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Problem 1. Suppose a, b, c are positive integers such that

gcd(a, b) + gcd(a, c) + gcd(b, c) = b+ c+ 2023.

Prove that gcd(b, c) = 2023.

Remark: For positive integers x and y, gcd(x, y) denotes their greatest common divisor.

(Ivan Novak)

Solution. We want to prove gcd(a, b) = b and gcd(a, c) = c, since then the equality from the problem statement implies
gcd(b, c) = 2023.

1 point.

Note that gcd(a, b) is a divisor of b and gcd(b, c) is a divisor of c, so we must have gcd(a, b) = b
u

and gcd(a, c) = b
v

for
some positive integers u, v and we have

b

u
+

c

v
+ gcd(b, c) = b+ c+ 2023.

We want to prove u = v = 1 so we need to eliminate other options. We do this by considering some cases.

1 point.

Case I. Both u and v are greater than 1.
In this case, we have gcd(a, b) ⩽ b

2
and gcd(a, c) ⩽ c

2
, so we must have gcd(b, c) > b+c

2
. However, gcd(b, c) is a divisor of

b and c so it is not greater than any of them and thus can’t exceed their average, so we get a contradiction.

4 points.

Case II. u = 1 and v > 1.
In this case, we have

b+
c

v
+ gcd(b, c) = b+ c+ 2023,

which can be rewritten as
gcd(b, c) = c+ 2023− c

v
.

Since c− c
v
⩾ c

2
, we have gcd(b, c) ⩾ c

2
+ 2023, so it is a divisor of c greater than c

2
. Thus, it must be equal to c, so we

conclude that c divides b. However, note that b | a since gcd(a, b) = b, so we have c | b | a which implies c | a. But then
gcd(a, c) = c, i.e. v = 1, a contradiction.
Case III. u > 1 and v = 1.
This case is analogous to Case II, so we don’t need to consider it.

4 points.

Notes on marking:

• The points are all additive.

Problems and Solutions



Problem 2. Let n ⩾ 5 be an integer. There are n points in the plane, no three of them collinear. Each day, Tom
erases one of the points, until there are three points left. On the i-th day, for 1 ⩽ i ⩽ n− 3, before erasing that
day’s point, Tom writes down the positive integer v(i) such that the convex hull of the points at that moment
has v(i) vertices. Finally, he writes down v(n− 2) = 3. Find the greatest possible value that the expression

|v(1)− v(2)|+ |v(2)− v(3)|+ . . .+ |v(n− 3)− v(n− 2)|

can obtain among all possible initial configurations of n points and all possible Tom’s moves.

Remark. A convex hull of a finite set of points in the plane is the smallest convex polygon containing all the
points of the set (inside it or on the boundary).

(Ivan Novak, Namik Agić)

Solution. The answer is 2n− 8. The construction which achieves the bound is the following:
Take a semicircle Ω and mark n− 1 points on it as B1, . . . Bn−1, in that order. Mark A as the intersection of tangents to
Ω at B1, Bn−1 and consider A and Bi as n starting points. In the first move, erase A, and after the first move erase Bi

in arbitrary order. It is easy to check that the first summand is n− 4 and the remaining n− 4 summands are 1, giving
the desired bound.

3 points.

The proof of the bound is as follows:
The key idea is to look at the contributions of the individual vertices to the sum. We will prove that each vertex X has
a contribution at most 2 to the sum. This is more or less immediate, the first possible contribution is when it becomes
a vertex on a convex hull, and a second possible contribution is when it is erased from the hull (The sums after and
before these 2 events are not affected by X, as well as between). Moreover, the points on an initial hull lose 1 possible
contribution, and points of the final hull lose 1 possible contribution (consequence of the possibilities for contribution of
a vertex).

3 points.

Let z = v(1). From this we get an upper bound in contributions 2n− z − 3 (Trivially, z is at least 3), Now we split into
2 cases to further sharpen this:

1 point.

• If there exists an index i such that v(i) < v(i+1), let A be the erased vertex and let B1, . . . Bk be the new vertices
on the hull. The contributions from A and Bi for some i (WLOG say i = 1) cancel out, bringing the total bound
of contributions to 2n− 3− 3− 2 = 2n− 8.

2 points.

