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Problems and Solutions

Problem 1. Let a, b, c be non-zero real numbers such that

a2 + b+ c =
1

a
,

b2 + c+ a =
1

b
,

c2 + a+ b =
1

c
.

Prove that at least two of a, b, c are equal.
(Daniel Paleka)

First Solution. Let’s assume the opposite, i.e. a, b and c are pairwise non-equal. By subtracting the second equality
from the first one, we obtain

(a2 + b+ c)− (b2 + c+ a) =
1

a
− 1

b

(a2 − b2) + (b− a) =
b− a

ab

(a− b)(a+ b)− (a− b) +
a− b

ab
= 0

(a− b)

(
a+ b− 1 +

1

ab

)
= 0

1 point.

Since a 6= b we may conclude

a+ b− 1 +
1

ab
= 0 (1)

1 point.

Similarly, subtracting the third equality from the second one, combined with b 6= c, gives us

b+ c− 1 +
1

bc
= 0 (2)

1 point.

Expressions on the left side in (1) and (2) are both equal to 0 which specifically implies

a+ b− 1 +
1

ab
= b+ c− 1 +

1

bc

(a− c) +
1

b
·
(
1

a
− 1

c

)
= 0

(a− c) +
1

b
· c− a

ac
= 0

(a− c)

(
1− 1

b
· 1

ac

)
= 0

1− 1

abc
= 0

abc = 1

1



2 points.

Inserting that back into (1) results with

0 = a+ b− 1 +
1

ab
= a+ b− 1 +

abc

ab
= a+ b− 1 + c

⇒ b+ c = 1− a (3)

2 points.

Finally, combining (3) with the first of the 3 given equations results with

a2 + b+ c =
1

a

a2 + 1− a =
1

a

(a2 − a)+

(
1− 1

a

)
= 0

a(a− 1) +
a− 1

a
= 0

(a− 1)

(
a+

1

a

)
= 0

(a− 1) · a
2 + 1

a
= 0

Because of a2 + 1 > 0 we obtain a− 1 = 0, i.e. a = 1.

2 points.

Analogously we also find b = c = 1 which is a contradiction with the assumption so we conclude that at least two of
a, b, c are equal.

1 point.
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Second Solution. Let’s assume the contrary, i.e. a, b and c are pairwise different. After multiplying the first equation
with a, the second with b, and the third with c, we get:

a3 + ab+ ac = b3 + bc+ ba = c3 + ca+ cb = 1.

0 points.

In particular, the first two expressions are equal. Subtracting them and factorizing leads to:

a3 − b3 + ac− bc = 0

(a− b)(a2 + ab+ b2 + c) = 0

1 point.

Since a 6= b we may conclude:

a2 + ab+ b2 + c = 0

1 point.

Similarly, we can get the same thing for b and c:

b2 + bc+ c2 + a = 0

1 point.

Subtracting these two equations yields:

a2 − c2 + ab− bc+ c− a = 0

(a− c)(a+ c+ b− 1) = 0

2 points.

Because a 6= c, we obtain:

a+ b+ c = 1

2 points.

Now we proceed to arrive to a contradiction in the same way as in the previous solution.

3 points.

Notes on marking:

• After obtaining a = 1, we may use that fact in (3) to conclude b+ c = 0, i.e. c = −b. That gives us

1 = abc = 1 · b · (−b) = −b2

which isn’t satisfied for any b ∈ R. Again we reach contradiction with the assumption and conclude that at least
two of a, b, c are equal. This part of the solution should be awarded with 1 point.
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Problem 2. Find all pairs (x, y) of positive integers such that

xy | x2 + 2y − 1.

(Ivan Novak)

First Solution. Notice that the condition implies

x | 2y − 1.

1 point.

This implies that there exists a positive integer k such that kx = 2y − 1, so y = kx+1
2

.

1 point.

Returning to the starting assertion, we get that

x(kx+ 1)

2
| x2 + kx =⇒ kx+ 1 | 2(k + x).

2 points.

For all positive integers k, x, the following inequality is satisfied, with equality if and only if k = 1 or x = 1:

2(k + x)

kx+ 1
6 2 ⇐⇒ 2(k − 1)(x− 1) > 0.

2 points.

So as 2(k+x)
kx+1

∈ N, then we conclude that 2(k+x)
kx+1

∈ {1, 2}.

1 point.

We now have two possible cases.

1. k + x = kx+ 1. In this case, k = 1 or x = 1.

(a) If x = 1, then y can be any positive integer.
(b) If k = 1, then x = 2y − 1, where y is any positive integer.

1 point.

2. 2k + 2x = kx+ 1. Then 2x− 1 = k(x− 2) =⇒ x− 2 | 2x− 1 =⇒ x− 2 | 3. This has only two solutions, both of
which are true by an easy check: x = 3, k = 5, y = 8 or x = 5, k = 3, y = 8.

2 points.

Therefore, the set of solutions is
(x, y) ∈ {(1, t), (2t− 1, t), (3, 8), (5, 8) | t ∈ N.}
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Second Solution. Let (x, y) be a solution, and let x2+2y−1
xy

= g. This equation is equivalent with x2−(gy)x+2y−1 = 0.
We know x is one root of the equation. Let R be the other root. Using Vieta’s formulas, we obtain the following system
of equations:

x+R = gy

xR = 2y − 1.

3 points.

From the first equation we get that R is an integer, and from the second equation we get that it is a positive integer.

1 point.

Using the same inequality as in Solution 1, we get that gy 6 2y, which implies g = 1 or g = 2.

3 points.

