
The 9th Romanian Master of Mathematics Competition

Day 1 — Solutions

Problem 1. (a) Prove that every positive integer n can be written uniquely in the form

n =
2k+1∑
j=1

(−1)j−12mj ,

where k ≥ 0 and 0 ≤ m1 < m2 < · · · < m2k+1 are integers.
This number k is called the weight of n.

(b) Find (in closed form) the difference between the number of positive integers at most 22017

with even weight and the number of positive integers at most 22017 with odd weight.

Vjekoslav Kovač, Croatia

Solution. (a) We show by induction on the integer M ≥ 0 that every integer n in the range
−2M +1 through 2M can uniquely be written in the form n =

∑`
j=1(−1)j−12mj for some integers

` ≥ 0 and 0 ≤ m1 < m2 < · · · < m` ≤ M (empty sums are 0); moreover, in this unique
representation ` is odd if n > 0, and even if n ≤ 0. The integer w(n) = b`/2c is called the weight
of n.

Existence once proved, uniqueness follows from the fact that there are as many such repre-
sentations as integers in the range −2M + 1 through 2M , namely, 2M+1.

To prove existence, notice that the base case M = 0 is clear, so let M ≥ 1 and let n be an
integer in the range −2M + 1 through 2M .

If −2M + 1 ≤ n ≤ −2M−1, then 1 ≤ n + 2M ≤ 2M−1, so n + 2M =
∑2k+1

j=1 (−1)j−12mj for
some integers k ≥ 0 and 0 ≤ m1 < · · · < m2k+1 ≤ M − 1 by the induction hypothesis, and
n =

∑2k+2
j=1 (−1)j−12mj , where m2k+2 = M .

The case −2M−1 + 1 ≤ n ≤ 2M−1 is covered by the induction hypothesis.
Finally, if 2M−1 + 1 ≤ n ≤ 2M , then −2M−1 + 1 ≤ n−2M ≤ 0, so n−2M =

∑2k
j=1(−1)j−12mj

for some integers k ≥ 0 and 0 ≤ m1 < · · · < m2k ≤ M − 1 by the induction hypothesis, and
n =

∑2k+1
j=1 (−1)j−12mj , where m2k+1 = M .

(b) First Approach. Let M ≥ 0 be an integer. The solution for part (a) shows that the
number of even (respectively, odd) weight integers in the range 1 through 2M coincides with
the number of subsets in {0, 1, 2, . . . ,M} whose cardinality has remainder 1 (respectively, 3)
modulo 4. Therefore, the difference of these numbers is

bM/2c∑
k=0

(−1)k
(
M + 1

2k + 1

)
=

(1 + i)M+1 − (1− i)M+1

2i
= 2(M+1)/2 sin

(M + 1)π

4
,

where i =
√
−1 is the imaginary unit. Thus, the required difference is 21009.

Second Approach. For every integer M ≥ 0, let AM =
∑0

n=−2M+1(−1)w(n) and let BM =∑2M

n=1(−1)w(n); thus, BM evaluates the difference of the number of even weight integers in the
range 1 through 2M and the number of odd weight integers in that range.

Notice that

w(n) =

{
w(n+ 2M ) + 1 if −2M + 1 ≤ n ≤ −2M−1,
w(n− 2M ) if 2M−1 + 1 ≤ n ≤ 2M ,
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to get

AM = −
−2M−1∑

n=−2M+1

(−1)w(n+2M ) +
0∑

n=−2M−1+1

(−1)w(n) = −BM−1 +AM−1,

BM =
2M−1∑
n=1

(−1)w(n) +
2M∑

n=2M−1+1

(−1)w(n−2M ) = BM−1 +AM−1.

Iteration yields

BM = AM−1 +BM−1 = (AM−2 −BM−2) + (AM−2 +BM−2) = 2AM−2

= 2AM−3 − 2BM−3 = 2(AM−4 −BM−4)− 2(AM−4 +BM−4) = −4BM−4.

Thus, B2017 = (−4)504B1 = 21008B1; since B1 = (−1)w(1) + (−1)w(2) = 2, it follows that B2017 =
21009.
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Problem 2. Determine all positive integers n satisfying the following condition: for every monic
polynomial P of degree at most n with integer coefficients, there exists a positive integer k ≤ n,
and k + 1 distinct integers x1, x2, . . . , xk+1 such that

P (x1) + P (x2) + · · ·+ P (xk) = P (xk+1).

Semen Petrov, Russia

Note. A polynomial is monic if the coefficient of the highest power is one.

