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January 10, 9.00-13.30
First day
(Each problem is worth 7 points)

1. A positive integer n does not divide 223 + 1 for any positive integers a and b. Prove that n does not
divide 2¢ + 3¢ for any positive integers ¢ and d.

Solution. Assume the contrary: n divides 2¢ + 3%. Clearly n is not divisible by 3; therefore n divides
3% — 1 for some k. Choosing s so that ks > d we see that n divides 3#5=(2¢ 4- 3¢) = 2¢3ks—d 4 3ks Then n
also divides 2¢3Fs=d 41 = 2¢3ks=d 4 3ks _ (3ks _ 1) a contradiction.

2. In a set of 20 elements there are 2k + 1 different subsets of 7 elements such that each of these subsets
intersects exactly k other subsets. Find the maximum k for which this is possible.

The answer is k = 2.

Solution. Let M be the set of residues mod20. An example is given by the sets A; = {4i + 1,4¢ +
2,4i+ 3,41 +4,4i+ 5,41+ 6,40+ 7} C M,:=0,1,2,3,4.

Let &£ > 2. Obviously among any three 7-element subsets there are two intersecting subsets.

Let A be any of the 2k + 1 subsets. It intersects k other subsets By, ..., Bi. The remaining subsets C1,
..., C} do not intersect A and are therefore pairwise intersecting. Since each C; intersects k other subsets, it
intersects exactly one Bj. This B; can not be the same for all C; because B; can not intersect k + 1 subsets.

Thus there are two different C; intersecting different Bj; let C intersect By and C5 intersect Bs. All
the subsets that do not intersect C1 must intersect each other; there is A among them, therefore they are A
and all B;, ¢ # 1. Hence every B; and Bj, i # 1, j # 1, intersect. Applying the same argument to Cy we
see that any B; and Bj, © # 2, j # 2, intersect. We see that the family A, B;, ..., By contains only one
pair, By and Bs, of non-untersecting subsets, while B; intersects Cy and By intersects Cs. For each i this
list contains k subsets intersecting B;. It follows that no C; with i > 2 intersects any B;, that is, there are
no such Cj, and k < 2.

3. A convex hexagon ABC'DEF is inscribed in a circle. Prove the inequality

AC-BD -CE-DF -AE-BF >27TAB-BC -CD-DE-EF - FA.
Solution. Let
di=AB-BC-CD-DE-EF-FA,do=AC-BD-CE-DF-AE-BF,d;s = AD - BE -CF.
Applying Ptolemy’s theorem to quadrilaterals ABCD, BCDE, CDEF, DEFA, EFAB, FABC, we

obtain six equations AC' - BD — AB-CD =BC -AD, ..., FB-AC — FA-BC = AB - FC. Putting these
equations in the well-known inequality

g/((ll7171)(0/27172)'...'((167[)6) S \6/(110/2...(167 \6/b1b2...b6 ((li Zbi>0,7;:1,...,6),

we get
YdsVd, < ¥/dy — ¥/d,. (1)
Applying Ptolemy’s theorem to quadrilaterals ACDF, ABDE u BCEF, we obtain three equations
AD-CF =AC-DF+AF -CD, AD-BE=BD-AE+ AB-DE, BE-CF = BF-CE+ BC - EF. Putting
these equations in the well-known inequality

\3/((11 + bl)(az + bz)(ag + bg) > Yajasa3 + \3/ b1b2b3 (ai > O,bl > O,Z = 1,2,3),

we get
5 dg > \3/ d> + \3/ di. (2)

It follows from (1) and (2) that (¥/ds — ¥/dy)? > /dy(/d> + ¥/dy), that is, </ds > 3¥/d; and dy > 27d;,
q.e.d.
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Neq. In a scalene triangle ABC' [ is the incenter and C'N is the bisector of angle C'. The line C'N meets
the circumcircle of ABC' again at M. The line ¢ is parallel to AB and touches the incircle of ABC. The
point R on /¢ is such that C'I 1 IR. The circumcircle of M N R meets the line IR again at S. Prove that
AS = BS.

Solution. In this solution we make use of directed angles. A directed
angle Z(n, m) between lines n and m is the angle of counterclockwise
rotation transforming n into a line parallel to m.

Let d be the tangent to the circumcircle of AABC containing N
and different from AB. Then Z(¢,CI) = Z(NB,NI) = Z(NI,d).
Since CI L IR, the line d contains R because of symmetry with
respect to [ R.

Let T be the common point of MS and ¢. We have
LZ(MN,MS) = Z(RN,RS) = Z(RS,RT), that is, R, T, I, M are
concyclic. Therefore Z(RT, MT) = Z(RI,MI) = 90°. It follows
that MS 1 AB. But M belongs to the perpendicular bisector of
AB, and so does S. Thus AS = BS, q.e.d.

Ne5. Find all the functions f: Z — Z such that f(4dx+3y) = f(3z+
+y) + f(x + 2y) for all integers x and y.

Answer: f(r) = % for x divisible by 5 and f(z) = bz for z not
divisible by 5, where a and b are arbitrary integers.

