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XI APMO - SOLUTIONS AND MARKING SCHEMES

Problem 1. Find the smallest positive integer n with the following property : There does not exist
an arithmetic progression of 1999 terms of real numbers containing exactly n integers.

Solution and Marking Scheme:

We first note that the integer terms of any arithmetic progression are “equally spaced”, because if the
ith term ¢; and the (i -+ j)th term a;4; of an arithmetic progression are both integers, then so is the
(2 4 27)th term Qj4+2j = Qj45 + (aiﬂ- - ai).

1 POINT for realizing that the integers must be “equally spaced”.

Thus, by scaling and translation, we can assume that the integer terms of the arithmetic progression
are 1,2,:-+,n and we need ounly to consider arithmetic progression of the form
- ) 1 2 k-1 1 k-1

T e, 1 a4 Smen e BBt e oy s s v e
Litoldgenl+ =522+ 5 n=1 =14 —=n

This has kn — & + 1 terms of which exactly n are integers. Moreover we can add up to k — 1 terms on
either end and get another arithmetic progression without changing the number of integer terms.

2 POINTS for noticing that the mazimal sequence has an equal number of
terms on either side of the integers appearing in the sequence (this includes the 1 POINT cbove). In
other words, 2 POINTS for the scaled and translated form of the progression including the k-1 terms
on either side. -

Thus there are arithmetic progressions with 7 integers whose length is any integer lying in the interval
[kn — k 4+ 1,kn + k — 1], where k is any positive integer. Thus we want to find the smallest n > 0 so
that, if k is the largest integer satisfying kn + &k — 1 < 1998, then (k + 1)n — (k- 1) 4 1 > 2000.

4 POINTS for clarifying the nature of the number n in this
. way, which includes counting the terms of the mazimal and minimal sequences containing n integers
and bounding them accordingly (this includes the 2 POINTS above).
That is, putting k = {1999/{n + 1)], we want the smallest integer n so that

l 1999

,— 1) 4+ n > 2000.
nﬂ}(ﬂ ) +n > 200




This inequality does not hold if

1999
—— -« (n—1) +n < 2000.
n+l
2 POINTS for setting up an inequality for n.

This simplifies to n? < 3999, that is, n < (3. Now we check integers from n = 64 on:

for n = 64, |1222| .63 + 64 = 30 - 63 + 64 = 1954 < 2000 ;
65

1999] . 64 + 65 = 30 - 64 + 65 = 1985 < 2000 :
.65 4 66 = 29 - 65 + 66 = 1951 < 2000 ;

lﬁfﬁ] .66 4 67 = 29 - GG + 67 = 1981 < 2000 ;
j-67+68:28-67+68r:1944<2000;

68 + 69 = 28 - 68 + 69 = 1973 < 2000 ;
Y90 69 470 = 28.- 69 + 70 = 2002 > 2000 .

Thus the answer is n = 70.

1 POINT for checking these numbers and finding that n = 70.

Problem 2. Let ay,ag, -+ be a sequence of real numbers satisfying air; < ai+¢; foralli,j =1,2,---.

Prove that
an

az a3
Gl+';);‘~%--é-+"'+'j{20n
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for each positive integer n.
Solution and Marking Scheme:
. Letting b; = a;/i, (1 = 1,2,--+), we prove that
By pewer b 20y (o= 1,800
by induction on n. For n =1, by = a1 2 a1, and the induction starts. Assume that
b+ by > a

for all k=1,2,--»,n — 1. It suffices to prove that by + .+ + by, > @, or equivalently that




nby + -+ +nby_1 > (n — 1)an.

3 POINTS for separating an from by,-«-,bn—1.

nby 44 nbyoy = (n—=1)b + (n—2)b2 deer by b+ 200+ (0= 1)bny
b+ (by +bo) -4 (b +bp+ - +bp1) + (a1 + a2+ + anoy)

il

v

n—-1
2(a; +az+- -+ ap1) = Z(a; +an-i) > (n—1)an.
i=1

9 POINTS for the first inequality and 1 POINT for the rest.

Problem 3. Let T'; and I'; be two circles intersecting at P and Q. The common tangent, closer to P,
of I'; and I'y touches I'y at A and I'; at B. The tangent of Ty at P meets I'y at C, which is different

from P and the extension of AP meets BC at R. Prove that the circumcircle of triangle PQR is
tangent to BP and BR.

