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Language: English

SOLUTIONS

Problem 1.

Let A,B ∈Mn(C) be such that AB2A = AB. Prove that:

a) (AB)2 = AB.

b) (AB −BA)3 = On.

Solution: From the hypotesis, AB(BA − In) = On. Based on Sylvester’s inequality for ranks, it
follows that

rank(AB) + rank(BA− In) 6 n+ rank (AB(BA− In)) = n. (1)

Also, it is true in general that

rank(AB − In) = rank(BA− In), (2)

so
rank(AB − In) + rank(AB) 6 n. (3)

But Ker(AB − In) ⊆ ImAB, so

rank(AB − In) + rank(AB) = n+ rank
�
(AB)2 −AB

�
(4)

(this is the equality case in Sylvester’s inequality for the matrices AB − In and AB). Combining
(3) and (4), it follows that (AB)2 = AB.
Using now the identity from the hypotesis and (AB)2 = AB, we obtain

(AB −BA)2 = (AB)2 + (BA)2 −AB2A−BA2B = (BA)2 −BA2B = −BA(AB −BA)

(AB −BA)3 = −BA(AB −BA)2 = (BA)2(AB −BA)

(AB −BA)4 = (BA)2(AB −BA)2 = −(BA)3(AB −BA) = −B(AB)2A(AB −BA)

= −B(AB)A(AB −BA) = −(BA)2(AB −BA)

= −(AB −BA)3,

hence (AB −BA)4 = −(AB −BA)3.
Let λ be any eigenvalue of AB−BA. Then the previous identity implies λ4 = −λ3, so λ ∈ {0,−1}.
Since Tr(AB−BA) = 0, it follows that all eigenvalues of AB−BA must be 0. Then (AB−BA)n =
On, and hence, (AB −BA)3 = On.



Problem 2.

Let a, b, c ∈ R be such that

a+ b+ c = a2 + b2 + c2 = 1, a3 + b3 + c3 6= 1.

We say that a function f is a Palić function if f : R→ R, f is continuous and satisfies

f(x) + f(y) + f(z) = f(ax+ by + cz) + f(bx+ cy + az) + f(cx+ ay + bz)

for all x, y, z ∈ R.

Prove that any Palić function is infinitely many times differentiable and find all Palić functions.

Solution: First, it is easy to show that the given conditions imply that a, b and c are nonzero.
Let f be a Palić function. For z = 0 in (P), we obtain

f(x) + f(y) + f(0) = f(ax+ by) + f(bx+ cy) + f(cx+ ay) (1)

for all x, y ∈ R. Since f is continuous, it follows that F (x) =
Z x

0
f(t) dt is a primitive of f . By

integrating (1) on [0, 1] with respect to y, it follows that

f(x) +
Z 1

0
f(y) dy + f(0) =

F (ax+ b)− F (ax)

b
+
F (bx+ c)− F (bx)

c
+
F (cx+ a)− F (cx)

a
(2)

for all x, y ∈ R. Since F is differentiable, it follows from (2) that f is also differentiable, hence F
is twice differentiable. By repeating the argument (using (2)), we easily obtain that f is infinitely
many times differentiable.
Next, we differentiate in (P) three times with respect to x to obtain

f ′′′(x) = a3f ′′′(ax+ by + cz) + b3f ′′′(bx+ cy + az) + c3f ′′′(cx+ ay + bz),

then let y = z = x, hence
f ′′′(x) = (a3 + b3 + c3)f ′′′(x)

for all x ∈ R. Because a3 + b3 + c3 6= 1, it follows that f ′′′(x) = 0, so any Palić function is of the
following type:

f(x) = px2 + qx+ r (p, q, r ∈ R). (3)

Replacing the expression of f in (P) it follows that

f(ax+ by + cz) + f(bx+ cy + az) + f(cx+ ay + bz)

= p
�
a2 + b2 + c2

�
| {z }

1

(x2 + y2 + z2) + 2p (ab+ bc+ ca)| {z }
0

(xy + yz + xz) + q (a+ b+ c)| {z }
1

(x+ y + z) + 3r

= p(x2 + y2 + z2) + q(x+ y + z) + 3r = f(x) + f(y) + f(z)

for all x, y, z ∈ R, so any function f of the form (3) is a Palić function.



Problem 3.