We now split into two cases:

1. If g = 1, then x2 + 2y − 1 = xy =⇒ x2 − 1 = y(x − 2) =⇒ x − 2 | x2 − 1 =⇒ x − 2 | 3. This has only two
solutions, both of which are true by an easy check: x = 5, y = 8 or x = 3, y = 8.

2 points.

2. If g = 2, then x2 + 2y − 1 = 2xy =⇒ x2 − 1 = 2y(x − 1) =⇒ x = 1 or x = 2y − 1, and y can be any positive
integer.

1 point.

Therefore, the set of solutions is
(x, y) ∈ {(1, t), (2t− 1, t), (3, 8), (5, 8) | t ∈ N.}
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Third Solution. Let (x, y) be a solution, and let x2+2y−1
xy

= g. This equation is equivalent with x2−(gy)x+2y−1 = 0.

1 point.

The condition of the problem is satisfied if and only if the discriminant is a square of a positive integer.

1 point.

Let the discriminant be equal to k2. Then

k2 = g2y2 − 8y + 4 ⇐⇒ k2 = (gy − 2)2 + 4gy − 8y ⇐⇒

(k − gy + 2)(k + gy − 2) = 4y(g − 2).

2 points.

We now split into 3 cases depending on the size of g.

1. If g > 2, then 4y(g − 2) > 0 and k + gy − 2 > 0, which implies

k − gy + 2 > 0.

1 point.
Adding 2gy − 4y = 2y(g − 2) to the both sides, we obtain

k + gy − 2 > k + gy + 2− 4y > 2y(g − 2) =
(k + gy − 2)(k − gy + 2)

2
=⇒

k − gy + 2 < 2,

so the only possibility is k − gy + 2 = 1, k + gy − 2 = 4y(g − 2).
However, summing up the two equalities yields 2k = 4y(g − 2) + 1, which is a contradiction modulo 2. Therefore,
there are no solutions in this case.

2 points.
2. If g = 1, then x2 + 2y − 1 = xy =⇒ x2 − 1 = y(x − 2) =⇒ x − 2 | x2 − 1 =⇒ x − 2 | 3. This has only two

solutions, both of which are true by an easy check: x = 5, y = 8 or x = 3, y = 8.
2 points.

3. If g = 2, then x2 + 2y − 1 = 2xy =⇒ x2 − 1 = 2y(x − 1) =⇒ x = 1 or x = 2y − 1, and y can be any positive
integer.

1 point.

Notes on marking:

• Points from separate solutions can not be added. The competitor should be awarded the maximum of the points
scored in the 2 presented solutions, or an appropriate number of points on an alternative solution.
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Problem 3. Let ABC be an acute triangle with |AB| < |AC| and orthocenter H. The circle with center A
and radius |AC| intersects the circumcircle of 4ABC at point D and the circle with center A and radius |AB|
intersects the segment AD at point K. The line through K parallel to CD intersects BC at the point L. If M
is the midpoint of BC and N is the foot of the perpendicular from H to AL, prove that the line MN bisects
the segment AH.

(Miroslav Marinov)

First Sketch.

A

B C

H

D

E

F

K

L M

N

T

S

First Solution. We start with the following:

Lemma 1. AL is the angle bisector of ∠BAC.

Proof: Since A, B, C and D lie on the same circle we obtain that ∠ABC = ∠ADC = ∠ACD.

1 point.

From that we get the following three equations:

∠CAD = 180◦ − 2∠ADC = 180◦ − 2∠ABC

1 point.

∠BCD = ∠BAD = ∠BAK = ∠BAC − (180◦ − 2∠ABC) = ∠ABC − ∠ACB

1 point.

∠ABK = ∠AKB = 90◦ − ∠BAK

2
= 90◦ − ∠ABC − ∠ACB

2

1 point.

Next from LK ‖ CD it follows that ∠CLK = ∠LCD = ∠BCD = ∠BAK so A, B, L and K are concyclic.

1 point.

Now we have

∠BAL = ∠BAK − ∠LAK = ∠BAK − ∠LBK = (∠ABC − ∠ACB)− (∠ABC − ∠ABK) =
∠BAC

2

hence AL is the angle bisector of ∠BAC.

1 point.

Let E and F be the feet of the altitudes from B and C in 4ABC. Observe that ∠AEH = ∠AFH = ∠ANH = 90◦ so
A, E, H, N and F lie on the circle with diameter AH.

1 point.

Since AL is the angle bisector of ∠BAC its follows that |NE| = |NF |.
1 point.

7



Denote by T the midpoint of AH. Since T is the circumcenter of AEHNF we get |TE| = |TF |.
1 point.

Also since ∠BEC = ∠CFB, E and F lie on the circle with diameter BC from where we get |ME| = |MF | so M , N
and T lie on the bisector of EF .

1 point.
Alternative proof of Lemma 1.

Similarly as in the first proof, we obtain that ∠ABC = ∠ADC = ∠ACD.
1 point.

Let S be the intersection of KL and AC. Since LS ‖ DC, we have ∠ASL = ∠ACD = ∠ABC = ∠ABL.
2 points.

We also get ∠AKS = ∠ADC = ∠ASK, hence |AS| = |AK| = |AB|.
1 point.

Since B,L, S are not collinear (this is since SL is parallel to CD, which in turn isn’t parallel to BC since |AB| < |AC|),
we may conclude that 4ABL and 4ASL are congruent. The claim now follows.

2 points.

Second Sketch.

A

B C

H

L M

N

T

O

Second Solution. We get similarly as in the First Solution that AL is the angle bisector of ∠BAC.
6 points.