• If there is no such i, we get the bound of n − 3 (as v(i + 1) ⩾ v(i) − 1), and because n ⩾ 5, we also get an upper
bound of 2n− 8 ⩾ n− 3.

1 point.

In both cases we obtain the desired upper bound and the proof is complete.

Notes on marking:

• If a solution does not discuss the case where v(i) is strictly decreasing (i.e. misses the discussion as in second bullet
point), 1 point should be deducted.



Problem 3. Consider an acute-angled triangle ABC with |AB| < |AC|. Let M and N be the midpoints of
segments BC and AB, respectively. The circle with diameter AB intersects the lines BC, AM and AC at D,
E, and F , respectively. Let G be the midpoint of FC. Prove that the lines NF , DE and GM are concurrent.

(Michal Pecho)

Solution. Let A′ be the reflection of A across M , and let F ′ be the reflection of F across N . Easy angle chase gives
that D and F are feet of altitudes from A,B respectively.

1 point.

First, ∠DCA′ = ∠ABC = ∠DEA′, meaning that DECA′ is cyclic. As NF = NA, FB ∥ AC ∥ BA′, which gives F,B,A′

collinear. Now we have ∠F ′FA = ∠BAC = ∠CA′B = ∠CA′F , which yields F ′FCA′ cyclic. =1

3+3 point.

From the radical center theorem on (BDEFA), (DECA′), (F ′FCA′) we know that CA′, FF ′, DE are concurrent. Let
Z be the point of concurrency.

2 points.

As ∠F ′FC = ∠FCA′,we get that ∠ZFC = ∠ZCF , i.e. Z lies on the perpendicular bisector of FC. But this bisector
is exactly GM (as MF = MC and GF = GC). Finally, Z also lies on GM and the three lines from the statement are
indeed concurrent at Z

1 point.

Notes on marking:

• There is a projective approach to the problem, sketched in a marking scheme. Other computational methods seem
hard to execute. For partial non-synthetic solutions, only the parts which are geometric interpretations will be
awarded points.

• If the solution marks the additional points as in the above, points will be given only for obtaining useful results,
not solely on marking them.



Problem 4. We say a 2023-tuple of nonnegative integers (a1, a2, . . . a2023) is sweet if the following conditions
hold:

• a1 + a2 + . . .+ a2023 = 2023,
• a1

21 + a2

22 + . . .+ a2023

22023 ⩽ 1.

Determine the greatest positive integer L such that

a1 + 2a2 + . . .+ 2023a2023 ⩾ L

holds for every sweet 2023-tuple (a1, a2, . . . , a2023).
(Ivan Novak)

Solution. Let a1, a2, . . . be a sweet sequence for which the least value L of a1 + 2a2 + 3a3 + . . . is achieved.
Suppose that there are two nonconsecutive indices i < k with ai, ak > 0.
Consider the sequence

(a1, a2, . . . , ai−1, ai − 1, ai+1 + 2, ai+2, . . . , ak−1, ak − 1, ak+1, . . .),

i.e. the sequence in which the i-th and k-th term are reduced by 1 and the i+ 1-th term is increased by 2.
We claim that this sequence is also sweet and that it achieves the value not greater than L.
The sum of its elements is unchanged so the first condition is satisfied.
For the second condition, note that

ai − 1

2i
+

ai+1 + 2

2i+1
+

ak − 1

2k
=

ai

2i
+

ai+1

2i+1
+

ak

2k
− 1

2k
,

so the sum in the second condition decreases, so it remains smaller than 1.
Finally, we claim that the value of the sum we’re minimising didn’t increase. Indeed, we have

i(ai − 1) + (i+ 1)(ai+1 + 2) + k(ak − 1) = iai + (i+ 1)ai+1 + kak − (k − i− 2),

and since k ⩾ i+ 2, this means the sum didn’t increase.
Repeating this transformation finitely many times, we obtain a sequence which obtains the minimum and which doesn’t
have two nonconsecutive indices i < k with ai, ak > 0. Thus, it suffices to check sequences of the form

(0, 0, . . . , 0, a, b, 0, 0, . . .),

with i− 1 leading zeroes for some positive integer i, and with a > 0, b ⩾ 0.

6 points.

In this case, we have the conditions

a+ b = 2023,

2a+ b ⩽ 2i+1,

and we’re minimising the expression
f(a, b, i) = ia+ (i+ 1)b = 2023i+ b.