Solution. Putting x = 0 in the original equation

fldr +3y) = f(3x +y) + f(z +2y) (1),
we get
fQBy) = f(y) + f(2y). (2)

Next, (1) for y = —2z gives us f(—2z) = f(z) + f(=3z) = f(x) + f(—z) + f(—2z) (in view of (2)). It
follows that

f(=2) = = f(2). (3)
Now, let © =2z — v, y = 3v — z in (1). Then
f(5z+5v) = f(52) + f(5v) (4)

for all z,v € Z. Tt follows immediately that f(5t) =tf(5) for t € Z, or f(x) = % for any z divisible by 5,
where f(5) = a.
Further, we claim that

f(x) = bz, (5)
where b = f(1), for all x not divisible by 5. In view of (3) it suffices to prove the claim for x > 0. We use
induction in k where x = 5k +r, k € Z, 0 < r < 5. For x = 1 (5) is obvious. Putting z = 1, y = —1 in
(1) gives f(1) = f(2) + f(—1) whence f(2) = f(1) — f(=1) = 2f(1) = 2b. Then f(3) = f(1) + f(2) = 3b
by (2). Finally, (1) with x = 1, y = 0 gives f(4) = f(3) + f(1) = 3b+ b = 4b. Thus the induction base is

verified.
Now suppose (5) is true for © < 5k. We have f(5k+1) = f(4(2k—2)+3(3—k)) = f(3(2k—2)+ (3 —
b; f(5k+2) = f(4(2k—1) +

( +
— k) + f((2k—2)+23—k)) = f(5k —3)+ f(4) = (5k — 3)b+4b = (5k + 1)
+302—k) = fFBRE—1)+2—=k)+ f(2k—1)+2(2—k)) = f(5k—1)+ f(3) = (5k—1)b+3b = (5k+2)b;
FOk+3)=f4-2k+3(1—k)=f3-2k+(1—k)+ f(2k+2(1—k)) = fGk+ 1)+ f(2) = Bk + 1)b+
+2b = (5k+3)b; f(Bk+4) = f(4(2k+1)+3(—k)) = f(3(2k+ 1)+ (—=k)) + f((2k+1) + 2(—Fk)) = f(Bk+
+3)+ f(1) = (5k + 3)b+ b = (5k + 4)b. Thus (5) is proved.



It remains to check that the function f(z) = % for x divisible by 5, f(x) = bx for 2 not divisible by
5 satisfies (1). It is sufficient to note that 5 either divides all the numbers 4z + 3y, 3z + y, = + 2y or does

not divide any of these numbers (since 3z +y = 5(z + y) — 2(z + 2y) = 2(4z + 3y) — 5(z + y)).

Ne6. Some squares of a n x n table (n > 2) are black, the rest are white. In every white square we write the
number of all the black squares having at least one common vertex with it. Find the maximum possible
sum of all these numbers.

The answer is 3n% — 5n + 2.

Solution. The sum attains this value when all squares in even rows are black and the rest are white.
It remains to prove that this is the maximum value.

The sum in question is the number of pairs of differently coloured squares sharing at least one vertex.
There are two kinds of such pairs: sharing a side and sharing only one vertex. Let us count the number of
these pairs in another way.

We start with zeroes in all the vertices. Then for each pair of the second kind we add 1 to the (only)
common vertex of this pair, and for each pair of the first kind we add % to each of the two common vertices
of its squares. For each pair the sum of all the numbers increases by 1, therefore in the end it is equal to
the number of pairs.

Simple casework shows that

(i) 3 is written in an internal vertex if and only if this vertex belongs to two black squares sharing a
side and two white squares sharing a side;

(ii) the numbers in all the other internal vertices do not exceed 2;

(iii) a border vertex is marked with % if it belongs to two squares of different colours, and 0 otherwise;

(iv) all the corners are marked with 0.

Note: we have already proved that the sum in question does not exceed 3 x (n — 1)* + %(47@ —4) =
= 3n? — 4n + 1. This estimate is valuable in itself.

Now we prove that the numbers in all the vertices can not be maximum possible simultaneously. To
be more precise we need some definitions.

Definition. The number in a vertex is mazimum if the vertex is internal and the number is 3, or the
vertex is on the border and the number is %

Definition. A path — is a sequence of vertices such that every two consecutive vertices are one square
side away.

Lemma. In each colouring of the table every path that starts on a horizontal side, ends on a vertical
side and does not pass through corners, contains a number which is not maximum.

Proof. Assume the contrary. Then if the colour of any square containing the initial vertex is chosen,
the colours of all the other squares containing the vertices of the path is uniquely defined, and the number
in the last vertex is 0.

Now we can prove that the sum of the numbers in any colouring does not exceed the sum of all the
maximum numbers minus quarter of the number of all border vertices (not including corners). Consider
the squares 1 x1,2x2, ..., (N —1) x (N —1) with a vertex in the lower left corner of the table. The right
side and the upper side of such square form a path satisfying the conditions of the Lemma. Similar set of
N — 1 paths is produced by the squares 1 x 1,2 x 2, ..., (N —1) x (N — 1) with a vertex in the upper
right corner of the table. Each border vertex is covered by one of these 2n — 2 paths, and each internal
vertex by two.

In any colouring of the table each of these paths contains a number which is not maximum. If this
number is on the border, it is smaller than the maximum by (at least) % and does not belong to any other
path. If this number is in an internal vertex, it belongs to two paths and is smaller than the maximum at
least by 1. Thus the contribution of each path in the sum in question is less than the maximum possible
at least by %, q.e.d.

An interesting question: is it possible to count all the colourings with maximum sum using this
argument?
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