
ALGEBRA



A1. A set A is endowed with a binary operation ∗ satisfying the following four conditions:

(1) If a, b, c are elements of A, then a ∗ (b ∗ c) = (a ∗ b) ∗ c ;
(2) If a, b, c are elements of A such that a ∗ c = b ∗ c, then a = b ;
(3) There exists an element e of A such that a ∗ e = a for all a in A ; and
(4) If a and b are distinct elements of Ar {e}, then a3 ∗ b = b3 ∗ a2, where xk = x ∗ xk−1 for all
integers k ≥ 2 and all x in A.

Determine the largest cardinality A may have.

Bojan Bašić, Serbia

Solution. The required maximum is 3, in which case A is necessarily a copy of the additive group
of residue classes modulo 3; that is, A = {a, a2, a3 = e}, which clearly satisfies the conditions.

We show that if |A| ≥ 3, then A has the above form. For convenience, write xy = x ∗ y for
all x, y in A. Let a and b be distinct elements of Ar {e}.

We first prove that either a2 6= a or b2 6= b. If a2 = a, then a3 = a, and ba = ba2 implies
b = ba by (2). Similarly, if b2 = b, then b3 = b, and a = ab. Hence, if a2 = a and b2 = b, then
a = ab = a3b = b3a2 = ba = b by (4) in the middle, a contradiction.

Assume henceforth a2 6= a.
Next, we show that a2 6= e. Suppose a2 = e and use (3) and (4) to write ab = (ae)b =

(aa2)b = a3b = b3a2 = b3e = b3, so a = b2 by (2). Then b5 = b3b2 = b3a = a3b2 = (b2)3b2 = b8 by
(4) in the middle, so b = b4 by (2), whence b = (b2)2 = a2 = e, a contradiction.

We now prove that a3 = e. Suppose a3 6= e and notice that a2 and a3 are distinct elements of
Ar{e} (otherwise, (2) would imply a = a2), to use (4) and write a11 = (a3)3a2 = (a2)3(a3)2 = a12,
so a = a2, a contradiction.

Finally, we show that b = a2, so A consists of e, a and a2 alone. Use (4) to get eb = a3b = b3a2

and eb2 = a3b2 = b3a. This yields eb2 = b3a = b2(eb)a = b2b3a2a = b3b2, so e = b3 by (2). Then
eb = b3a2 = ea2, so b = b4 = eb = ea2 = a3a2 = a2e = a2. This completes the proof.
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COMBINATORICS



C1. A planar country has an odd number of cities separated by pairwise distinct distances. Some
of these cities are connected by direct two-way flights. Each city is directly connected to exactly
two other cities, and the latter are located farthest from it. Prove that, using these flights, one
may go from any city to any other city.

Alexander Gaifullin, Russia

Solution. Consider the graph G whose vertices are the cities and whose edges are the direct
two-way flights. We must show that G is connected.

Assuming G has at least two components, we show that the cardinality of each component is
even; this contradicts the fact that the total number of vertices is odd, whence the conclusion.

Lemma. If AB and XY are edges in different components of G, then the segments AB and XY
cross at an interior point.

Proof. Two cases are to be ruled out:

(1) The lines AB and XY meet outside both open segments (AB) and (XY ), possibly at an ideal
point; that is, after a suitable relabelling (if necessary), ABXY is a convex (possibly degenerate)
quadrangle.

In this case, the segments AX and BY cross at some point O, so AX +BY = (OA+OX) +
(OB+OY ) = (OA+OB) + (OX+OY ) ≥ AB+XY . Consequently, either AX ≥ AB, in which
case A is connected to X, contradicting the fact that the two lie in different components of G; or
BY ≥ XY , in which case Y is connected to B, contradicting the fact that the two lie in different
components of G.
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(2) The lines AB and XY cross at an interior point of exactly one of open segments (AB) and
(XY ), say, the latter; that is, after a suitable relabelling (if necessary), the segment AB lies
inside the triangle AXY .