Solution. There is only one such integer, namely, n = 2. In this case, if P is a constant
polynomial, the required condition is clearly satisfied; if P = X + c, then P (c− 1) + P (c+ 1) =
P (3c); and if P = X2 + qX + r, then P (X) = P (−X − q).

To rule out all other values of n, it is sufficient to exhibit a monic polynomial P of degree
at most n with integer coefficients, whose restriction to the integers is injective, and P (x) ≡ 1
(mod n) for all integers x. This is easily seen by reading the relation in the statement modulo n,
to deduce that k ≡ 1 (mod n), so k = 1, since 1 ≤ k ≤ n; hence P (x1) = P (x2) for some distinct
integers x1 and x2, which contradicts injectivity.

If n = 1, let P = X, and if n = 4, let P = X4 + 7X2 + 4X + 1. In the latter case, clearly,
P (x) ≡ 1 (mod 4) for all integers x; and P is injective on the integers, since P (x) − P (y) =
(x− y)

(
(x+ y)(x2 + y2 + 7) + 4

)
, and the absolute value of (x+ y)(x2 + y2 + 7) is either 0 or at

least 7 for integral x and y.
Assume henceforth n ≥ 3, n 6= 4, and let fn = (X − 1)(X − 2) · · · (X − n). Clearly, fn(x) ≡

0 (mod n) for all integers x. If n is odd, then fn is non-decreasing on the integers; and if, in
addition, n > 3, then fn(x) ≡ 0 (mod n+ 1) for all integers x, since fn(0) = −n! = −1 · 2 · · · · ·
n+1
2 · · · · · n ≡ 0 (mod n+ 1).

Finally, let P = fn +nX+1 if n is odd, and let P = fn−1 +nX+1 if n is even. In either case,
P is strictly increasing, hence injective, on the integers, and P (x) ≡ 1 (mod n) for all integers x.

Remark. The polynomial P = fn + nX + 1 works equally well for even n > 2. To prove
injectivity, notice that P is strictly monotone, hence injective, on non-positive (respectively,
positive) integers. Suppose, if possible, that P (a) = P (b) for some integers a ≤ 0 and b > 0.
Notice that P (a) ≥ P (0) = n! + 1 > n2 + 1 = P (n), since n ≥ 4, to infer that b ≥ n + 1. It is
therefore sufficient to show that P (x) > P (n+ 1− x) > P (x− 1) for all integers x ≥ n+ 1. The
former inequality is trivial, since fn(x) = fn(n+ 1− x) for even n. For the latter, write

P (n+ 1− x)− P (x− 1) = (x− 1) · · · (x− n)− (x− 2) · · · (x− n− 1) + n(n+ 2− 2x)

= n
(
(x− 2) · · · (x− n) + (n− 2)− 2(x− 2)

)
≥ n(n− 2) > 0,

since (x− 3) · · · (x− n) ≥ 2.
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Problem 3. Let n be an integer greater than 1 and let X be an n-element set. A non-empty
collection of subsets A1, . . ., Ak of X is tight if the union A1 ∪ · · · ∪ Ak is a proper subset of X
and no element of X lies in exactly one of the Ais. Find the largest cardinality of a collection of
proper non-empty subsets of X, no non-empty subcollection of which is tight.

Note. A subset A of X is proper if A 6= X. The sets in a collection are assumed to be distinct.
The whole collection is assumed to be a subcollection.

Alexander Polyansky, Russia

Solution 1. (Ilya Bogdanov) The required maximum is 2n− 2. To describe a (2n− 2)-element
collection satisfying the required conditions, write X = {1, 2, . . . , n} and set Bk = {1, 2, . . . , k},
k = 1, 2, . . . , n − 1, and Bk = {k − n + 2, k − n + 3, . . . , n}, k = n, n + 1, . . . , 2n − 2. To
show that no subcollection of the Bk is tight, consider a subcollection C whose union U is a
proper subset of X, let m be an element in X r U , and notice that C is a subcollection of
{B1, . . . , Bm−1, Bm+n−1, . . . , B2n−2}, since the other B’s are precisely those containing m. If U
contains elements less than m, let k be the greatest such and notice that Bk is the only member
of C containing k; and if U contains elements greater than m, let k be the least such and notice
that Bk+n−2 is the only member of C containing k. Consequently, C is not tight.

We now proceed to show by induction on n ≥ 2 that the cardinality of a collection of proper
non-empty subsets of X, no subcollection of which is tight, does not exceed 2n − 2. The base
case n = 2 is clear, so let n > 2 and suppose, if possible, that B is a collection of 2n− 1 proper
non-empty subsets of X containing no tight subcollection.

