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MMO 2019

Problem 1. Let ABC be an acute triangle, M be midpoint of the segment BC and the centers of
the excircles with respect of M of the triangles AMB and AMC are D and E, respectively. The
The circumcircle of the triangle ABD meets the line BC at the points B and . The circumcircle of
the triangle ACE meets the line BC at the points C and G . Prove that BF'=CG .

Solution. (BMO shortlist) Obviously, we have £4DB =90° — £AMB and £AEC =90° — 1 LAMC .

B M ¢ el

Let the circumcircles of A4ADB and AAEC meet again the line AM at the points P and P', respectively.
Let we notice that the point M is outside of the circumcircles of AADB and AAEC, since
KLADB + £AMB <180° and £AEC + £AMC <180°, so P and P' lic on the ray MA. Furthermore,
&BPM:&B])A:%"—;APA/IB . hence the triangle BPM is isosceles, so MP =MB. Analogously,
MP'=MC =MB ,so P'=P.

Now, using the power of the pointM , we obtainMB-MF =MP-MA=MC-MG . ie. MF=MG=MA,
hence BI'=CG.
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Problem 2. Let n be a positive integer. If » =n(mod2) and 0,1}, then find the number of the
integer solutions of the system of equations
X+y+z=r
{IXI+|yI+|ZI=n'
Solution. Let # be a even positive integer, that is # =0. Then the problem can be reformulated as to find
the number of integer solutions of the system of equations
x+y+z=0
{IXI+|,\’I+|Zl=n
Lemma. 1) At least one of the numbers x, y,z has absolute value %
2) Each of x,y,z has absolute value S% .

Proof. It is clear that one of the numbers x,y,z must be positive; otherwise we obtain contradiction with
the first equation of the system of equations (1). Without loss the generality, we may assume x > 0.
Indeed, if x >’2—’ ,from x=—(y+2z),and from | y|+|z |2 y+2z |>’—2’ we obtain contradiction with the second

equation of the system of equations (1).

If 0<x<%, then at leas one of the numbers y,z is smaller than 0. We consider two cases: Case I.
y<0,z<0, and Case 2. yz<0.
Case 1. |y+zHy|+|z| andy+z=-x ,s0 |x|+|y|+|z|<’~2’+%,which is contradiction.
Case 2. Let y<O<z.Inthiscase x+z=—y . thatis | y|o x+z|d x|+| z| from where we obtain
2lyHyl+|x+zlHx|+|y|+|z|=n or | y|=5.
The case when x <0 is analogues. This completes the lemma.

Continuation of the solution. Let only one of the numbers x,y,z be positive. Without loss of

generality, let x>0, and then x=2 and y+z= —’—2’ . From the lemma, it follows that all the ordered triples

(3-50) (3511 (5-5+2-2).(3.0-%)

are solution of the system of equations (1), and those are '5’+1 solutions. Changing the position of % (at the

second and at the third coordinate) and applying the same discussion, we obtain 3('2—'+l)ordered triples
which are solution of the system of equations (1). Let any two of x,y,z are positive. Without loss of
generality, let x>0,y>0. Then z =—% and x+y=%. From the lemma, it follows that all the ordered
triples

(15-1-5)(25-2-5) (53 -3-3).(3-11-5)

are solution of the system of equations (1), and those are 12'-—1 solutions. Changing the position of —'2—’ (at

the first and at the second coordinate) and applying the same discussion, we obtain 3(-2’1— 1) ordered triples

which are solution of the system of equations (1). Finally, we obtain that the total number of solutions of the
system of equations (1) is

n Y=
3(2+1)+3(2-1)=3n.
Now, let nbe a odd positive integer , that is » =1. Then, the system (1) can be written as
x+yt+z=1
|x|+|y|+|zl=n
In analogues way as the case when » is even, (using the appropriate lemma obtained when replacing % with

”T” ), we obtain that the total number of solutions of the system of equations (1) is

3("7_1+l)+3("7_1)=3n.
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Problem 3. Let ABC be an isosceles triangle ( AB = AC ) and let M be a midpoint of the segment BC .
The point P is chosen such that PB<PC and PA is parallel to BC . Let X and Y are point from the
lines PB and PC, respectively, such that the point B is on the segment PX , C is on the segment PY and
APXM = £PYM . Prove that the quadrilateral APXY is cyclic.

