ABC and let M and N be the midpoints of the sides AC' and AB, respectively. The
lines KO and M N meet at a point Z and the perpendicular at Z to OK meets the lines AC and
AB at X and Y, respectively. Show that /XKY = ZCKB.

ITALY

Solution. Let L be the midpoint of BC, and let D be the projection of L onto M IN; the points L,
O, and D are collinear.

Consider the rotational homothety centred at O and mapping D to Z. Images under this
transform will be denoted by primes; so, e.g., Z = D’. For every point P, the triangle OPP’ is
similar to ODD’; so, in particular, ZOPP’ = 90°.

Since ZODM = 90°, we have ZOZM' = 90°; since ZOM M’ = 90°, the point M’ lies on AC.
So M'= XY NAC = X. Similarly, N' =Y.

Since ZOLL' = 90°, the point L' lies on BC. Since O € LD, we get O € L'Z, so the points L/,
Z, 0, and K are all collinear. Let E be the midpoint of AH. Since M N || BC, we get

'K HK
KZ KE

Finally, notice that the triangles L'XY and ABC are similar (since they are both similar
to LM N). The point K splits their altitudes L'Z and AH in the same ratio, so K corresponds
to itself in these triangles. Therefore, the triangles BKC and X KY are also similar, which yields
the required equality.

Remarks. There exist many variations of the solution above. Here we list some of them.

Firstly, the fact that the triangles OXY and OM N are similar follows from angle chasing in
cyclic quadrilaterals OM X Z and ONY Z. This suggests using the rotational homothety defined
above, but one may very well proceed without it.

One useful consequence of the mentioned similarity is that the points A, X, Y, and O are
concyclic (this also follows from the converse of Simson’s theorem applied to the point O in the
triangle AXY).

Now, the point L’ may alternatively be defined as the point where the circles OCX and OBY
meet again (by Miquel’s theorem, this point lies on BC). By angle chasing, one may obtain
L' € OZ; another angle chasing shows that the triangles L' XY and ABC are similar. Then one
may finish as in the solution above.
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G2. Let ABC be a triangle, let S and T' be the midpoints of the sides BC and C' A, respectively,
and let M be the midpoint of the segment ST. The circle w through A, M and T meets the line
AB again at IV, and the tangents of w at M and N meet at P. Prove that P lies on the line BC'
if and only if the triangle ABC is isosceles with apex at A.

INDONESIA, REZA KUMARA

Solution 1. Use complex coordinates; as usual, a lower case Roman letter denotes the complex
coordinate of the point denoted by the corresponding upper case Roman letter.

Let w be the standard unit circle centred at the origin O and let ¢ = 1, so ¢ = 2 — a and
s =2m — 1. Since AN and MT are parallel, we have ZAOT = ZMON and hence a/1 = m/n,
or n = ma. Plug this into p = 2mn/(m + n) to get p = 2m/(a + 1).

Now, P lies on the line BC' if and only if (p — s)/(s — ¢) is real. Using the above expressions
for s and p, and carrying out calculations, this is the case if and only if

—2am+a+1
(a+1)(2m +a —3)

is real; that is, it is equal to its complex conjugate. Carrying out calculations, this is equivalent
to(a—1)(a+a+6)=4(a—1)(m+m),ie,a+a+6=4m+m),since A#T,s0oa#t=1.
Alternatively, but equivalently, (e —1)(@—1) = 4(m — 1)(m — 1), or |a — 1| = 2|m — 1], which is
the case if and only if AT = 2MT. The latter is clearly equivalent to AC' = AB. This ends the
proof.

Remark. The equivalence still holds if P is an ideal point. (It is not hard to see that the necessary
and sufficient geometric condition for P to be an ideal point is that AB + 2AC cos A = 0.) In
this case, n = —m, a = =1, c =3 and b = 2s —¢ = 2(2m — 1) — 3 = 4m — 5. For P to
be the ideal point of the line BC' it is necessary and sufficient that M N be perpendicular to
BC; that is, (b —¢)/(m —n) = 2(1 — 2m) be purely imaginary. Alternatively, but equivalently,
m+m =1, ie, m*—m+1=0. For such an m, |b—a| = 4/m — 1| = 4/m|> = 4 = |c — a| and
|b—c| = 4Jm — 2| = 4V/3, so the triangle ABC is isosceles with apex at A, and the internal angle
at the apex is 120°.

Solution 2. To avoid case analysis, assume the angle BAC acute and N on the segment AB.