Solution and Marking Scheme:

Let @ = LPAB, f = LABP y 4 = /QAP. Then, since PC is tangent to Iy, we have ZQPC =
LQBC =+~. Thus 4, B, R, Q are concyclic.

9 POINTS for proving that A, B, R, Q are concyclic.
Since AB is a common tangent to 'y and 'y then ZAQP = « and LPQB = [PCB = (3. Therefore,
since A, B, R, Q are concyclic, LARB = LAQB= a+ B and /BQR = a. Thus LPQR = LPQB +
[BQR=a+p.

2 POINTS for proving that /PQR = (PRB = o+ 5.
Since ZBPR is an exterior angle of triangle ABP, (BPR = o+ . We have

[PQR = (BPR=(BRP
1 POINT for proving LBPR = 0.+ f3.
- So circumcircle of PQR is tangent to BP and BR.

1 POINT for concluding.

Remark. 2 POINTS can be given for proving that LPRB = LRPB and 1 more POINT for attempting
to prove (unsuccessfully) that /PRB = (RPB = LPQR. '




Problem 4. Determine all pairs (a,b) of integers with the property that the numbers a? +4b and
b? + 4a arc both perfect squares.

First Solution and Marking Scheme:

Without loss of gencrality, assume that |b| < la|. b = 0, then a must be a perfect square. So
(a = k%,b = 0) for each k € Z is a solution.

Now we consider the case b # 0. Because a® + 4b is a perfect square, the quadratic equation
22 +ar—-5=0 (%)

has two non-zero integral roots zy, 2.

2 POINTS for noticing that this equation has integral Toots.

Then z; + z2 = —a and z122 = —b, and {from this it follows that
1 1 1 1 la
— > = b= | =21
|z1]  |z2] Tz z2 [0] :

Hence there is at least one root, say 1, such that |z;| < 2.
8 POINTS for finding that |z1| < 2.

There are the following possibilities.

(1) z; = 2. Substituting z; = 2 into (x) we get b = 2a +4. So we have b? + 4a = (2a +4)* + 4a =
4a? + 200 + 16 = (2a+ 5)% — 9. It is casy to see that the solution in non-negative integers of the
equation 22 — 9 = y? is (3,0). Hence 2¢ + 5 = +3. From this we obtain a = —4,b = —4 and
a = —1,b = 2. The latter should be rejected because of the assumption la| = {b].

(2) z; = —2. Substituting z; = ~2 into (*) we get b =4 - 2a. Hence b? + 4a = 4a? — 12a + 16 =
(2a — 8)2 4+ 7. It is easy to show that the solution in non-negative integers of the equation
22 + 7 = y? is (3,4). Hence 2a — 3 = 3. From this we obtain @ = 3,b = -2.

(3) z; = 1. Substituting z; = 1 into (+) we get b=a+1. Hence b2 +4a = a? +6a+1 = (a+3)* -8
It is easy to show that the solution in non-negative integers of the equation g2 — 8 = y? is (3,1).
Hence a + 3 = +3. From this we obtain a = —6,b = -5 .

(4) z; = —1. Substituting z; = —1into (*) weget b= 1-a. Then a?+4b = (a—2)?,b%+4a = (a+1)*.
Consequently, a = k,b =1 -k (k € Z) is a solution.

1 POINT for checking specific values for zy.




»

Testing these solutions and by symmetry we obtain the following solutions
(“41 '—4): (—5, _6)3 (‘61 "5)’ (0’ kz)) (k2.3 O)a (ka 1- k)

where k& is an arbitrary integer. (Observe that the solution (3,-2) obtained in the second
possibility is included in the last solution as a special case.)

1 POINT for writing up the correct answer.

Second Solution and Marking Scheme:

Without loss of generality assume that |b] < |a|. Then a2+ 4b < a2 + 4la| < a® +4la] +4 = (o] +2)2.
Given that a® +4b is a perfect square and since a2 -+ 4b y a® have same parity then o2 + 4b 5 (Ja| +1)2,

&0

a? +4b < a2, (1)

2 POINTS for proving (1).
Let us consider three cases.

Cese 1. a? +4b = a?. Then b = 0 and a must be a perfect square. Soa =k%, b=0(k € Z) is a
solution.