In this case, AB < max(AX,AY ), since the segment AB lies along a cevian in the triangle
AXY , so A is connected to (exactly) one of X and Y , contradicting the fact that A and X, Y
lie in different components of G.

Back to the problem, since every vertex has degree 2, each component of G is a circuit. Let
C be one such and let XY be an edge of G whose endpoints do not belong to C. By the lemma,
every two consecutive vertices of C lie on opposite sides of the line XY , so C has an even number
of vertices. This ends the proof.

Remarks. One possible configuration satisfying the conditions in the statement is obtained by
slightly disturbing the positions of the vertices of a regular polygon with an odd number of sides,
to make all pairwise distances distinct.

The condition that the total number of cities be odd is essential for the conclusion to hold.
For instance, placing a pair of cities near each vertex of a square allows ‘diagonal’ flights only; the
maximal circuits the flight graph splits into are bow ties stretched out along the diagonals. The
construction generalises to any regular polygon with an even number of vertices. With some care,
both 2-city clusters around a pair of opposite vertices of such a polygon can (simultaneously) be
replaced by 3-city clusters; this can be done for any number of such pairs.
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C2. Fix an integer n ≥ 2 and let A be an n × n array with n cells cut out so that exactly one
cell is removed out of every row and every column. A stick is a 1 × k or k × 1 subarray of A,
where k is a suitable positive integer.

(a) Determine the minimal number of sticks A can be dissected into.
(b) Show that the number of ways to dissect A into a minimal number of sticks does not

exceed 100n.

Palmer Mebane and Nikolai Beluhov

Solution 1. (a) The required minimum is 2n− 2 and is achieved, for instance, by dissecting A
along all horizontal (or vertical) grid lines.

By holes we mean the cells which are cut out from the board. The cross of a hole in A is the
union of the row and the column through that hole.

Consider a dissection of A into 2n−2 or fewer sticks. Horizontal sticks are all labelled h, and
vertical sticks are labelled v; 1×1 sticks are both horizontal and vertical, and labelled arbitrarily.
Each cell of A inherits the label of the unique containing stick.

Assign each stick in the dissection to the cross of the unique hole on its row, if the stick is
horizontal; on its column, if the stick is vertical.

Since there are at most 2n− 2 sticks and exactly n crosses, either there is a cross assigned to
no stick in the dissection, or there are two crosses each of which is assigned to exactly one stick
in the dissection.

Case 1: There is a cross assigned to no stick in the dissection. In this case, the vertical arms
of the cross are both all-h, and the horizontal arms are both all-v, so no stick in the dissection
covers more than one of the 2n− 2 cells along the arms of the cross. Consequently, there are at
least 2n− 2 sticks.

Case 2: There are two crosses each of which is assigned to exactly one stick in the dissection.
Let the crosses be c and d, centred at a = (xa, ya) and b = (xb, yb), respectively, and assume,
without loss of generality, xa < xb and ya < yb. The sticks covering the cells (xa, yb) and (xb, ya)
have like labels, for otherwise one of the two crosses would be assigned to at least two sticks. Say
the common label is v, to infer that the lower (respectively, upper) arm of c (respectively, d) is
all-h, and the horizontal arms of both crosses are all-v, as illustrated below.
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Each of the rows between the rows of a and b, that is, rows ya + 1, ya + 2, . . . , yb−1, contains
a hole. The column of each such hole contains at least two v-sticks. All other columns contain at
least one v-stick each. In addition, all rows below a and all rows above b contain at least one h-stick
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each. This amounts to a total of at least 2(yb−ya−1)+(n−yb+ya+1)+(n−yb)+(ya−1) = 2n−2
sticks.

(b) To provide an upper bound for the number of minimal dissections of A into sticks, the
lemma below will be applied to the two cases in the solution to part (a).