Denote by T the midpoint of AH. As 4HNA is right-angled, we have that ∠NTH = 2∠NAH.
1 point.

Denote by O the circumcenter of 4ABC. It is known that (as a consequence of existence of Euler line)

|AH| = 2|OM | =⇒ |AT | = |AH|
2

= |OM |

and as AT and OM are both orthogonal to BC, they are parallel, so ATMO is an parallelogram.
1 point.

Now as ∠HAB = 90◦ − ∠ABC = ∠OAC, we know that AL is the angle bisector of OAH.
1 point.

Then we have that ∠MTH = ∠OAH = 2∠NAH = ∠NTH and we conclude that T , N and M are colinear.
1 point.

Notes on marking:

• If a student has a partial solution with analytic methods, only points for proving facts that can be expressed in
geometric ways and lead to a compete solution can be awarded.
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Problem 4. Let n be a positive integer. Ana and Banana are playing the following game:
First, Ana arranges 2n cups in a row on a table, each facing upside-down. She then places a ball under a cup
and makes a hole in the table under some other cup. Banana then gives a finite sequence of commands to Ana,
where each command consists of swapping two adjacent cups in the row.
Her goal is to achieve that the ball has fallen into the hole during the game. Assuming Banana has no information
about the position of the hole and the position of the ball at any point, what is the smallest number of commands
she has to give in order to achieve her goal?

(Adrian Beker)

First Solution. We claim that the minimum number of commands is n(3n− 2).

Call a finite sequence of commands valid if it results in the ball falling into the hole while performing the commands,
regardless of the inital position of the ball and the position of the hole. Also call a position an endpoint if it is either the
first or the last position in the row.

Lemma 1. A sequence of commands is valid if and only if it results in each cup visiting both endpoints.

Proof. Suppose there exists a cup c that hasn’t visited an endpoint p. Then the ball fails to fall into the hole in
the case when it is under c and the hole is at p. Hence, the sequence is not valid. Conversely, if each cup has visited
both endpoints, by discrete continuity it must have also visited all positions in between. Hence, the ball has certainly
fallen into the hole, so the sequence is valid.

2 points.

Now consider a valid sequence of commands. We will show that it has length at least n(3n − 2). Let C be the set of
cups. For each c ∈ C, let kc be the total number of commands involving c. Since each command involves two cups, the
total number of commands is 1

2

∑
c∈C kc. So it suffices to show that

∑
c∈C kc > 2n(3n− 2).

1 point.

For each c ∈ C, let xc be the number of commands involving c before its first visit to an endpoint. Similarly, let yc be
the number of commands involving c after its last visit to an endpoint. Since c visited both endpoints, the number of
commands between its first and last visit to an endpoint must be at least 2n− 1. Hence, kc > xc + yc + 2n− 1.

2 points.

Now for each 1 6 i 6 2n, let ai be the cup at the i-th position from the left in the initial arrangement and similarly
let bi be the cup at the i-th position in the final arrangement. Then it follows that xai , ybi > min(i − 1, 2n − i) for all
1 6 i 6 2n. Hence ∑

c∈C

xc =

2n∑
i=1

xai >
2n∑
i=1

min(i− 1, 2n− i) = n(n− 1),

∑
c∈C

yc =

2n∑
i=1

ybi >
2n∑
i=1

min(i− 1, 2n− i) = n(n− 1),

∑
c∈C

kc >
∑
c∈C

(xc + yc + 2n− 1) > n(n− 1) + n(n− 1) + 2n(2n− 1) = 2n(3n− 2),

as desired. It remains to exhibit a valid sequence consisting of n(3n− 2) commands.

2 points.

Lemma 2. Consider n cups in a row. Then there is a sequence of n(n−1)
2

commands resulting in each cup visiting the
first position (and similarly for the last position).

Proof. For each 1 6 i 6 n in increasing order, for each 1 6 j < i in decreasing order, swap the cups currently at the j-th
and (j + 1)-st positions. This clearly results in each cup visiting the first position and consist of

∑n
i=1(i− 1) = n(n−1)

2

commands, as desired (the case for the last position is analogous).

Corollary. For 2n cups in a row, there is a sequence of n(n − 1) steps resulting in each of the first n cups visiting
the first position and each of the last n cups visiting the last position.

2 points.

Now first apply the algorithm from the corollary. Then for each 1 6 i 6 n in decreasing order, for each 0 6 j < n in
increasing order, swap the cups currently at the (i+ j)-th and (i+ j +1)-st positions. Finally, apply the algorithm from
the corollary again. It is easy to see that the performed sequence of commands is valid and it has length n(n− 1)+n2 +
n(n− 1) = n(3n− 2), as desired.

1 point.
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Second Solution. The starting lemma and the proof of the upper bound are the same as in the first solution and are
worth the same number of points. In this solution we present a different way to obtain the lower bound on the answer.

Let L be the set of cups that visit the first position before the last position and similarly let R be the set of cups
that visit the last position before the first position. Then C is the disjoint union of L and R, in particular |L|+ |R| = 2n.

1 point.

Now consider two cups a and b such that a is to the left of b at the beginning. Then note that a and b have to be swapped
at least once since otherwise a wouldn’t visit the last position (and b wouldn’t visit the first position). Moreover, if a
and b are swapped exactly once, then note that we must have a ∈ L, b ∈ R.

2 points.

Hence, it follows that the total number of swaps is at least(
2n

2

)
· 2− |L| · |R| > 2n(2n− 1)− n2 = n(3n− 2),

where we used the AM-GM inequality to obtain |L| · |R| 6
( |L|+|R|

2
) = n2.