Case 2. a®+4b = (la| - 2)%. Then b = 1 |a|, therefore b2 +4a = a® - 2|a| +4a + 1 must be a perfect
square, :

If a > 0 then b + 4a = (a +1)? is a perfect square for each @ € Z. Consequentlya=kand b=1-k
(k € Z%) is a solution.

If a =0 then b =1, but from (1) b must be non-positive.
If a < 0 then b® + 4a = m? — 6m + 1 must be a perfect square, where m = —a > 0. For m > 8
(m=32%2>m?—-6m+1> (m —4)?%,

therefore m < 8. If m =1,2,3,4,5 then m2 = 6m+1< 0. If m = 6, m? — 6m +1 = 1 is a perfect
square thus @ = ~6 and b = =5 is a solution. If m =7, m?2 — 6m + 1 = 8 is not a perfect square.

2 POINTS for case 1 and case 2.

Case 3. a® + 4b < (la| - 4)2. Since |b] < la| then b > —[a|, thus a? — 4]a| < a? + 4b < (|a] - 4)%. It
follows that |a] < 4. We have following posibilities:

1 POINT for finding that |a| < 4 in this case.

(a) lal = 4. Then 16 +4b = 0 or b = —4. Thus % +4a = 16 + 16 must be a perfect square. So
a=-—4yb= -4




(b) Ja| = 3. In this case a2 +4b = 9-+4b< 1, then 9+ 4b=0or 9+ 4b = 1. The equation
9 + 4b = 0 does not have integer solutions. The solution of the sccond equation is b = —2. Then
b2 -+ 4a = 4 = 12 must be a perfect square, thus a = 3.

(c) la| = 2. a® +4b = 4+ 4b < 4. Since 4 +4b is even and must be a perfect square then 4 + dh=4
or 4 +4b = 0. Therefore b = G or b = ~1. If b =0, b% 4 4a = 48 is not a perfect square. If
b = —1 then b+ 4a = 1 % § is a perfect square if a = 2. Thus ¢ = 2 and b= —1 is a solution.

(d) la| = 1. Then a? -+ 4b = 4b+ 1 < 9. Since 4b-+ 1 must be an odd perfect square then 4b+1=1
ordb41=9 Sob=0o0rb=2 Ifb=0, 0" +4a= %4, thena=1 If b= 2 then a = —1, but
this is not possible because |b] < |a]. Thusa=1yb= 0 is a solution in this case.

(e) la| = 0. Since [b] < |a| then b= 0.

1 POINT for concluding case 3.

Testing these solutions and by symmetry we obtain the following solutions:
( "2)0)) (0,]&32), (k9 1 == k)v (—G) —5): (_5) —6)) ("4: _4):

where k is an arbitrary integer. Note that if (k,1 - k) is a solution with k > 0, then taking t =1 -K,
=1~-t,so(1—t,¢t)is solution. Thus by syminetry (k,1 - k) is a solution for any integer.

1 POINT for writing up the correct answer.

Remark: 1 POINT can be given for checking that (k1 — k) is a solution. However NQO POINT s
given for finding any other particular solution.

Problem 5. Let S be a set of 2n + 1 points in the plane such that no three are collinear and no four
concyclic. A circle will be called good if it has 3 points of S on its circumference, n — 1 points in its
interior and n — 1 in its exterior. Prove that the number of good circles has the saine parity as n.

Solution and Marking Scheme:

Lemma 1. Let P and Q be two points of S. The number of good circles that contain P and @ on
their circumference is odd.



Proof of Lemma 1.

~

Q

Let N be the number of good circles that pass through P and @. Number the points on one side
of the line PQ by Ay, As, ..., A and those on the other side by By, By, ..., Bin in such a way that if
LPA;Q =0, (PB;Q =180 - thena; >z > ... > and fy > 2 > ... > B

Note that the angles a1, ag, ..., ax, 51, B2, .., Om ave all distinct since there are no four points in S that
are concyclic.