Lemma. Consider a p × q array B with some cells removed, at most one from each row and
each column; assume the cell in the lower left corner is among the removed cells. Then there are
at most 2p+q dissections of B into p − 1 vertical sticks, each of which has a cell on the bottom
row, and q − 1 horizontal sticks, each of which has a cell on the leftmost column.

Proof. Locate the holes at (xi, yi), where i runs through some initial segment of the positive
integers.

If xi < xj and yi > yj for some indices i and j, the cell (xj , yi) is covered by no stick having
a cell on the bottom row or on the leftmost column, so the number of dissections satisfying the
condition in the lemma is zero.

Otherwise, label the holes so that xi < xi+1 and yi < yi+1 and notice that the union of
all horizontal sticks in a dissection satisfying the conditions in the lemma is separated from the
union of all vertical sticks in that dissection by a broken line running up-and-to-the-right along
grid lines from the lower left corner of B to the upper right corner of B.

Since each such path determines at most one dissection satisfying the condition in the lemma,
the number of possible dissections does not exceed the number of such paths, which is

(
p+q
p

)
≤

2p+q.

Back to the problem, consider dissections D of A into 2n− 2 sticks, along with the two cases
in the solution to part (a).

Case 1: There is a cross c, assigned to no stick in D; let a be the hole at the center of c. The
cross c subdivides A into four quadrants. Extend each of these quadrants by adding the two arms
of c that bound it, along with the hole a, to obtain an array as described in the lemma. Since
|D| = 2n − 2, each stick in D contains exactly one cell of the cross c. Therefore, the restriction
of D to each extended quadrant satisfies the condition in the lemma, so there are at most 24n+4

such dissections involving c; and since there are n options for the centre of c, the number of these
dissections does not exceed 24n+4n.

Case 2: There are two crosses each of which is assigned to exactly one stick in D. Use the
notation, conventions and choices in the solution to part (a). Since |D| = 2n− 2, the evaluation
in part (a) exhausts the sticks in D. So the restriction of D to the strip flanked by the two
rows through a and b, respectively, consists of vertical sticks only; and the restrictions of D to
the extensions of the upper (respectively, lower) quadrants around b (respectively, a) satisfy the
condition in the lemma. It follows that there are at most 24n+2 such dissections involving c and d.
Since there are

(
n
2

)
= n(n − 1)/2 options for the centres of c and d, and the sticks covering the

cells (xa, yb) and (xb, ya) may be labelled two ways (recall that they have like labels), the number
of these dissections does not exceed 24n+2n(n− 1).

Consequently, the total number of minimal dissections of A into sticks does not exceed
24n+2n(n+ 3); the latter is less than 100n, provided that n ≥ 3, and the case n = 2 is clear.

Solution 2. (Ilya Bogdanov) (a) Cutting the board along the horizontal grid lines produces a
dissection into 2n− 2 sticks. So we are left to prove that this is the minimal possible number of
sticks in a dissection.

Call a stick vertical if it is contained in some column, and horizontal if it is contained in some
row; 1×1 sticks may be called arbitrarily, but any of them is supposed to have only one direction.
Assign to each vertical/horizontal stick the column/row it is contained in. If each row and each
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column is assigned to some stick, then there are at least 2n sticks, which is even more than we
want. Thus we assume, without loss of generality, that some exceptional row R is not assigned
to any stick. This means that all n− 1 existing cells in R belong to n− 1 distinct vertical sticks;
call these sticks central.

Now we mark n− 1 cells on the board in the following manner. (↓) For each hole c below R,
we mark the cell just under c; (↑) for each hole c above R, we mark the cell just above c; and
(•) for the hole r in R, we mark both the cell just above it and just below it. We have described
n + 1 cells, but exactly two of them are out of the board; so n − 1 cells are marked within the
board. A sample marking is shown in the figure below, where the marked cells are crossed.