To begin, notice that B has an empty intersection: if the members of B shared an element x,
then B′ = {Br {x} : B ∈ B, B 6= {x}} would be a collection of at least 2n− 2 proper non-empty
subsets of X r {x} containing no tight subcollection, and the induction hypothesis would be
contradicted.

Now, for every x in X, let Bx be the (non-empty) collection of all members of B not contain-
ing x. Since no subcollection of B is tight, Bx is not tight, and since the union of Bx does not con-
tain x, some x′ in X is covered by a single member of Bx. In other words, there is a single set in B
covering x′ but not x. In this case, draw an arrow from x to x′. Since there is at least one arrow
from each x in X, some of these arrows form a (minimal) cycle x1 → x2 → · · · → xk → xk+1 = x1
for some suitable integer k ≥ 2. Let Ai be the unique member of B containing xi+1 but not xi,
and let X ′ = {x1, x2, . . . , xk}.

Remove A1, A2, . . . , Ak from B to obtain a collection B′ each member of which either contains
or is disjoint from X ′: for if a member B of B′ contained some but not all elements of X ′, then
B should contain xi+1 but not xi for some i, and B = Ai, a contradiction. This rules out the
case k = n, for otherwise B = {A1, A2, . . . , An}, so |B| < 2n− 1.

To rule out the case k < n, consider an extra element x∗ outside X and let

B∗ = {B : B ∈ B′, B ∩X ′ = ∅} ∪ {(B rX ′) ∪ {x∗} : B ∈ B′, X ′ ⊆ B};

thus, in each member of B′ containing X ′, the latter is collapsed to singleton x∗. Notice that B∗
is a collection of proper non-empty subsets of X∗ = (X rX ′) ∪ {x∗}, no subcollection of which
is tight. By the induction hypothesis, |B′| = |B∗| ≤ 2|X∗| − 2 = 2(n− k), so |B| ≤ 2(n− k) + k =
2n− k < 2n− 1, a final contradiction.

Solution 2. Proceed again by induction on n to show that the cardinality of a collection of
proper non-empty subsets of X, no subcollection of which is tight, does not exceed 2n− 2.

Consider any collection B of proper non-empty subsets of X with no tight subcollection (we
call such collection good). Assume that there exist M,N ∈ B such that M ∪N is distinct from
M , N , and X. In this case, we will show how to modify B so that it remains good, contains the
same number of sets, but the total number of elements in the sets of B increases.
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Consider a maximal (relative to set-theoretic inclusion) subcollection C ⊆ B such that the set
C =

⋃
A∈C A is distinct from X and from all members of C. Notice here that the union of any

subcollection D ⊂ B cannot coincide with any K ∈ B r D, otherwise {K} ∪ D would be tight.
Surely, C exists (since {M,N} is an example of a collection satisfying the requirements on C,
except for maximality); moreover, C /∈ B by the above remark.

Since C 6= X, there exists an L ∈ C and x ∈ L such that L is the unique set in C containing x.
Now replace in B the set L by C in order to obtain a new collection B′ (then |B′| = |B|). We
claim that B′ is good.

Assume, to the contrary, that B′ contained a tight subcollection T ; clearly, C ∈ T , otherwise
B is not good. If T ⊆ C ∪ {C}, then C is the unique set in T containing x which is impossible.
Therefore, there exists P ∈ T r (C ∪ {C}). By maximality of C, the collection C ∪ {P} does not
satisfy the requirements imposed on C; since P ∪ C 6= X, this may happen only if C ∪ P = P ,
i.e., if C ⊂ P . But then G = (T r {C}) ∪ C is a tight subcollection in B: all elements of C are
covered by G at least twice (by P and an element of C), and all the rest elements are covered
by G the same number of times as by T . A contradiction. Thus B′ is good.

Such modifications may be performed finitely many times, since the total number of elements
of sets in B increases. Thus, at some moment we arrive at a good collection B for which the
procedure no longer applies. This means that for every M,N ∈ B, either M ∪N = X or one of
them is contained in the other.

Now let M be a minimal (with respect to inclusion) set in B. Then each set in B either
contains M or forms X in union with M (i.e., contains X rM). Now one may easily see that
the two collections

B+ = {ArM : A ∈ B, M ⊂ A, A 6= M}, B− = {A ∩M : A ∈ B, X rM ⊂ A, A 6= X rM}

are good as collections of subsets of XrM and M , respectively; thus, by the induction hypothesis,
we have |B+|+ |B−| ≤ 2n− 4.