Observe that the circle that passes through P, @ and A4; has A; in its interior when a; > o that is,
when ¢ > j; and it contains Bj in its interior when «; + 180 - 3; > 180, that is, when o4 > ;. Similar
conditions apply to the circle that contains P,Q and Bj.

. 1 POINT for characterizing the points that lie inside a given circle in terms of
these angles, or for similer considerations.
Order the angles ay, 03, ..., &k, B1, B2, ..., On from the greatest to least. Now transform S as follows.
Consider a f3; that has an o; immediately to its left in such an ordering (... > a; > f;...). Consider a
new set S’ that contains the same points as S except for A; and Bj. Thcse two points will be replaced
by A} and B; that satisfy {PA;Q = f§; = & and LPBiQ =180 — a; = 180 — ;- Thus ; and a; have
been mtmchanued and the ordering of the «’s and 5’ s has only changed with respect to the relative
order of o; and 3;; we continue to hav

5 5 / 5
Q> Q) > D> Q] > Q> Q) 2 e > O

and

B> 2> Bj-1> B > Bj+1 > . > Pim.

1 POINT for this or another useful transformation of the set S

Analyze the good circles in this new set §’. Clearly, a circle through P,Q, 4, (r # ) or through
P,Q, B, (s # j) that was good in S will also be good in §’, because the order of A, (or Bs) relative to
the rest of the points has not changed, and therefore the number of points in the interior or exterior
of this circle hes not changed. The only changes that could have taken place are:

a) If the circle P, Q, 4; was good in S, the circle P, @, A} may not be good in §'.
b) If the circle P,Q, B; was good in 8, the circle P, @, B;- may not be good in S,




c) If the circle P, Q, A; was not good in S, the circle P, Q, A} may be good in §'.
d) If the circle P, Q, B; was not good in S, the circle P, Q, B} may be good in §’,

1 POINT for reclizing that the transformation can only change the “goodness” of these circles.

But observe that the circle P, @, 4; contains the points Aj, Ag, ..., Ai—1, Bj, Bjt1,..., B and does
not contain the points A;yy, Aiy2,..., Ag, B1, Ba,...,Bj_1 in its interior. Then this circle is good if
and only f i+ m — j = k — i+ j — 1, which we rewrite as j ~¢ = 5 (m —k +1). On the other
hand, the circle P, @, B; contains the points Bj1, Bji2,..., Bm, A1,A42, ..., 4; and does not contain
the points By By ..., Bj_1, Aiy1,Ai+2,..., A in its interior. Hence this circle is good if and only if

m—j+i=j—1<+k—1, which we rewriteas j — i = %(m —-k+1).

PO

Therefore, the circle P,Q, A; is good if and only if the circle P,Q, 33; is good. Similarly, the circle
P,Q, Al is good if and only if the circle P, @, Bj is good. That is to say, transforming S into §' we
lose either 0 or 2 good circles of S and we gain either 0 or 2 good circles in &',

1 POINT for realizing that the “goodness” of these circles is changed in pairs.

Continuing in this way, we may continue to transform S until we obtain a new set Sy such that the
) I ' 1 ! e
angles o, oy, ..., o, By, By, ..., B, satisfy

B>B>.>f > >dh>.>d.

and such that the number of good circles in Sy has the same parity as N. We claim that Sp has
exactly one good circle. In this configuration, the circle P,@, A; does not contain any B; and the
circle P, Q, B; does not contain any A; (for all ¢, 7), because a;+(180—05) < 180 for all a,b. Hence, the
only possible good circles are P, Q, Bp—pn+1(which contains the n — 1 points Br—n42, Bm-n+3,.s Bm),
ifm—-mn-+12>0, and the circle P,Q, A, (which contains the n — 1 points A; Ay ..., 4,), if n < k.
But, since m + k = 2n — 1, which we rewrite as m — n 4+ 1 = n — k, exactly one of the inequalititcs
m—n-+1>0and n <k is satisfied. It follows that one of the points By,—,+1 and A, corresponds to
a good circle and the other does not. Hence, Sy has exactly one good circle, and N is odd. O