×
×

×
×

×
×

×

v v v v v v vR

Notice that all the marked cells lie in different rows, and all of them are marked in different
columns, except for those two marked for (•); but the latter two have a hole r between them.
So no two marked cells may belong to the same stick. Moreover, none of them lies in a central
stick, since the marked cells are separated from R by the holes. Thus the marked cells should
be covered by n− 1 different sticks (call them border) which are distinct from the central sticks.
This shows that there are at least (n− 1) + (n− 1) = 2n− 2 distinct sticks, as desired.

(b) Consider any dissection into exactly 2n − 2 sticks. It contains an exceptional row or an
exceptional column; we consider only the first option (so we will need to double our bound at the
end) and again denote one exceptional row by R. Now we may (and will) assume that all 1× 1
sticks are vertical.

The dissection contains exactly n− 1 central (vertical) sticks and exactly n− 1 border sticks.
Such a dissection is completely determined by the arrangement of horizontal (border) sticks.
Indeed, if we delete all horizontal sticks from the board, the remaining part can be dissected into
the smallest possible number of vertical sticks in the unique way (along all vertical grid lines).

Thus, we are to bound the number of arrangements of horizontal sticks which may appear in
our dissections. For this purpose, let us discover some properties of such arrangements. Notice
first that each row contains at most one horizontal stick, since each such stick should contain a
marked cell.

For every horizontal stick B, let b be the hole in its row; then we say that the extended stick
B′ of B is either B ∪ {b} (if B and b share a side) or B (otherwise). Let B be any horizontal
stick below R. We claim that the cells just below B′ all lie in one extended horizontal stick; this
yields that the extended sticks are arranged in two non-shrinking stacks above and below R, as
illustrated in the figure below.
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Let x be any of cells just below B (there are at least two such). If x lies in some vertical
stick S, then S is separated from R by B. Thus S should contain a marked cell, and this marked
cell should be the topmost one, i.e., x. This cannot happen, since in this case the cell just above
x should be missing, but in fact it belongs to B. Therefore, x either lies in a horizontal stick
or is missing. Since there are at least two options for x, the row below B contains a horizontal
stick, which should contain a marked cell (lying below the hole b in the row of B). Hence all cells
below B′ are either missing or contained in (the same) horizontal stick. The claim is proved.

Assume now that there are h horizontal sticks below R; then they are situated in the lowest h
rows. Moreover, if the extended stick in the ith row occupies the columns from ai to bi, then our
claim yields 1 ≤ a1 ≤ a2 ≤ · · · ≤ ah ≤ bh ≤ · · · ≤ b1 ≤ n. Such a collection (a1, . . . , ah, bh, . . . , b1)
can be chosen in

(
n+2h−1

2h

)
ways, and it completely determines the arrangement of horizontal

sticks below R. So the number of such arrangements is at most

n−1∑
h=0

(
n+ 2h− 1

2h

)
≤

2n−2∑
k=0

(
n+ k − 1

k

)
=

(
3n− 2

n

)
≤ 23n−2.

The same bound holds for the number of arrangements of horizontal sticks above R. Hence
the number of minimal dissections (recall that we should double the bound) does not exceed
2 · (23n−2)2 = 26n−3, as required.

Solution 3 for (a). It is sufficient to show that there are 2n−2 cells in A, no two of which may
be contained in the same stick.

To this end, consider the bipartite graph G with parts Gh and Gv, where the vertices in Gh

(respectively, Gv) are the 2n−2 maximal sticks A is dissected into by all horizontal (respectively,
vertical) grid lines, two sticks being joined by an edge in G if and only if they share a cell.

We show that G admits a perfect matching by proving that it fulfils the condition in Hall’s
theorem; the 2n − 2 cells corresponding to the edges of this matching form the desired set. By
symmetry, it is sufficient to show that every subset S of Gh has at least |S| neighbours (in Gv,
of course).