Since 0 ⩽ b < 2023, the optimal value of i is the least one for which the two conditions can be satisfied. We must have
2i+1 = 2a+ b > 2023, which holds if and only if i+ 1 ⩾ 11, i.e. we must check i = 10.

3 points.

When i = 10, we have a+ b = 2023, 2a+ b ⩽ 2048, which gives b ⩾ 1998, or

10a+ 11b ⩾ 20230 + 1998 = 22228.

This value can be obtained for a = 25 and b = 1998, so we conclude that L = 22228.

1 point.

Notes on marking:

• In the first part worth 6 points, 2 points will be awarded if the solution states that we can WLOG have
equality in (2).

• Failed attempts of smoothing the sequence will be worth points depending on how close is it to the correct
one (1 or 2 points). If it also contains first remark, the total sum is 1+pts on smoothing (not completely
additive with smoothing)
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Problem 1. Determine all sets of real numbers S such that:

• 1 is the smallest element of S,

• for all x, y ∈ S such that x > y,
√
x2 − y2 ∈ S.

(Adian Anibal Santos Sepčić)

Solution. All such sets are the set
√
N = {

√
n | n ∈ N} and the sets

√
[n] = {

√
k | k ⩽ n, k ∈ N} for any n ∈ N. It’s

easy to check that all such sets satisfy the problem’s condition.

1 point.

We will now show that any S that satisfies the two conditions of the problem is of this form. It suffices to show that S
can only contain square roots of positive integers and that

√
n ∈ S implies that

√
m ∈ S for any m ⩽ n.

First, note that we have 1 ∈ S so for any x ∈ S with x > 1 we have
√
x2 − 1 ∈ S. Repeated application of this gives that√

x2 − n ∈ S for any n ∈ N such that n < x2.

3 points.

Now, assume that some number x ∈ S is not the square root of an integer. We then immediately have 0 < x2 −⌊x2⌋ < 1
as x2 is not an integer, and the above consideration gives that

√
x2 − ⌊x2⌋ ∈ S and is strictly less than 1, which is a

contradiction with 1 = min(S). Therefore, we conclude that any element of S has to be the square root of an integer.

5 points.

Now, take some
√
n ∈ S. The above consideration immediately gives

√
n− 1 ∈ S and we can conclude by induction that

any smaller square root of an integer must also be a member of S, and we are done.

1 point.

Notes on marking:

• Any proof that shows that the members of S must necessarily be square roots of positive integers is worth 8 points.
Of the other 2 points, one is assigned for correctly and completely writing the solution set, and one for noting that
if
√
n ∈ S, then all smaller square roots

√
m must also be in S. This must be explicitly commented on.

Problems and Solutions



Problem 2. Let ABC be a triangle such that ∠BAC = 90◦. The incircle of triangle ABC is tangent to the
sides BC, CA, AB at D, E, F respectively. Let M be the midpoint of EF . Let P be the projection of A onto
BC and let K be the intersection of MP and AD. Prove that the circumcircles of triangles AFE and PDK
have equal radius.

(Kyprianos-Iason Prodromidis)

First Solution. Let S = EF ∩ BC, and let I be the center of the incircle of △ABC and let H be the orthocenter of
△DEF . Easy angle chase shows ∠FDE = 45◦, and hence we have DH = EF (both being equal to

√
2

2
times the radius

of the incircle of △ABC). Also, as DIAH is a parallelogram, AH ⊥ BC and DH ⊥ EF which give AHP collinear.
Our goal is to show DKHP cyclic, because then diameters of the circles in question would be DH and EF respectively
(latter because HP ⊥ DP ), which we showed are equal.

3 points.

The main claim is the following: IS ⊥ AD (This holds regardless of the right angle). One can prove it either via complex
numbers (setting (DEF ) as the unit circle) or by showing that AD is a polar of S with respect to the incircle of △ABC.
We will omit the proofs because the lemma is well-known.
Also, AMPS is cyclic because of the right angles at M,P

2 points.

Now we have:
∠HPK = ∠APM = ∠ASM = ∠ISM,

where the second equality follows from the AMPS being cyclic, the third equality follows from AEIF being a square,
i.e. I is the reflection of A across EF .

2 points.