2 points.

Notes on marking:

• Points obtained for different proofs of the lower bound are not additive, a student should be awarded the maximum
of points obtained for a single approach.

• If a student states that a sequence of commands being valid is equivalent to each cup visiting each position, it
should be awarded 0 points. The reason for this is that this characterisation of valid sequences is trivial and not
directly useful, whereas both solutions extensively make use of the characterisation presented in Lemma 1.
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Marin Getaldic

Problems and Solutions

Problem 1. A partition of a positive integer is even if all its elements are even numbers. Similarly, a partition
is odd if all its elements are odd. Determine all positive integers n such that the number of even partitions of
n is equal to the number of odd partitions of n.

Remark: A partition of a positive integer n is a non-decreasing sequence of positive integers whose sum of
elements equals n. For example, (2, 3, 4), (1, 2, 2, 2, 2) and (9) are partitions of 9.

(Ivan Novak)

Solution. Answer: n ∈ {2, 4}.

We first notice that if n is a solution, n must be even, otherwise there are no even partitions of n, and (n) is an
odd partition, so the number of odd partitions is greater then the number of even partitions.

1 point.

We now construct an injection f from the set of even partitions of n of cardinality k to odd partitions of n of cardinality 2k.

If p = (a1, . . . , ak), where 2 6 a1 6 a2 6 . . . 6 ak is an even partition, let

f(p) = (1, . . . , 1︸ ︷︷ ︸
k times

, a1 − 1, . . . , ak − 1).

5 points.

Obviously, f(p) is an odd partition of n. It is easy to see that f is injective because if f(p) = f(q) then the largest k
elements of f(p) and f(q) are equal, and then p and q must be equal.

2 points.

Number of odd partitions is equal to the number of even partitions if and only if f is surjective.

1 point.

It can be checked that for n = 2, n = 4, f is a bijection. Check (no points deducted if missing):

n = 2
(2)→ (1, 1)

n = 4
(4)→ (1, 3)

(2, 2)→ (1, 1, 1, 1)

For n > 4, partition (3, n− 3) is not in the image of f , since every element of the image contains at least one number 1,
so the number of even partition is equal to the the number of odd partitions if and only if n ∈ {2, 4}.

1 point.

Notes on marking:

• Stating that n = 2, 4 are the only solutions on its own is worth 0 points.

• Clearly attempting to construct an injection from the set of even partitions to the set of odd partitions without
success is worth 1 point.
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Problem 2. Let ABC be a triangle with |AB| < |AC|. Let k be the circumcircle of 4ABC and let O be the
center of k. Point M is the midpoint of the arc B̂C of k not containing A. Let D be the second intersection of
the perpendicular line from M to AB with k and E be the second intersection of the perpendicular line from
M to AC with k. Points X and Y are the intersections of CD and BE with OM respectively. Denote by kb
and kc circumcircles of triangles BDX and CEY respectively. Let G and H be the second intersections of kb
and kc with AB and AC respectively. Denote by ka the circumcircle of triangle AGH.
Prove that O is the circumcenter of 4OaObOc, where Oa, Ob, Oc are the centers of ka, kb, kc respectively.

(Petar Nizić-Nikolac)

First Sketch.

A

B C

O

M
D

E

X

YOb

Oc

G

H

Oa

k

ka

kb

kc

First Solution. We introduce standard angle notation, ∠CAB = α, ∠ABC = β and ∠BCA = γ.

As M is midpoint of arc B̂C, we know that ∠MOB = ∠COM = ∠COB
2

= ∠CAB = α, so

180◦ − ∠BDX = 180◦ − ∠BDC = ∠BAC = ∠BOM = ∠BOX

implying that BDXO is a cyclic quadrilateral. Analogously we get that CEOY is a cyclic quadrilateral.

2 points.

Another property of M being a midpoint of arc B̂C is that ∠CAM = ∠MAB = α
2
, so

∠DAB = 180◦ − ∠ABD − ∠BDA = (∠BDM − 90◦)− ∠BCA = (90◦ − ∠MAB)− γ =
(
90◦ − α

2

)
− γ =

β − γ
2

(1)

∠EAC = 180◦ − ∠CEA− ∠ACE = ∠ABC − (90◦ − ∠CEM) = β − (90◦ − ∠CAM) = β −
(
90◦ − α

2

)
=
β − γ
2

(2)

Combining (1) and (2) we obtain that |BD| = |EC|.
2 points.

As B,C,D and E lie on circumcircle, |BO| = |CO| = |DO| = |EO|, thus 4BOD ∼= 4COD. As kb and kc are
circumcircles of triangles BOD and COE respectively, we conclude that kb ∼= kc, thus |OOb| = |OOc|.

2 points.

Now see that
∠AGO = ∠ODB = 90◦ − ∠DOB

2
= 90◦ − ∠DAB (3)

∠OHA = 180◦ − ∠OEC = 180◦ −
(
90◦ − ∠EOC

2

)
= 90◦ + ∠EAC (4)

Combining (1), (2), (3) and (4) we obtain that AGOH is a cyclic quadrilateral.

2 points.

Now as |AO| = |BO| and ∠AGO = ∠BDO we conclude that ka ∼= kb, thus |OOa| = |OOb| = |OOc|, so O is the
circumcenter of 4OaObOc.

2 points.
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Second Sketch.