Finally, each set A ∈ B either produces a set in one of the two new collections, or coincides
with M or X rM . Thus |B| ≤ |B+|+ |B−|+ 2 ≤ 2n− 2, as required.

Solution 3. We provide yet another proof of the estimate |B| ≤ 2n − 2, using the notion of a
good collection from Solution 2. Arguing indirectly, we assume that there exists a good collection
B with |B| ≥ 2n− 1, and choose one such for the minimal possible value of n. Clearly, n > 2.

Firstly, we perform a different modification of B. Choose any x ∈ X, and consider the
subcollection Bx = {B : B ∈ B, x /∈ B}. By our assumption, Bx is not tight. As the union of
sets in Bx is distinct from X, either this collection is empty, or there exists an element y ∈ X
contained in a unique member Ax of Bx. In the former case, we add the set Bx = X r {x} to B,
and in the latter we replace Ax by Bx, to form a new collection B′. (Notice that if Bx ∈ B, then
Bx ∈ Bx and y ∈ Bx, so Bx = Ax.)

We claim that the collection B′ is also good. Indeed, if B′ has a tight subcollection T , then
Bx should lie in T . Then, as the union of the sets in T is distinct from X, we should have
T ⊆ Bx∪{Bx}. But in this case an element y is contained in a unique member of T , namely Bx,
so T is not tight — a contradiction.

Perform this procedure for every x ∈ X, to get a good collection B containing the sets
Bx = X r {x} for all x ∈ X. Consider now an element x ∈ X such that |Bx| is maximal. As we
have mentioned before, there exists an element y ∈ X belonging to a unique member (namely,
Bx) of Bx. Thus, Bx r {Bx} ⊂ By; also, By ∈ By r Bx. Thus we get |By| ≥ |Bx|, which by the
maximality assumption yields the equality, which in turn means that By = (Bx r {Bx}) ∪ {By}.

Therefore, each set in Br{Bx, By} contains either both x and y, or none of them. Collapsing
{x, y} to singleton x∗, we get a new collection of |B|− 2 subsets of (Xr {x, y})∪{x∗} containing
no tight subcollection. This contradicts minimality of n.
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Remarks. 1. Removal of the condition that subsets be proper would only increase the maximum
by 1. The ‘non-emptiness’ condition could also be omitted, since the empty set forms a tight
collection by itself, but the argument is a bit too formal to be considered.

2. There are many different examples of good collections of 2n − 2 sets. E.g., applying the
algorithm from the first part of Solution 2 to the example shown in Solution 1, one may get
the following example: Bk = {1, 2, . . . , k}, k = 1, 2, . . . , n − 1, and Bk = X \ {k − n + 1},
k = n, n+ 1, . . . , 2n− 2.
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The 9th Romanian Master of Mathematics Competition

Day 2 — Solutions

Problem 4. In the Cartesian plane, let G1 and G2 be the graphs of the quadratic functions
f1(x) = p1x

2 + q1x+ r1 and f2(x) = p2x
2 + q2x+ r2, where p1 > 0 > p2. The graphs G1 and G2

cross at distinct points A and B. The four tangents to G1 and G2 at A and B form a convex
quadrilateral which has an inscribed circle. Prove that the graphs G1 and G2 have the same axis
of symmetry.

Alexey Zaslavsky, Russia

Solution 1. Let Ai and Bi be the tangents to Gi at A and B, respectively, and let Ci = Ai ∩Bi.
Since f1(x) is convex and f2(x) is concave, the convex quadrangle formed by the four tangents
is exactly AC1BC2.

Lemma. If CA and CB are the tangents drawn from a point C to the graph G of a quadratic
trinomial f(x) = px2 + qx+ r, A,B ∈ G, A 6= B, then the abscissa of C is the arithmetic mean
of the abscissae of A and B.

Proof. Assume, without loss of generality, that C is at the origin, so the equations of the two
tangents have the form y = kax and y = kbx. Next, the abscissae xA and xB of the tangency
points A and B, respectively, are multiple roots of the polynomials f(x) − kax and f(x) − kbx,
respectively. By the Vieta theorem, x2A = r/p = x2B, so xA = −xB, since the case xA = xB is
ruled out by A 6= B.

A

B

C1

C2

A A′B

C1

C2

O

A B

C1

C2

O

The Lemma shows that the line C1C2 is parallel to the y-axis and the points A and B are
equidistant from this line.