Using the lemma we have:

∠ISM = ∠DAM = ∠KAM = ∠HDK,

where the first equality holds because IS ⊥ AD and SM ⊥ AM , and the last equality follows from DH ∥ AM .

2 points.

These 2 chains of equality show ∠HPK = ∠HDK, which exactly means HPDK is cyclic, and we conclude from the
first paragraph.

1 point.

Second Solution. Let I be the circumcircle of DEF , notice that AEFI is a square. Let BC,EF meet at S. It is clear
that AMKS is cyclic. Also A lies on the D-symmedian so since IS ⊥ AD, if IS,AD intersect at X, this point lies on
the circumcircles of IEF,AMK.

3 points.

Let circles of DKL,AMK intersect at Y , it follows that ∠DLK = ∠DYK. But, ∠DLK = ∠KTD + ∠MSA =
90◦ − ∠SDA+ ∠MSA = ∠DSM = ∠MYK. It follows that Y is on DM .

2 points.

Now, we shall show that the feet of E and F on DF and DE, respectively lie on the circle of DKL. By the theorem of
radical axis, if circles FMY,EAF meet at Z, then Z would be on DF . We also have ∠EZF = 90◦, since ∠EAF = 90◦.
Analogously, if the circles of EMY,EAF meet at W , we can generate a similar result. Thus, the circles of DKL,DZW
would be the same, i.e., identical. If H is the orthocenter of DEF , we have RDKL = RDZW = DH

2
= IA

2
= RAEF , as

desired.

5 points.

Notes on marking:

• Citing the lemma as well-known won’t cause point loss.

• In all incomplete computational solutions, only the geometric facts derived from the calculations will be worth
points.



Problem 3. Let n be a positive integer. Let Bn be the set of all binary strings of length n. For a binary string
s1s2 . . . sn, we define its twist in the following way. First, we count how many blocks of consecutive digits it has.
Denote this number by b. Then, we replace sb with 1 − sb. A string a is said to be a descendant of b if a can
be obtained from b through a finite number of twists. A subset of Bn is called divided if no two of its members
have a common descendant. Find the largest possible cardinality of a divided subset of Bn.

(Viktor Simjanoski)

Solution. For a string s, denote its twist by f(s), and the number of blocks of consecutive digits it has by b(s). Construct
an undirected graph G on Bn with edges (s, f(s)) for all s ∈ Bn, and note that the largest possible cardinality of a divided
subset of Bn is the number of connected components of the graph.
Each connected component of G contains exactly one cycle, and we aim to show that each cycle in the graph has a length
of exactly 2.

1 point.

Assume that there exists a cycle A ⊆ Bn which is not of length 2. First, fix some s ∈ A.
We wish to show that 1 < b(s) < n. If we have b(s) = 1, then s is either the string with all ones or the string with all
zeroes, and we can easily see that f(s) = f3(s) and s ̸= f(f(s)), which contradicts s ∈ A. Similarly, if b(s) = n then s is
one of the two alternating strings and we arrive to the same conclusion.

1 point.

Now consider x = sb(s)−1, y = sb(s), z = sb(s)+1. A twist replaces y with 1− y, and depending on x, z changes b(s) in the
following ways:

• if x = z ̸= y, we have b(f(s)) = b(s)− 2.

• if x = y = z, we have b(f(s)) = b(s) + 2.

• if x ̸= y = z or x = y ̸= z, we have b(f(s)) = b(s) and moreover we see that f(f(s)) = s and the connected
component of s has a cycle of length 2 so s ̸∈ A.

We therefore see that if s ∈ A, we have b(f(s)) = b(s)± 2.

1 point.

Now, consider some s ∈ A. We then have fk(s) = s for some k ∈ N. Take s such that b(s) ⩾ b(fm(s)) for any 1 ⩽ m < k,
i.e. the element of the cycle with the largest number of blocks.
We have b(f(s)) = b(s) − 2 = b(f−1(s)) by maximality and the previous proof. Notice that the application of f only
changes the positions in s which are of the same parity as b(s). We can see (as b(s) = b(f−1(s)) + 2 that sb(s)−3 =
sb(s)−1 ̸= sb(s)−2 and by similar reasoning sb(s)−1 = sb(s)+1 ̸= sb(s).

1 point.