A

B C

O

M
D

E

X

YOb

Oc

G

H

Oa

S

k

ka

kb

kc

Second Solution. We introduce standard angle notation, ∠CAB = α, ∠ABC = β and ∠BCA = γ. As M is midpoint
of arc B̂C, we know that ∠CAM = ∠MAB = α

2
, so

∠DAB = 180◦ − ∠ABD − ∠BDA = (∠BDM − 90◦)− ∠BCA = (90◦ − ∠MAB)− γ =
(
90◦ − α

2

)
− γ =

β − γ
2

(1)

∠EAC = 180◦ − ∠CEA− ∠ACE = ∠ABC − (90◦ − ∠CEM) = β − (90◦ − ∠CAM) = β −
(
90◦ − α

2

)
=
β − γ
2

(2)

Combining (1) and (2) we obtain that |BD| = |EC|, so BDCE is an isoscales trapezoid.

2 points.

Let S be the intersection of diagonals of BDCE. Then using (1) and (2) we have

∠DSB = ∠SBE + ∠SDC = 2∠EAC = 2∠DAB = ∠DObD

so S lies on kb. Analogously we get that S lies on kc as well.

2 points.

Let O′ be the second intersection of kb and kc. Then

∠EO′B = ∠EO′S + ∠SO′B = 360◦ − ∠SCE − ∠BDS = 2(180◦ − ∠SCE) = 2(∠EAB) = ∠EOB

and as kb is symmetric to kc over OS (perpendicular bisector of BE and CE), we conclude that O and O′ lie on that
line so O ≡ O′, and we conclude that O is the second intersection of kb and kc.

2 points.

As kb is symmetric to kc over OS, we conclude that |OOb| = |OOc|.

1 point.

As ka = (AGH), kb = (BSOG) and kc = (CEOS), due to Miquel’s theorem we have that O lies on ka.

1 point.

Now as |AO| = |BO| and ∠AGO = ∠BDO we conclude that ka ∼= kb, thus |OOa| = |OOb| = |OOc|, so O is the
circumcenter of 4OaObOc.

2 points.

Notes on marking:

• If a student has a partial solution with analytic methods, only points for proving facts that can be expressed in
geometric ways and lead to a compete solution can be awarded.
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Problem 3. For which real numbers k > 1 does there exist a bounded set of positive real numbers S with at
least 3 elements such that

k(a− b) ∈ S

for all a, b ∈ S with a > b?

Remark: A set of positive real numbers S is bounded if there exists a positive real number M such that
x < M for all x ∈ S.

(Petar Nizić-Nikolac)

First Solution. Set of solutions:

k ∈
{
1 +
√
5

2
, 2

}
Verification:

• If k = φ = 1+
√
5

2
we can choose set {φ, 1+ φ, 1+ 2φ}. It works as φ(1+ φ− φ) = φ, φ(1+ 2φ− 1− φ) = φ2 = 1+ φ

and φ(1 + 2φ− φ) = φ+ φ2 = 1 + 2φ (all these properties are true as φ is a root of the quadratic x2 − x− 1 = 0).
• If k = 2 we can choose set {2, 3, 4}. It works as 2(3− 2) = 2, 2(4− 3) = 2 and 2(4− 2) = 4.

1 point.

Now we prove that these are the only possible values of k. Suppose k > 1 such that all required properties are satisfied.

Lemma 1. k(a− b) 6 a for all a, b ∈ S with a > b

Proof. Assume the opposite, that there exist a, b ∈ S with a > b such that k(a−b) > a. Fix b and denote f(x) = k(x−b).
We have f(a) > a. Consider these two conclusion for some x such that f(x) > x:

f(x) > x =⇒ k(x− b)− b > x− b =⇒ k(k(x− b)− b)− kb > k(x− b)− kb =⇒ f(f(x)) > f(x) (1)

1 point.

f(x) > x =⇒ (k − 1)f(x) > (k − 1)x =⇒ k(f(x)− b)− k(x− b) > f(x)− x =⇒ f(f(x))− f(x) > f(x)− x (2)

1 point.

By (1) we have that fn(a) > fn−1(a) > . . . > f(a) > a > b so fn(a) ∈ S,∀n ∈ N. On the other hand, by (2) we have
fk(a)− fk−1(a) > f(a)− a for all natural k. Summing up for k from 1 to n, we obtain

fn(a)− a =

n∑
k=1

(fk(a)− fk−1(a)) > n(f(a)− a)

However, this means that fn(a) ∈ S is unbounded as n grows, which is impossible. Hence, the lemma is proved.

1 point.

Lemma 2. S has a minimum and it is greater than 0

Proof. Now, denote m = inf S. Let’s first settle the case m = 0. However, then by fixing a and taking b small
enough such that k(a− b) > a we contradict the lemma. Therefore, we have m > 0.

1 point.

Without loss of generality we can take that m = 1 as we can scale the whole set. Assume that 1 6∈ S, and then there
exists an infinite sequence of elements of S tending to 1, i.e., for every a ∈ S there exists b ∈ S with 1 < b < a. Therefore,

k(a− b) > 1 =⇒ a > b+
1

k
=⇒ a > 1 +

1

k

However, then every a in S is larger than 1 + 1
k
so 1 = inf S > 1 + 1

k
> 1, which is a contradiction. Hence minS = 1.

1 point.

Lemma 3. For some x ∈ S, if x > Gn−1 then x > Gn for all n ∈ N, where Gn = 1 + 1
k
+ . . .+ 1

kn

Proof. We prove by induction on n. Basis for n = 0 is true as

k(x− 1) > minS = 1 =⇒ x > 1 +
1

k

Now we proceed with the inductive step. Take x > Gn. This implies that

k(x− 1) > k(Gn − 1) = Gn−1

Obviously, k(x− 1) ∈ S. However, by the induction hypothesis, it follows that k(x− 1) > Gn which rearranges into

x >
1

k
(Gn + k) = Gn+1

so the lemma is proved by mathematical induction.