Suppose, if possible, that the incentre O of the quadrangle AC1BC2 does not lie on the
line C1C2. Assume, without loss of generality, that O lies inside the triangle AC1C2 and let A′

be the reflection of A in the line C1C2. Then the ray CiB emanating from Ci lies inside the
angle ACiA

′, so B lies inside the quadrangle AC1A
′C2, whence A and B are not equidistant

from C1C2 — a contradiction.
Thus O lies on C1C2, so the lines ACi and BCi are reflections of one another in the line C1C2,

and B = A′. Hence yA = yB, and since fi(x) = yA + pi(x − xA)(x − xB), the line C1C2 is the
axis of symmetry of both parabolas, as required.

Solution 2. Use the standard equation of a tangent to a smooth curve in the plane, to deduce
that the tangents at two distinct points A and B on the parabola of equation y = px2 + qx+ r,
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p 6= 0, meet at some point C whose coordinates are

xC = 1
2(xA + xB) and yC = pxAxB + q · 12(xA + xB) + r.

Usage of the standard formula for Euclidean distance yields

CA = 1
2 |xB − xA|

√
1 + (2pxA + q)2 and CB = 1

2 |xB − xA|
√

1 + (2pxB + q)2,

so, after obvious manipulations,

CB − CA =
2p(xB − xA)|xB − xA|(p(xA + xB) + q)√

1 + (2pxA + q)2 +
√

1 + (2pxB + q)2
.

Now, write the condition in the statement in the form C1B − C1A = C2B − C2A, apply the
above formula and clear common factors to get

p1(p1(xA + xB) + q1)√
1 + (2p1xA + q1)2 +

√
1 + (2p1xB + q1)2

=
p2(p2(xA + xB) + q2)√

1 + (2p2xA + q2)2 +
√

1 + (2p2xB + q2)2
.

Next, use the fact that xA and xB are the solutions of the quadratic equation (p1 − p2)x2 +
(q1 − q2)x+ r1 − r2 = 0, so xA + xB = −(q1 − q2)/(p1 − p2), to obtain

p1(p1q2 − p2q1)√
1 + (2p1xA + q1)2 +

√
1 + (2p1xB + q1)2

=
p2(p1q2 − p2q1)√

1 + (2p2xA + q2)2 +
√

1 + (2p2xB + q2)2
.

Finally, since p1p2 < 0 and the denominators above are both positive, the last equality forces
p1q2 − p2q1 = 0; that is, q1/p1 = q2/p2, so the two parabolas have the same axis.

Remarks. The are, of course, several different proofs of the Lemma in Solution 1 — in particular,
computational. Another argument relies on the following consequence of focal properties: The
tangents to a parabola at two points meet at the circumcentre of the triangle formed by the
focus and the orthogonal projections of those points on the directrix. Since the directrix of the
parabola in the lemma is parallel to the axis of abscissae, the conclusion follows.
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Problem 5. Fix an integer n ≥ 2. An n×n sieve is an n×n array with n cells removed so that
exactly one cell is removed from every row and every column. A stick is a 1 × k or k × 1 array
for any positive integer k. For any sieve A, let m(A) be the minimal number of sticks required
to partition A. Find all possible values of m(A), as A varies over all possible n× n sieves.

Palmer Mebane and Nikolai Beluhov

Solution 1. Given A, m(A) = 2n− 2, and it is achieved, for instance, by dissecting A along all
horizontal (or vertical) grid lines. It remains to prove that m(A) ≥ 2n− 2 for every A.

By holes we mean the cells which are cut out from the board. The cross of a hole in A is the
union of the row and the column through that hole.

Arguing indirectly, consider a dissection of A into 2n − 3 or fewer sticks. Horizontal sticks
are all labelled h, and vertical sticks are labelled v; 1× 1 sticks are both horizontal and vertical,
and labelled arbitrarily. Each cell of A inherits the label of the unique containing stick.

Assign each stick in the dissection to the cross of the unique hole on its row, if the stick is
horizontal; on its column, if the stick is vertical.

Since there are at most 2n − 3 sticks and exactly n crosses, there are two crosses each of
which is assigned to at most one stick in the dissection. Let the crosses be c and d, centred at
a = (xa, ya) and b = (xb, yb), respectively, and assume, without loss of generality, xa < xb and
ya < yb. The sticks covering the cells (xa, yb) and (xb, ya) have like labels, for otherwise one of
the two crosses would be assigned to at least two sticks. Say the common label is v, so each of
c and d contains a stick covering one of those two cells. It follows that the lower (respectively,
upper) arm of c (respectively, d) is all-h, and the horizontal arms of both crosses are all-v, as
illustrated below.

v

v

v

v

v

v

h

h

h

a

v

v

v

v

v

v

v

v

b

h

h

h

v

v

v

v

v

v

Each of the rows between the rows of a and b, that is, rows ya + 1, ya + 2, . . . , yb−1, contains
a hole. The column of each such hole contains at least two v-sticks. All other columns contain at
least one v-stick each. In addition, all rows below a and all rows above b contain at least one h-stick
each. This amounts to a total of at least 2(yb−ya−1)+(n−yb+ya+1)+(n−yb)+(ya−1) = 2n−2
sticks. A contradiction.