Let L be the set of all sticks in S that contain a cell in the leftmost column of A, and let R
be the set of all sticks in S that contain a cell in the rightmost column of A; let ` be the length
of the longest stick in L (zero if L is empty), and let r be the length of the longest stick in R
(zero if R is empty).

Since every row of A contains exactly one hole, L and R partition S; and since every column
of A contains exactly one hole, neither L nor R contains two sticks of the same size, so ` ≥ |L|
and r ≥ |R|, whence `+ r ≥ |L|+ |R| = |S|.

If `+r ≤ n, we are done, since there are at least `+r ≥ |S| vertical sticks covering the cells of
the longest sticks in L and R. So let `+ r > n, in which case the sticks in S span all n columns,
and notice that we are again done if |S| ≤ n, to assume further |S| > n.

Let S′ = Gh r S, let T be set of all neighbours of S, and let T ′ = Gv r T . Since the sticks in
S span all n columns, |T | ≥ n, so |T ′| ≤ n− 2. Transposition of the above argument (replace S
by T ′), shows that |T ′| ≤ |S′|, so |S| ≤ |T |.
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Remarks. The authors suspect that the number of ways to dissect A into 2n− 2 sticks does not
exceed 4n−2, equality being achieved exactly when the holes are all strung along a main diagonal.

There are several ways of improving the estimate in Solution 2. For instance, the total height
of the “stacks” of horizontal sticks above R and below R does not exceed n− 1; this leads to an
estimate of order 8n, up to a polynomial factor in n.
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GEOMETRY



G1. Let ABCD be a trapezium, AD ‖ BC, and let E and F be points on the sides AB and CD,
respectively. The circumcircle of the triangle AEF meets the line AD again at A1, and the
circumcircle of the triangle CEF meets the line BC again at C1. Prove that the lines A1C1, BD,
and EF are concurrent.

Alexander Kuznetsov, Russia

Solution 1. Let T be the second meeting point of the circumcircle of the triangle C1BE with
the line EF . Then

∠(TC1, C1B) = ∠(TE,EB) = ∠(FE,EA) = ∠(FA1, A1A),

so TC1 ‖ FA1 (since C1B ‖ A1A). Similarly,

∠(TB,BC1) = ∠(TE,EC1) = ∠(FE,EC1) = ∠(FC,CC1) = ∠(FD,DA1),

so TB ‖ FD. Thus the corresponding sides of the triangles C1BT and A1DF are parallel;
notice also that the vectors C1B and A1D are counter-directed. Therefore, these triangles are
homothetical with a negative coefficient. The center of the respective homothety O lies on the
lines BD, A1C1, and TF (which coincides with EF ), so these lines are concurrent.
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Solution 2. Let S = AB ∩ CD, K = C1E ∩A1F . We have

∠(EK,FK) = ∠(EC1, EF ) + ∠(EF,A1F ) = ∠(CC1, CF ) + ∠(EA,AA1)

= ∠(BC,FS) + ∠(ES,BC) = ∠(ES,FS).

This means that the points E, F , S, and K are concyclic. Thus ∠(KS,KF ) = ∠(ES,EF ) =
∠(EA,EF ) = ∠(A1A,A1F ), which means that KS ‖ BC ‖ AD.

Now apply the Desargues’ theorem to the triangles C1BE and A1DF . The lines C1B and A1D
meet at an ideal point X which is collinear to S = BE ∩DF and K = C1E ∩A1F , as was shown
above. This means that the lines C1A1, BD, and EF are concurrent, as required. (Since the
segments A1C1 and BD meet, the concurrency point is not ideal.)
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G2. Let ABC be a triangle. Consider the circle ωB internally tangent to the sides BC and
BA, and to the circumcircle of the triangle ABC; let P be the point of contact of the two
circles. Similarly, consider the circle ωC internally tangent to the sides CB and CA, and to the
circumcircle of the triangle ABC; let Q be the point of contact of the two circles. Show that the
incentre of the triangle ABC lies on the segment PQ if and only if AB +AC = 3BC.