4



1 point.

Let T = {G0, G1, G2, . . .}. Assume that exists some a ∈ S \ T . Then using Lemma 3 we get that

a > Gn and a 6∈ T =⇒ a > Gn+1 and a 6∈ T =⇒ a > Gn+1

and as a 6= G0 = 1 = minS, then a > supT = k
k−1

.

1 point.

However, a 6 k
k−1

holds as a consequence of Lemma 2, so the only member of S \ T is k
k−1

. Therefore,

S ⊆
{

k

k − 1
, G0, G1, G2, . . .

}
1 point.

However, if for some n > 1, Gn ∈ S, then Gn−1 = k(Gn − 1) ∈ S, so we have that

k(Gn −Gn−1) =
1

kn−1
∈ S

which is impossible due to k > 1, so we in fact have

S ⊆
{
1,
k + 1

k
,

k

k − 1

}
and due to |S| > 3 all three numbers must belong to the set (easy to see that they are distinct). However, then

k

(
k

k − 1
− k + 1

k

)
=

1

k − 1
∈
{
1,
k + 1

k
,

k

k − 1

}
which gives k ∈

{
1+
√
5

2
, 2
}
, both of which satisfy the condition by verification.

1 point.

Second Solution. Verification is the same and also worth 1 point. For a set A ⊆ R+, we will write 4A = {a − b |
a, b ∈ A, a > b}. Suppose k > 1 is such that there exists a set S with the required properties.

Lemma 1. If d ∈ 4S is not a maximal element, then kd ∈ 4S.

Proof. Let a, b ∈ S be such that a − b = d > 0. Since d is not maximal in 4S, either a is not maximal in S
or b is not minimal in S. If the former is true, then ∃c ∈ S with c > a, hence k(c − a), k(c − b) ∈ S. But then
k(c − b) − k(c − a) = k(a − b) = kd ∈ 4S, as desired. Otherwise, ∃c ∈ S with c < b, so k(b − c), k(a − c) ∈ S, hence
k(a− c)− k(b− c) = k(a− b) = kd, so we are done.

2 points.

Lemma 2. 4S is a finite geometric progression with common ratio k. In particular, S is finite.

Proof. First note that 4S must have a maximal element M . Indeed, otherwise we could take d ∈ 4S and induc-
tively obtain knd ∈ 4S for all n ∈ N, which is absurd since 4S is bounded as S is bounded.

1 point.

Now for any d ∈ 4S, take the maximal n ∈ N0 such that knd 6 M . Then it follows inductively that kid ∈ 4S for
0 6 i 6 n. By maximality of n, kn+1d > M , so we must have knd = M (otherwise we would have kn+1d ∈ 4S by the
Lemma 1). It follows that d = M

kn
and also M

ki
∈ 4S for all 0 6 i < n. Hence, 4S is a (possibly infinite) geometric

progression with common ratio 1
k
.

2 points.

Suppose that 4S is infinite. Then S contains an infinite geometric progression with ratio 1
k
. Then for any a, b ∈ S with

a > b, one can choose c in this progression with c < b, so that a − c > a − b. This contradicts the fact that 4S has a
maximal element, so 4S must be finite.

1 point.

Now by scaling WLOG assume that 4S = {1, k, . . . , km−1} for some m ∈ N. Then {k, k2, . . . , km} ⊆ S, hence
4{k, k2, . . . , km} ⊆ 4S. But note that ki+1 − ki < ki+2 − ki+1 for all 1 6 i < m − 1 and km − ki > km − ki+1

for all 1 6 i < m− 1, so it follows that |4{k, k2, . . . , km}| > 2m− 3. Hence, 2m− 3 6 m, i.e. m 6 3.

1 point.
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Now m > |S| − 1, so |S| 6 4. If |S| = 4, then m = 3 and it can easily be checked that S is an arithmetic progression, say
with difference d > 0. But then 4S = {d, 2d, 3d}, which is not a geometric progression. Hence, |S| = 3.

1 point.

Now we can write S = {a, b, c}, with a < b < c. As k(b− a), k(c− b) < k(c− a) and k4S ⊆ {a, b, c}, five cases arise:

• If k(b− a) = a, k(c− b) = a and k(c− a) = b. Then k+1
k
a = b = k(c− a) = k(c− b) + k(b− a) = 2a, so k = 1. 7

• If k(b− a) = a, k(c− b) = a and k(c− a) = c. Then k
k−1

a = c = k(c− a) = k(c− b) + k(b− a) = 2a, so k = 2. 3

• If k(b− a) = a, k(c− b) = b and k(c− a) = c. Then k+1
k
a = b = k

k+1
c = k2

(k+1)(k−1)
a, so k = 1+

√
5

2
or 1−

√
5

2
. 3 or 7

• If k(b− a) = b, k(c− b) = a and k(c− a) = c. Then b = k
k−1

a = c, which is impossible. 7

• If k(b− a) = b, k(c− b) = b and k(c− a) = c. Then k+1
k
b = c = k(c− a) = k(c− b) + k(b− a) = 2b, so k = 1. 7

1 point.

Third Solution. Verification is the same and also worth 1 point. We use the same notation as in the Second Solution.

Lemma 1. S is finite.