Remark. One may find a different argument finishing the solution. Since c and d are proven
to contain one stick each, there is a third cross e centred at (x∗, y∗) also containing at most one
stick. It meets the horizontal arms of c and d at two v-cells, so all the cells where two of the three
crosses meet are labelled with v. Now, assuming (without loss of generality) that ya < y∗ < yb,
we obtain that both vertical arms of e contain v-cells, so e is assigned to two different v-sticks.
A contradiction.

Solution 2. (Ilya Bogdanov) We provide a different proof that m(A) ≥ 2n− 2.
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Call a stick vertical if it is contained in some column, and horizontal if it is contained in some
row; 1×1 sticks may be called arbitrarily, but any of them is supposed to have only one direction.
Assign to each vertical/horizontal stick the column/row it is contained in. If each row and each
column is assigned to some stick, then there are at least 2n sticks, which is even more than we
want. Thus we assume, without loss of generality, that some exceptional row R is not assigned
to any stick. This means that all n− 1 existing cells in R belong to n− 1 distinct vertical sticks;
call these sticks central.

Now we mark n− 1 cells on the board in the following manner. (↓) For each hole c below R,
we mark the cell just under c; (↑) for each hole c above R, we mark the cell just above c; and
(•) for the hole r in R, we mark both the cell just above it and just below it. We have described
n + 1 cells, but exactly two of them are out of the board; so n − 1 cells are marked within the
board. A sample marking is shown in the figure below, where the marked cells are crossed.

×
×

×
×

×
×

×

v v v v v v vR

Notice that all the marked cells lie in different rows, and all of them are marked in different
columns, except for those two marked for (•); but the latter two have a hole r between them.
So no two marked cells may belong to the same stick. Moreover, none of them lies in a central
stick, since the marked cells are separated from R by the holes. Thus the marked cells should
be covered by n− 1 different sticks (call them border) which are distinct from the central sticks.
This shows that there are at least (n− 1) + (n− 1) = 2n− 2 distinct sticks, as desired.

Solution 3. In order to prove m(A) ≥ 2n−2, it suffices to show that there are 2n−2 cells in A,
no two of which may be contained in the same stick.

To this end, consider the bipartite graph G with parts Gh and Gv, where the vertices in Gh

(respectively, Gv) are the 2n−2 maximal sticks A is dissected into by all horizontal (respectively,
vertical) grid lines, two sticks being joined by an edge in G if and only if they share a cell.

We show that G admits a perfect matching by proving that it fulfils the condition in Hall’s
theorem; the 2n− 2 cells corresponding to the edges of this matching form the desired set. It is
sufficient to show that every subset S of Gh has at least |S| neighbours (in Gv, of course).

Let L be the set of all sticks in S that contain a cell in the leftmost column of A, and let R
be the set of all sticks in S that contain a cell in the rightmost column of A; let ` be the length
of the longest stick in L (zero if L is empty), and let r be the length of the longest stick in R
(zero if R is empty).

Since every row of A contains exactly one hole, L and R partition S; and since every column
of A contains exactly one hole, neither L nor R contains two sticks of the same size, so ` ≥ |L|
and r ≥ |R|, whence `+ r ≥ |L|+ |R| = |S|.

If `+r ≤ n, we are done, since there are at least `+r ≥ |S| vertical sticks covering the cells of
the longest sticks in L and R. So let `+ r > n, in which case the sticks in S span all n columns,
and notice that we are again done if |S| ≤ n, to assume further |S| > n.

Let S′ = Gh r S, let T be set of all neighbours of S, and let T ′ = Gv r T . Since the sticks in
S span all n columns, |T | ≥ n, so |T ′| ≤ n− 2. Transposition of the above argument (replace S
by T ′), shows that |T ′| ≤ |S′|, so |S| ≤ |T |.
Remark. Here is an alternative argument for s = |S| > n. Add to S two empty sticks formally
present to the left of the leftmost hole and to the right of the rightmost one. Then there are at
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least s− n+ 2 rows containing two sticks from S, so two of them are separated by at least s− n
other rows. Each hole in those s − n rows separates two vertical sticks from Gv both of which
are neighbours of S. Thus the vertices of S have at least n+ (s− n) neighbours.