Now, consider the least t > 0 such that b(f t(s)) = b(s). By minimality of t, it follows that f t(s)b(s) = 1− sb(s) but as we
have sb(s)+1 = 1 − sb(s) = sb(s)−1 we obtain that b(f(f t(s))) = b(s) + 2 which contradicts the maximality of b(s) in A,
so no such component A can exist.

4 points.

Now, let us count the possible cycles of length 2. Each cycle of length 2 occurs when we have f(f(s)) = s and b(s) =
b(f(s)), which gives 2 ⩽ b(s) ⩽ n− 1.
We count by fixing either the left or right of the position b(s) = k in a string s as one of k − 1 "break" points between
0/1 blocks in the string s and then counting that the other k − 2 block "breakpoints" can be assigned in

(
n−3
k−2

)
ways to

the remaining n− 3 spots between two symbols of s, with each assignment of blocks giving two distinct outcomes due to
the choice of 0/1 in the starting block. This gives a total of

n−1∑
k=2

2

(
n− 3

k − 2

)
= 2n−2

different cycles of length 2 and we are done.

2 points.



Problem 4. Let f : N → N be a function such that for all positive integers x and y, the number f(x) + y is a
perfect square if and only if x+ f(y) is a perfect square. Prove that f is injective.

Remark. A function f : N → N is injective if for all pairs (x, y) of distinct positive integers, f(x) ̸= f(y) holds.

(Ivan Novak)

Solution. Suppose for the sake of contradiction that there exist positive integers a, b and c such that f(a) = f(b) = c
and a > b. Consider any x >

√
c.

Then, since x2 − c+ c = x2 − c+ f(a) = x2 − c+ f(b) is a square, both f(x2−c)+a and f(x2−c)+b are squares. Since
a− b > 0, we have the following bound:

a− b = (f(x2 − c) + a)− (f(x2 − c) + b) >
√

f(x2 − c) + a+
√

f(x2 − c) + b.

This implies that the function x 7→ f(x2 − c) obtains only finitely many values since otherwise the bound wouldn’t hold.
By the pigeonhole principle, the expression f(x2 − c) obtains some fixed value m for infinitely many positive integers x.

1 point.

Consider a positive integer y >
√
m. Then y2 − m + f(x2 − c) = y2 for infinitely many values of x. This implies that

f(y2 −m) + x2 − c is a square for infinitely many values of x. This implies f(y2 −m)− c = 0, since it can be written as
a difference of squares in infinitely many ways. Thus, f(y2 −m) = c for every y >

√
m.

1 point.

Now, f(y2 − m) = c for infinitely many y, so with the same argumentation as above we get f(x2 − c) = m for every
x >

√
c.

Lemma. There exists a positive integer M such that for every positive integer z we have f(z) ⩽ M or f(z) ≡ m + 2
(mod 4)
Proof. If z = x2 − c for some positive integer x then we have f(z) = m.

Now assume z ̸= x2 − c for all positive integers x.
Let y ∈ N, y >

√
m. If f(z)+y2−m is a square, then z+f(y2−m) is a square, but f(y2−m) = c, so this is contradiction

with the choice of z.
So f(z) + y2 −m ̸= x2 for all positive integers x.
From this, we have f(z) ̸= x2 − y2 +m for all positive integers x i y such that y >

√
m.

Let y1 be the smallest positive integer such that y1 >
√
m.

For every y ⩾ y1 we have f(z) ̸= (y+1)2−y2+m = 2y+1+m, so f(z) is either smaller than 2y1+1+m or f(z)−m ̸≡ 1
(mod 2).
For every y ⩾ y1 we have f(z) ̸= (y+2)2−y2+m = 4y+4+m, so f(z) is either smaller than 4y1+4+m or f(z)−m ̸≡ 0
(mod 4).
Now M = 4y1 + 4 +m satisfies the claim of the lemma.

5 points.

Take M which satisfies the lemma. Now take w such that w+1, w+2, ..., w+M are not squares, and w+m ≡ 0 (mod 4).
For some d >

√
f(w)

we have d2 − f(w) + f(w) is a square so f(d2 − f(w)) + w must be a square, but using the lemma on z = d2 − f(w) we
get that f(d2 − f(w)) + w is either among w + 1, w + 2, ..., w +M or congruent 2 +m + w ≡ 2 modulo 4, so it cannot
be a square.
Contradiction with the starting assumption, so f must be injective.

3 points.