Proof. Let m = inf S, M = supS (these exist since S is bounded both below and above as a subset of R). Then
note that sup4S = M −m. This holds since for any a, b ∈ S we have a − b 6 M −m and moreover given any ε > 0,
there exist a, b ∈ S such that a > M − ε

2
, b < m+ ε

2
, so that a− b > M −m− ε.

1 point.

Since k4S ⊆ S, we have sup(k4S) 6M , i.e. sup4S 6 M
k
, M −m 6 M

k
, m > k−1

k
M .

Again since k4S ⊆ S, we have inf(k4S) > m, i.e. inf4S > m
k

> k−1
k2
M .

1 point.

So if a1, a2, . . . , an are some elements of S with m 6 a1 < a2 < . . . < an 6 M , we have ai+1 − ai > k−1
k2
M for all

1 6 i < n, so we get
M

k
>M −m > an − a1 =

n−1∑
i=1

ai+1 − ai > (n− 1) · k − 1

k2
M,

hence n 6 2k−1
k−1

. In particular, S is finite.

1 point.

Lemma 2. |S| = 3.

Proof. Let a1 < a2 < . . . < an be the elements of S, and assume for the sake of contradiction that |S| > 4.

We know k(an − a1) > k(an−1 − a1) > . . . > k(a2 − a1) are elements of S, and there are at least n − 2 elements
of S greater than k(a2 − a1). This implies k(a2 − a1) ∈ {a1, a2}. Using a similar argument, k(a3 − a1) ∈ {a2, a3},
k(a3 − a2) ∈ {a1, a2} and k(a4 − a1) ∈ {a3, a4}.

2 points.

If k(a2 − a1) = a2, then k(a3 − a1) = a3, so a2 = a1
k
k−1

= a3, which is impossible, therefore k(a2 − a1) = a1 which
implies that a2 = a1(1 +

1
k
).

1 point.

If k(a3 − a1) = a2, then a3 = a1 +
a2
k

= a1(1 + 1
k
+ 1

k2
), so k(a3 − a2) = ka1(1 + 1

k
+ 1

k2
− 1 − 1

k
) = a1

k
< a1, which is

impossible. Therefore, k(a3 − a1) = a3 which implies that a3 = a1
k
k−1

.

1 point.

Now, because k(a4 − a1) > k(a3 − a1) = a3, we know that k(a4 − a1) = a4 as there are n − 4 differences greater than
this, but this implies a4 = a1

k
k−1

= a3, a contradiction. Therefore, |S| = 3.

1 point.

Similar finish as in the Second Solution which is also worth 1 point.
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Alternative proof of Lemma 2.

Fact. Let A = {a1, a2, . . . , an} with a1 < a2 < . . . < an and n > 3 be a finite set of real numbers such that |4A| 6 |A|.
Then either

• there exist j ∈ {1, . . . , n− 1} and 0 < d 6 aj+1 − aj such that ai+1 − ai = d for all 1 6 i < n with i 6= j or

• a2 − a1 = an − an−1 and there exists 0 < d < a2 − a1 such that ai+1 − ai = d for all 1 < i < n− 1.

Proof. Take j ∈ {1, . . . , n − 1} that maximizes aj+1 − aj . Suppose first that j can be taken so that 1 < j < n − 1.
If at+1−at = aj+1−aj for all 1 6 t < n, then we are done, so suppose ∃t ∈ {1, . . . , n−1} such that at+1−at < aj+1−aj .

Now call a sequence of pairs of indices (l1, r1), (l2, r2), . . . , (ln−1, rn−1) a path if (l1, r1) = (j, j + 1) and (li+1, ri+1) ∈
{(li, ri + 1), (li − 1, ri)} for all 1 6 i < n− 1. Define the signature of a path to be the sequence (ari − ali)16i6n−1.

We claim that any two paths have the same signature. Indeed, note that for any path, at+1 − at, ar1 − al1 , ar2 −
al2 , . . . , arn−1 − aln−1 is a strictly increasing sequence of n elements of 4A, so the elements of the signature are fixed
since |4A| 6 n.

Now given any p < j, q > j, we can choose two paths (li, ri) and (l′i, r
′
i) such that (lq−p, rq−p) = (p, q) and (l′q−p, r

′
q−p) =

(p + 1, q + 1). By the previous observation, it follows that aq − ap = aq+1 − ap+1, i.e. ap+1 − ap = aq+1 − aq. Since
1 < j < n − 1, it follows that aq+1 − aq = a2 − a1 for all q > j and also ap+1 − ap = an − an−1 for all p < j. Since
a2 − a1 = an − an−1, we have ai+1 − ai = a2 − a1 for all i 6= j, as desired.

It remains to deal with the case when ai+1−ai < aj+1−aj for 1 < i < n−1. Note that |{ai+1−ai | 1 6 i < n}| 6 2 since
otherwise we could choose 1 6 s, t < n and a path (li, ri) such that as+1−as, at+1−at, ar1−al1 , ar2−al2 , . . . , arn−1−aln−1

is a strictly increasing sequence of n+ 1 elements of 4A, which is absurd. The claim now follows.

3 points.

Now we proceed by proving |S| = 3. Suppose for the sake of contradiction that |S| > 4. Enumerate S as x1 < x2 <
. . . < xn, where n > 4, Since S satisfies the hypothesis of the lemma, we may consider the following cases:

Case 1. (xi) is an arithmetic sequence
Let d be the difference of (xi). Then the enumeration of k4S is an arithmetic subsequence of (xi) of length n− 1, with
difference kd. Since n > 4, it is either x1, . . . , xn−1 or x2, . . . , xn, so it must have difference d, contradiction.