Solution 4. Yet another proof of the estimate m(A) ≥ 2n− 2. We use the induction on n. Now
we need the base cases n = 2, 3 which can be completed by hands.

Assume now that n > 3 and consider any dissection of A into sticks. Define the cross of a
hole as in Solution 1, and notice that each stick is contained in some cross. Thus, if the dissection
contains more than n sticks, then there exists a cross containing at least two sticks. In this case,
remove this cross from the sieve to obtain an (n−1)× (n−1) sieve. The dissection of the original
sieve induces a dissection of the new array: even if a stick is partitioned into two by the removed
cross, then the remaining two parts form a stick in the new array. After this operation has been
performed, the number of sticks decreases by at least 2, and by the induction hypothesis the
number of sticks in the new dissection is at least 2n− 4. Hence, the initial dissection contains at
least (2n− 4) + 2 = 2n− 2 sticks, as required.

It remains to rule out the case when the dissection contains at most n sticks. This can be done
in many ways, one of which is removal a cross containing some stick. The resulting dissection of
an (n − 1) × (n − 1) array contains at most n − 1 sticks, which is impossible by the induction
hypothesis since n− 1 < 2(n− 1)− 2.

Remark. The idea of removing a cross containing at least two sticks arises naturally when one
follows an inductive approach. But it is much trickier to finish the solution using this approach,
unless one starts to consider removing each cross instead of removing a specific one.

5



Problem 6. Let ABCD be any convex quadrilateral and let P , Q, R, S be points on the
segments AB, BC, CD, and DA, respectively. It is given that the segments PR and QS dissect
ABCD into four quadrilaterals, each of which has perpendicular diagonals. Show that the points
P , Q, R, S are concyclic.

Nikolai Beluhov

Solution 1. We start with a lemma which holds even in a more general setup.

Lemma 1. Let PQRS be a convex quadrangle whose diagonals meet at O. Let ω1 and ω2 be
the circles on diameters PQ and RS, respectively, and let ` be their radical axis. Finally, choose
the points A, B, and C outside this quadrangle so that: the point P (respectively, Q) lies on the
segment AB (respectively, BC); and AO ⊥ PS, BO ⊥ PQ, and CO ⊥ QR. Then the three
lines AC, PQ, and ` are concurrent or parallel.

Proof. Assume first that the lines PR and QS are not perpendicular. Let H1 and H2 be the
orthocentres of the triangles OSP and OQR, respectively; notice that H1 and H2 do not coincide.

Since H1 is the radical centre of the circles on diameters RS, SP , and PQ, it lies on `.
Similarly, H2 lies on `, so the lines H1H2 and ` coincide.

The corresponding sides of the triangles APH1 and CQH2 meet at O, B, and the orthocentre
of the triangle OPQ (which lies on OB). By Desargues’ theorem, the lines AC, PQ and ` are
concurrent or parallel.
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H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2H2

T

ω1

ω2
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The case when PR ⊥ QS may be considered as a limit case, since the configuration in the
statement of the lemma allows arbitrarily small perturbations. The lemma is proved.

Back to the problem, let the segments PR and QS cross at O, let ω1 and ω2 be the circles
on diameters PQ and RS, respectively, and let ` be their radical axis. By the Lemma, the three
lines AC, `, and PQ are concurrent or parallel, and similarly so are the three lines AC, `, and RS.
Thus, if the lines AC and ` are distinct, all four lines are concurrent or pairwise parallel.

This is clearly the case when the lines PS and QR are not parallel (since ` crosses OA and OC
at the orthocentres of OSP and OQR, these orthocentres being distinct from A and C). In this
case, denote the concurrency point by T . If T is not ideal, then we have TP · TQ = TR · TS
(as T ∈ `), so PQRS is cyclic. If T is ideal (i.e., all four lines are parallel), then the segments
PQ and RS have the same perpendicular bisector (namely, the line of centers of ω1 and ω2), and
PQRS is cyclic again.

Assume now PS and QR parallel. By symmetry, PQ and RS may also be assumed parallel:
otherwise, the preceding argument goes through after relabelling. In this case, we need to prove
that the parallelogram PQRS is a rectangle.
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Suppose, by way of contradiction, that OP > OQ. Let the line through O and parallel to PQ
meet AB at M , and CB at N . Since OP > OQ, the angle SPQ is acute and the angle PQR is
obtuse, so the angle AOB is obtuse, the angle BOC is acute, M lies on the segment AB, and
N lies on the extension of the segment BC beyond C. Therefore: OA > OM , since the angle
OMA is obtuse; OM > ON , since OM : ON = KP : KQ, where K is the projection of O onto
PQ; and ON > OC, since the angle OCN is obtuse. Consequently, OA > OC.