Notice that AT M N is an isosceles trapezoid. Let CH be an altitude in the triangle ABC
then /ZTHA = /TAB = /ZMNA,so TH || MN, and MNHT is a parallelogram. We

Let P’ be the intersection of BC with the perpendicular bisector £ of M N (the case MN L
BC, in which P’ is not well-defined, can be treated easily). Since P also lies on ¢, the condi-
tions P € BC and P = P’ are equivalent. The latter condition may in turn be rewritten as
/PMN =/MAN.

Choose U so that P is the midpoint of SU, and let @ be the midpoint of TU. Then the
triangle THQ is obtained from MNP’ by translation at MT = PQ, so QP = QT = QH.
Denoting by V' the projection of T" onto BC, we get QT = QV, so the points H, T, U, and V lie
on a circle centred at (). Therefore, ZPMN = LAUTH = LUV H. Thus, the condition P = P’ is
equivalent to ZBVH = ZMAN, i.e., to the fact that the triangles BV H and BAM' are similar,
where M’ = AM N BC.

This last condition is in turn equivalent to

BM' BH
BA BT’

!/

ZJ\/@ = % . % = % by Menelaus’ theorem, we
BM'  2a/3 BH acos 3 2a cos 3

d == =
BA c o BV (a+ccosB)/2 a+ccosp’

Using standard notation and noticing that

obtain
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so P = P’ if and only if

2a  2acosf

— =———— <= 3ccosff=a+ccosf < a=2ccosf <= b=c,
3c  a-+ccospf

as required.

14



NUMBER THEORY



N1. Determine all polynomials f with integer coefficients such that f(p) is a divisor of 2P — 2
for every odd prime p.

ITALY

Solution 1. The required polynomials are £1, £2, £3, £6, £X, +£2X. It is readily checked
that all these polynomials satisfy the condition in the statement.

Now let f be a polynomial satisfying the required condition, and assume first that f(0) # 0.
Let S be the set of those primes p such that p | f(p). Since f(0) # 0, the set S is finite, so p t f(p)
for all but finitely many primes p. Let p be a large enough such prime, and suppose, if possible,
that f(p) is divisible by some prime ¢ > 3. Refer to the Chinese remainder theorem to find an
integer R with R = p (mod ¢) and R = —1 (mod ¢— 1), and notice that R is coprime to ¢(q—1).
Now, by Dirichlet’s theorem on primes in arithmetic sequences of integers, there exists a prime
r # p such that » = R (mod ¢(q — 1)), that is, r = p (mod ¢) and r = —1 (mod ¢ — 1).

Clearly, f(r) = f(p) = 0 (mod q), so q | f(r) | 2(2" —2) = 2"t — 4. Since ¢ > 2, the
condition » +1 = 0 (mod ¢ — 1) and Fermat’s little theorem imply 2"+! = 1 (mod ¢), hence
0=2""'-4=1-4= -3 (mod q); that is, ¢ = 3, contradicting the choice ¢ > 3. Consequently,
for every large enough prime p, the only primes that may divide f(p) are 2 and 3.

On the other hand, f(p) | 2P — 2, and 41 2P — 2, so va(f(p)) < 1; moreover, if p =5 (mod 6),
then 2P —2 =2 -2=30=3 (mod 9), so v3(f(p)) < 1 for any such p. Consequently, |f(p)| < 6
for every large prime p =5 (mod 6), so f is constant. Since this constant divides 23 — 2 = 6, it
is one of +1, +2, +3, 6.

Finally, we deal with the case f(0) = 0. Write f = X™ . g for some positive integer m and
some polynomial g with integer coefficients such that g(0) # 0. Since g also satisfies the condition
in the statement, it is one of 1, +2, 43, +6. The condition f(3) | 23 — 2 = 6 then forces m = 1
and g =+1or +£2,s0 f = +X or +2X.

Solution 2. Only the case f(0) # 0 will be considered here; the case f(0) = 0 is dealt with as
in Solution 1.

We show that there is an infinite set S of odd primes satisfying the following condition:
For every p in S there exists an odd prime ¢ such that ged(p — 1,¢ — 1) = 2 and f(p) divides
f(q). For such a p, the value f(p) divides ged(2P — 2,29 — 2) = 2ged(2P~! — 1,271 — 1) =
2 (2ng(p*17‘1*1) — 1) =6, so f(p) is one of £1, +2, +3, £6. Since S is infinite, f is constant, so
it is one of the eight numbers in the list above.

To prove existence of S, begin by noticing that f(5) divides 30 = 2° — 2, and 4 divides
f(5) = f(1), to infer that f(1) is not divisible by 4, so f(1) =2m + 1 or f(1) = 2(2m + 1) for
some integer m. Refer to the Chinese remainder theorem and Dirichlet’s theorem on primes in
arithmetic sequences of integers, to let S be the infinite set of primes p > |f(0)|, p = 3 (mod 4)
and p =2 (mod (2m + 1)).