Case 2. ∃a, b > 0, j ∈ {1, . . . , n− 1} such that a < b, xj+1 − xj = b and xi+1 − xi = a for 1 6 i < n, i 6= j
Then k4S = {ka, kb, k(b + a), . . . , k(b + (n − 2)a)}, where ka < kb < k(b + a) < . . . < k(b + (n − 2)a). Hence,
x2 − x1 = k(b − a) and xi+1 − xi = ka for 1 < i < n. It follows that j = 1, k(b − a) = b and ka = a, which is absurd
since k > 1.

Case 3. ∃a, b > 0 such that a < b, x2 − x1 = xn − xn−1 = b and xi+1 − xi = a for 1 < i < n− 1
Then k4S = {ka, kb, k(b+a), . . . , k(b+(n−3)a), k(2b+(n−3)a)}, where ka < kb < . . . < k(b+(n−3)a) < k(2b+(n−3)a).
Hence, xn − xn−1 = kb, which is absurd since k > 1.

2 points.

Notes on marking:

• A student cannot be awarded with points from two different solutions.

• In all solutions, if a student states that verification "is trivial" it should be awarded 0 points. However, it is
enough to give examples of sets for two possible values of k and then the student should be awarded 1 point. This
point can be awarded even if student hasn’t solved the problem completely.

• In First Solution, if a student writes explicitly that a 6 k
k−1

without showing that S ⊆
{

k
k−1

, G0, G1, G2, . . .
}

it
should also be awarded 1 point.

• In Second Solution, if a student states that deduction from |S| = 3 to k = 1+
√
5

2
or 2 "is trivial" it should be

awarded 0 points.

• In Third Solution, if a student states that |4A| = |A| − 1 iff A is an aritmetic sequence, it should be awarded 1
point. However, if a student states just that |4A| > |A| − 1 for all sequences, it should be awarded 0 points.

• In Alternative proof of Lemma 2, if a student states correctly the whole class of sequences satisfying |4A| = |A|,
it should be awarded 1 point.

• If student’s solution is true with fact that S is finite, it should be awarded at most 7 points.

• If student proves that |S| 6 c for some c ∈ N independent of k, it should be awarded 5 points) (1 point for
verification is not included and can also be awarded separetly).
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Problem 4. Let x, y,m, n be integers greater than 1 such that

xxx·
·x︸ ︷︷ ︸

m times

= yy
y·
·y︸ ︷︷ ︸

n times

.

Does it follow that m = n?

Remark: This is a tetration operation, so we can also write mx = ny for the initial condition.
(Petar Nizić-Nikolac)

Solution. Yes, it does. Assume for the sake of contradiction that x < y. Then m > n. Define function f recursively

f(r) =

{
f(logx(r)) + 1 if logx(r) ∈ N
0 else

for example, if x = 2, then f(256) = f
(
22

3
)
= 2. Essentially it is the least possible height of an exponent different from x.

Lemma 1. f (y) > 1.

Proof. Let p be a prime number such that p | x (it exists as x > 1). Then p | y , so write x = pa · x′ and y = pb · y′,
where p - x′, y′. Let a′ = a

(a,b)
and b′ = b

(a,b)
. Let vp(r) denote the largest integer such that pvp(r) | r. Then

vp (
mx) = vp (

ny) =⇒ vp
(
(pa)

m−1x
)
= vp

((
pb
)n−1y

)
=⇒ a · m−1x = b · n−1y =⇒ xa·

m−1x = xb·
n−1y =⇒

=⇒ (mx)a = xb·
n−1y =⇒ (ny)a = xb·

n−1y =⇒ ya·
n−1y = xb·

n−1y =⇒ ya = xb =⇒ ya
′
= xb

′

so there exists z such that x = za
′
and y = zb

′
.

2 points.

As 1 6 a′ < b′ and (a′, b′) = 1, then

a · m−1x = b · n−1y =⇒ b′

a′
=
b

a
=

n−1y
m−1x

=

(
zb
′
)n−2y

(za′)
m−2x

= zb
′·n−2y−a′·m−2x =⇒ a′ | b′ =⇒ a′ = 1 =⇒ y = xb

′

so we conclude that f(y) > 1.

1 point.

Lemma 2. f (ny) 6 2.

Proof. We have two cases depending on f(y).

Case 1. f(y) = 1

Write y = xk where f(k) = 0. Then

f (ny) = f

((
xk
)n−1y

)
= f

(
xk·

n−1y
)
= f

(
k · n−1y

)
+ 1 = f

(
k · xk·

n−2y
)
+ 1 = 1

as if k · xk·
n−2y = xl =⇒ f(k) = 1 or k = 1 which is impossible, so f

(
k · xk·

n−2y
)
= 0.

3 points.

Case 2. f(y) > 2

Write y = xx
k

. Then

f (ny) = f

((
xx

k
)n−1y

)
= f

(
xx

k·n−1y
)
= f

(
xk · n−1y

)
+ 1 = f

(
xk · xx

k·n−2y
)
+ 1 = f

(
k + xk · n−2y

)
+ 2 = 2

as if k + xk · n−2y = xl =⇒ xk | k which is impossible, so f
(
k + xk · n−2y

)
= 0.

3 points.

Using this conlusion we have that

2 6 m = f (mx) = f(LHS) = f(RHS) = f (ny) 6 2 =⇒ m = 2 =⇒ xx < yy = 2y 6 ny = xx

which is impossible, so we conclude m = n.

1 point.
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