1 POINT for showing that this configuration. has ezactly one good circle.

Now consider the (2“; 1) pairs of points in S. Let agg41 be the number of pairs of points through which
exactly 2k + 1 gooed circles pass. Then ¢ '

2 1
a;taz-tas+..= ( n;- )

But then the number of good circles in § is

]
i




o

%(01 + 3az + Sas + Tag + ...) ay + 3az + Sas + Tay + ...

ay + a3z +as+ay+...
(2n+1\
2 )
n(2n + 1)
n (mod2).

i

Il

1

Here we have taken into account that each good circle is counted 3 times in the expression a; 4 3az +
Sas + Ta7 + .... The desired result follows.

2 POINTS for this computation.
Alternative Proof of Lemma 1.

Let A, Aa, ..., A2,-1 be the 2n — 1 given points other than P and Q.

Invert the plane with respect to point P. Let O, By, Ba,...,Ba,—; be the images of points
Q, Ay, Az, .., Agn-, respectively, under this inversion. Call point B; “good” if the line OB; splits
the points By, Ba...,Bi_1,Bi41,...,Boq-1 evenly, leaving n — 1 of them to each side of it. (Notice
that no other B; can lie on the line OB;, or else the points P, @, A; and A; would be concyclic.) Then
it is clear that the circle through P, @Q and A; is good if and only if point B; is good. Therefore, it
suflices to prove that the number of good points is odd.

1 POINT for inverting and realizing the equivalence between good circles and good points.

Notice that the good points depend only on the relative positions of rays OB, 0By, ...,0Bg, .1, and
not on the exact positions of points By, By, ..., Bon-1. Thercfore we may assume, for simplicity, that
By, By, ..., Bo,—1 lie on the unit circle I with center O.

1 POINT for this or a similer simplification.

Let C1,C4q,...,Co,-1 be the points diametrically opposite to By, B2,...,B2,-1 in I'. As remarked
earlier, no Cj can coincide with one of the Bj’s. We will call the B;’s “white points”, and the Cj’s
“black points”. We will refer to these 4n — 2 points as the “colored points”.

Now we prove that the number of good points is odd, which will complete the proof of the lemma. We
proceed by induction on n. If n = 1, the result is trivial. Now assume that the result is true for n = &,
and consider 2k + 1 white points By, Bs,..., Bag+1 on the circle I' (no two of which are diametrically
opposite), and their diametrically opposite black points Cy,Cy,...,Cogy1. Call this configuration of

points “configuration 1”. It is clear that we must have two consecutive colored points on I' which have
* different colors, say B; and C;. Now remove points B;, B;,C; and Cj from T', to obtain “configuration
2", a configuration with 2k — 1 points of each color.

1 POINT for this or a similar transformation of the set.

It is easy to verify the following two claims:

1. Poiut B; is good in configuration 1 if and only if point B; is good in configuration 1.




1 POINT
2. Let k # ¢,j. Then point By is good in configuration 1 if and only if it is good in configuration 2.

1 POINT

It follows that, by removing points B;, B;j, C; and Cj, the number of good points can either stay the
same, or decreages by two. In any case, its parity remains unchanged. Since we know, by the induction
hypothesis, that the number of good points in configuration 2 is odd, it follows that the number of
good points in configuration 1 is also odd. This completes the proof.

Another Approach to Lemma 1.

One can give another inductive proof of lemma 1, which combines the ideas of the two proofs that we
have given. The idea is to start as in the first proof, with the characterization of the points inside a
given circle.

1 POINT

Then we transform the set S by removing the points A; and Bj instead of replacing them by A] and
!
B;.

T,

_ 1 POINT

It can be shown that every one of the remaining circles going through P and @, contained exactly one
of A; and Bj. Thercfore, the only good circles we could have gained or lost are P,Q, 4; and P, Q, B;.
- 2 POINTS

Finally, we show that either both or none of these circles were good, so the parity of the number of
good circles isn’t changed by this transformation.

1 POINT

Remark: 2 POINTS can be given if the result has been fully proved for a particular case with n > 1.
(If more than one particular case has been analyzed completly, only 2 POINTS.) These points are
awarded only if no progress has been made in the general solution of the problem.