We now show that, for every p in S, there exists an odd prime ¢ such that ged(p—1,¢—1) = 2
and f(p) divides f(gq). Consider a prime p in S. Since (p —1)/2 is odd and p — 1 and 2m + 1 are
relatively prime, (p — 1)/2 is coprime to f(1); and since (p — 1)/2 divides f(p) — f(1), it follows
that (p —1)/2 is coprime to f(p). Recall that f(0) # 0 and p > |f(0)| to infer that f(p) is also
coprime to p, so there is an odd prime ¢ = 2 (mod (p — 1)/2) and ¢ = p (mod f(p)), by the
Chinese remainder theorem and Dirichlet’s theorem on primes in arithmetic sequences of integers.
Since (p—1)/2 is coprime to g — 1, it follows that ged(p—1,¢—1) = 2ged((p—1)/2,(¢—1)/2) = 2;
and since f(p) divides ¢ — p which, in turn, divides f(q) — f(p), it follows that f(p) divides f(q).
This ends the proof.
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N2. Prove that for each positive integer k there exists a number base b along with k triples of
Fibonacci numbers (Fy, F,, F,) such that, when they are written in the base b, their concatenation
F,F,F, is also a Fibonacci number written in the base b. (Fibonacci numbers are defined by
Fy = F,=1and F,y9 = F,41 + F, for all positive integers n.)

SERBIA

Solution. Recall that the sequence of Lucas numbers Ly, Lo, ... is defined to satisfy the same
Fibonacci recurrence relation L,i2 = Lyy1 + Ly starting with Ly = 2, Ly = 1. We extend
the Fibonacci sequence in the negative direction by the same recurrence relation; notice that
F_ = (—l)kile.

Recall (or prove by a straightforward induction) that Ly = Fy_1 + Fiy1. We will make use
of the fact that the sparse Fibonacci sequence F;, F; s, Fiyos, ... satisfies the recurrence relation
with Lucas numbers as coefficients, namely

Fn+s = LsF), — (_1)8Fn—s§

again, this relation may be proved by induction on s.
In view of the relation above, for every integers k£ > 2 and ¢ > 0 we have

Fiptvi = Log—1Foptiv1 + Figo = Log—1(Log—1Fiyo + Fitsz—2k) + Fito
= FoL3, 1 + (=1)"Fog—i—3Log—1 + Fipo.

Thus, for every even i = 0,2,4,...,2(k — 1) we get that the Loy_1-ary expansion of Fy;y; has
exactly three digits, which are F;io, For_;_3, and Fj;o (since all of them are nonnegative and
do not exceed Fo, < Log—1). So, setting b = Log_1, we have shown the existence of k required
triples having the form (Fjio, For_i—3, Fit2)-

Remarks. (1) The main difficulty of the problem seems to be in guessing a correct example.
This may be done either by playing around small (although not very small) cases, or by playing
with formulae involving sequences satisfying the Fibonacci relation. In both approaches, one
does not need to be acquainted with Lucas numbers, although such acquaintance may help.

After the example has been guessed, one may proceed in different ways in order to prove
it. E.g., the construction shown in the solution above may be established via explicit formulae
F, = “On\;gn and L, = @™ + Y™, where ¢ = 1+T\/5 and ¢ = 1_—2‘/5 Namely, let n be odd and ¢
be even, with ¢ < n (in terms of the solution above, we have n = 2k — 1 and ¢ = i + 2); then

(o)™ = —1 and (py)¢ = 1. Therefore, the base L,, number F,F,_,F; equals
FyFn oFy = LELFZ‘i‘Lnané‘i‘FZ = (L%‘i‘ 1)F£+LnFn7€

VAN ) n——f _ i n—~_
:((¢n+¢n)2+1)‘(p\/gw +(80n+¢n)'80\/5w

e _ n— _ ,n—t
:(¢2n_1+¢2n)_90 1/} +((Pn+wn)(p w

V5 V5

_ 902n+£ - (an—f o (Pé + ¢Z + Q,ZJQn_Z o ,¢2n+€ N 9OQn—f + (pﬂ o ¢€ o w?n—f

V5 V5

2n+-4 2n+4
o n+l _ ¢ n+ _
= 7= = I'opyys,
VB
as required.

(2) Some modifications of the problem are possible: since all the obtained triples consist of one-
digit numbers, and the first and the last ones are equal, some of these conditions may be imposed
in the problem statement. Such restrictions narrow the search, so they may make the problem
easier.
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