Similarly, OR > OS yields OC > OA: a contradiction. Consequently, OP = OQ and PQRS
is a rectangle. This ends the proof.

Solution 2. (Ilya Bogdanov) To begin, we establish a useful lemma.

Lemma 2. If P is a point on the side AB of a triangle OAB, then

sinAOP

OB
+

sinPOB

OA
=

sinAOB

OP
.

Proof. Let [XY Z] denote the area of a triangle XY Z, to write

0 = 2([AOB]− [POB]− [POC]) = OA ·OB · sinAOB−OB ·OP · sinPOB−OP ·OA · sinAOP,

and divide by OA ·OB ·OP to get the required identity.
A similar statement remains valid if the point C lies on the line AB; the proof is obtained by

using signed areas and directed lengths.

We now turn to the solution. We first prove some sort of a converse statement, namely:

Claim. Let PQRS be a cyclic quadrangle with O = PR ∩ QS; assume that no its diagonal is
perpendicular to a side. Let `A, `B, `C , and `D be the lines through O perpendicular to SP ,
PQ, QR, and RS, respectively. Choose any point A ∈ `A and successively define B = AP ∩ `B,
C = BQ ∩ `C , D = CR ∩ `D, and A′ = DS ∩ `A. Then A′ = A.

Proof. We restrict ourselves to the case when the points A, B, C, D, and A′ lie on `A, `B,
`C , `D, and `A on the same side of O as their points of intersection with the respective sides of
the quadrilateral PQRS. Again, a general case is obtained by suitable consideration of directed
lengths.
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SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
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Denote

α = ∠QPR = ∠QSR = π/2− ∠POB = π/2− ∠DOS,

β = ∠RPS = ∠RQS = π/2− ∠AOP = π/2− ∠QOC,

γ = ∠SQP = ∠SRP = π/2− ∠BOQ = π/2− ∠ROD,

δ = ∠PRQ = ∠PSQ = π/2− ∠COR = π/2− ∠SOA.

By Lemma 2 applied to the lines APB, PQC, CRD, and DSA′, we get

sin(α+ β)

OP
=

cosα

OA
+

cosβ

OB
,

sin(β + γ)

OQ
=

cosβ

OB
+

cos γ

OC
,

sin(γ + δ)

OR
=

cos γ

OC
+

cos δ

OD
,

sin(δ + α)

OS
=

cos δ

OD
+

cosα

OA′
.

Adding the two equalities on the left and subtracting the two on the right, we see that the
required equality A = A′ (i.e., cosα/OA = cosα/OA′, in view of cosα 6= 0) is equivalent to the
relation

sinQPS

OP
+

sinSRQ

OR
=

sinPQR

OQ
+

sinRSP

OS
.

Let d denote the circumdiameter of PQRS, so sinQPS = sinSRQ = QS/d and sinRSP =
sinPQR = PR/d. Thus the required relation reads

QS

OP
+
QS

OR
=
PR

OS
+
PR

OQ
, or

QS · PR
OP ·OR

=
PR ·QS
OS ·OQ

.

The last relation is trivial, due again to cyclicity.

Finally, it remains to derive the problem statement from our Claim. Assume that PQRS is
not cyclic, e.g., that OP · OR > OQ · OS, where O = PR ∩ QS. Mark the point S′ on the ray
OS so that OP · OR = OQ · OS′. Notice that no diagonal of PQRS is perpendicular to a side,
so the quadrangle PQRS′ satisfies the conditions of the claim.

Let `′A and `′D be the lines through O perpendicular to PS′ and RS′, respectively. Then
`′A and `′D cross the segments AP and RD, respectively, at some points A′ and D′. By the
Claim, the line A′D′ passes through S′. This is impossible, because the segment A′D′ crosses
the segment OS at some interior point, while S′ lies on the extension of this segment. This
contradiction completes the proof.

Remark. According to the author, there is a remarkable corollary that is worth mentioning:
Four lines dissect a convex quadrangle into nine smaller quadrangles to make it into a 3×3 array
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of quadrangular cells. Label these cells 1 through 9 from left to right and from top to bottom.
If the first eight cells are orthodiagonal, then so is the ninth.
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