Let α ∈ C \ {0} and A ∈Mn(C), A 6= On, be such that

A2 + (A∗)2 = αA ·A∗,

where A∗ =
�
A
�T

. Prove that α ∈ R, |α| 6 2, and A ·A∗ = A∗ ·A.

Solution: Let A = (aij)16i,j6n. Applying the trace operator in the given identity, it follows that

nX
i,j=1

aij · aji +
nX

i,j=1

aji · aij = α ·
nX

i,j=1

aij · aij ,

hence

2 Re
nX

i,j=1

aij · aji = α
nX

i,j=1

|aij |2

| {z }
∈(0,∞)

, (1)

which leads to α ∈ R.
Since

|Rexy| ≤ |x| · |y| ≤ |x|
2 + |y|2

2
for all x, y ∈ C,

using (1) it follows that

|α| ·
nX

i,j=1

|aij |2 = 2 ·

������Re
nX

i,j=1

aij · aji

������ ≤
nX

i,j=1

|aij |2 +
nX

i,j=1

|aji|2 = 2
nX

i,j=1

|aij |2

| {z }
>0

,

hence |α| 6 2.
Let ε1, ε2 be the solutions of z2 − αz + 1 = 0, hence ε1 + ε2 = α and ε1ε2 = 1. Let X = A− ε1A∗
and Y = A− ε2A∗. Then

XY = A2 + ε1ε2|{z}
=1

(A∗)2 − ε1A∗A− ε2AA∗ = αAA∗ − ε1A∗A− ε2AA∗ = ε1(AA
∗ −A∗A)

and, similarly,
Y X = ε2(AA

∗ −A∗A).

Then XY =
ε1
ε2
Y X = ε21Y X, so (XY )2 = ε41(Y X)2. Since Tr

�
(XY )2

�
= Tr

�
(Y X)2

�
, it follows

that
(ε41 − 1) Tr

�
(XY )2

�
= 0,

so we distinguish the following cases:

• ε1 ∈ {−i, i}. Then α = 0, which is a contradiction.

• ε1 ∈ {−1, 1}. Then α ∈ {−2, 2}, and the equality from the hypothesis becomes (A± A∗)2 =
± (A∗A−AA∗). The equality of the traces gives Tr

�
(A±A∗)2

�
= 0, which leads to A±A∗ =

On, and the conclusion follows.

• Tr
�
(XY )2

�
= 0. Then Tr

�
(AA∗ −A∗A)2

�
= 0, which leads to AA∗ −A∗A = On.



Problem 4.

Let F be the family of all nonempty finite subsets of N ∪ {0}. Find all positive real numbers a for
which the series X

A∈F

1P
k∈A

ak

is convergent.

Solution: Let a = 2. Any positive integer n can be uniquely represented in base 2:

n = 2k1 + · · ·+ 2ks

(here, k1, . . . , ks are distinct positive integers). Hence, there is a well-defined map ϕ : N→ F , given
by

ϕ(n) = {k1, . . . , ks}.

Clearly ϕ(n) = ϕ(m) leads to n = m, i.e. ϕ is injective. Moreover

ϕ

 X
k∈A

2k
!

= A,

hence ϕ is surjective, and finally bijective. Similarly to the last, according to the definition of ϕ we
observe X

k∈ϕ(n)
2k = n.

Hence, we can rewrite the series as follows

X
A∈F

1P
k∈A

2k
=
∞X
n=1

1P
k∈ϕ(n)

2k
=
∞X
n=1

1

n

(the series has only positive terms, so we can rearrange; also, we used that ϕ is bijective), which is
the harmonic series, and hence divergent. Therefore, the series are divergent for all a 6 2.

Now let a > 2. For any n > 0, let Fn be the subfamily of sets from F whose greatest element is n.
Clearly, there are 2n sets in Fn. Observe that for every A ∈ Fn holds

X
k∈A

ak > an. Thus

X
A∈Fn

1P
k∈A

ak
6

X
A∈Fn

1

an
6

2n

an
.

Thus, for the initial series we obtain

X
A∈F

1P
k∈A

ak
=
∞X
n=0

X
A∈Fn

1P
k∈A

ak
6
∞X
n=0

�
2

a

�n
.

Since a > 2, the series is dominated by a convergent geometric series, hence it is convergent.