Solution (IMO Shortlist). Since AB=AC, AM is a axes of symmetry of the segment BC, we have
LPAM = LAMC =90° .

Let Z be intersection point of the line AM and the normal of PC', passing through Y (notice that Z is
on the ray AM after the point M ). We have, £PAZ = XPYZ =90° . Hence, the points P, 4,Y and Z are
concyclic.

Since XCMZ = £CYZ =90°, the quadrilateral CYZM is cyclic, so XCZM = £XCYM . By the condition
of the problem, XCYM =xBXM , and since ZM is axes of symmetry of the angle £BZC, we have
KCZM = XB7ZM . So, £BXM = «£BZM . Now, we have that the points B,X,Z and M are concyclic, so
XBXZ =180°— ABMZ =90°.

Finally, ¢ obtain that XPXZ = XPYZ = APAZ =90°, hence the points P, A, X,Y,Z are concyclic, i.¢. the
quadrilateral APXY is cyclic.

Remark. The construction of the point Z , can be made in a different ways. One way is the point Z to be
second intersection of the circle CMY and the line AM . Another way to introduce the point Z is as a
second intersection point of the circumcircles of the triangles CAMY and BMX .
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Problem 4. Find all functions f:N— N such that
nl+ f(m)!| f(m)!+ f(m!)
forall mneN .

Solution. (BMO Shortlist) Taking m=n=1 in (¥) yields 1+ f1)!| f()+ (1) and hence
1+ /! fQ)—1. Since, | f(1)-1|<f(D)!+1, that is 1+ (D! f(1)—1 it follows that f(1)-1=0, ie.
SMH=L1.

For m=1 in (*) we have n!+1| f(n)!+1, which implies »!< f(n)!, i.e. n< f(n). On the other hand,
taking (m,n)=(l,p—1) for any prime number p and using Wilson’s theorem we obtain
pl(p=DH1| f(p—D'+1, implying f(p—-1)<p.But f(p—1)=p—1 and from f(p-1)<p we conclude
that

S(p-D=p-1.
Next, fix a positive integer m. For any prime number p. setting n=p-1 in (¥) yields
(p—D+ f(m)!|(p—D+ f(m!), hence

(=D f(m)!| f(m))— f(m)!,
For all prime numbers p. This implies f(m!)= f(m)!, for all meN, so (*) can be rewritten as
nl+ f(m)!| f(n)!+ f(m)!. This implies

nl+ fm)!| f(m)—n!,
for all m,neN . Fixing ne N and taking m large enough, we conclude that f(n)!=n!, i.e. f(n)=n, for all
neN.

Problem 5. Let n be a given positive integer. Sisyphus performs a sequence on a board
consisting of »+1squares in a row, numbered from 0 to n, starting from left to right. At the
beginning, » stones are put into square numbered 0, and the other squares are empty. At any turn,
Sisyphus chooses any nonempty square with & stones, takes on of these stones and moves it to the
right but at most k& squares (the chosen stone should stay within the board). The goal of Sisyphus is

to place all » stones at the square ». Prove that Sisyphus can not achieve his goal in less that

Hi‘ 4{%-‘ 4;1 s P—’ moves. Notation [ x| stands for the least integer not smaller than x.
n

Solution. (IMO Shortlist) The stones are indistinguishable, and all have the same origin and the

same final position. So, at any position we can prescribe which stone from the chosen square to

move. We do it in the following manner. Number the stone from 1 to ». At any turn, after choosing a
square, Sisyphus moves the stone with the largest number from the square.

This way, when stone k is moved from some square, that square contains not more than k stones
(since all their numbers are at most & ). Therefore, stone & is moved by at most k squares at each turn. Since

. 5 n
the total shift of the stone is exactly . at least [;—‘ moves of stone k& should have been made, for every

k=12,.,n.

By summing up overall £ =1,2,...,n, we get the required estimate.