Luis Eduardo Garćıa Hernández, Mexico

Solution 1. Let I, respectively Ω, be the incentre, respectively circumcircle, of the triangle
ABC. Let the B-mixtilinear circle ωB touch the sides BC and BA at X and M , respectively,
and let the C-mixtilinear circle ωC touch the sides CB and CA at Y and N , respectively. Let D,
E, and F be respectively the midpoints of the arcs BC, AC, and AB of Ω not containing other
vertices of the triangle ABC. We start by collecting some useful (and known) information about
the circles ωB and ωC .

Lemma 1. Each of the triples (P,M,F ), (Q,N,E), (P,X,D), and (Q,Y,D) consists of three
collinear points.

Proof. The homothety centred at P and mapping ωB into Ω maps the point M to a point on
the arc AB of Ω which belongs to the tangent parallel to AB, i.e., M maps to F . Thus the
points P , M , and F are collinear. The proof for the other triples is similar.

Lemma 2. The points M , I, X (respectively, N , I, Y ) are collinear, and MX (respectively,
NY ) is perpendicular to the angle bisectrix BI (respectively, CI).

Proof. By Lemma 1, we have M = AB ∩ FP , X = BC ∩ PD, and obviously I = CF ∩ DA.
Application of Pascal’s theorem to the hexagon ABCFPD shows that the three points are
collinear. Finally, the internal angle bisectrix BI of the triangle BMX is perpendicular to MX,
since BM = BX.
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Now we turn to the solution. Let AL, L on BC, be the the internal angle bisectrix of the
triangle ABC, and let J be the A-excentre. It is well known that the points B, I, C, and J lie
on a circle centred at D. The inversion with respect to this circle preserves B, I, and C, and it
swaps Ω and BC; so by Lemma 1 it maps P , I, and Q to X, I, and Y , respectively. Therefore,
I lies on PQ if and only if IXDY is cyclic.

Due to Lemma 2, the corresponding sides of the triangles IXY and JBC are parallel, so there
exists a homothety (centred at L) mapping one to the other. This homothety maps D to some
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point D′, and the quadrangle IXDY is cyclic if and only if the quadrangle JBD′C is cyclic, i.e.
if and only if D′ = I, or LI2 = LD · LJ . Since D is the midpoint of IJ , this is equivalent to
LJ = 2LI, which is the case if and only if ra = 2r (standard notation). To conclude, refer to the
standard formulae ra = S/(s−a) and r = S/s, where S and s are the area and the semiperimeter
of the triangle ABC, respectively.

Solution 2. Use the notation in Solution 1 and assume the two lemmata. Now we prove
separately that each of the two conditions implies the other. To start, we collect even more
(known) information on the mixtilinear circles.

Lemma 3. The quadrangle CXIP (respectively, BY IQ) is cyclic.

Proof. Let ∠BAC = 2α and recall that ∠BIC = 90◦ + α. By Lemma 2, ∠BIX = 90◦, so
∠CIX = ∠BIC − ∠BIX = α. Since ∠CPX = ∠CPD = α, the conclusion follows.

Lemma 4. The triangles DIP (respectively, DIQ) and DXI (respectively, DY I) are similar.

Proof. Let ∠ACB = 2γ and refer to Lemma 3 to write ∠DPI = ∠XPI = ∠ICX = γ. Notice
that DF ‖ XM by means of the homothety centred at P , to deduce that ∠DIX = ∠IDF = γ.
Thus, ∠DPI = ∠DIX, and since the two triangles under consideration share the internal angle
at D, they are similar.
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Let M ′ and N ′ be the midpoints of the sides AB and AC, respectively. Reflect M ′, respec-
tively N ′, in the angle bisectrix BI, respectively CI, to obtain the point X ′, respectively Y ′.
Clearly, BX ′ = BM ′ = BA/2 and CY ′ = CN ′ = CA/2, so

Y ′X ′ = BX ′ −BY ′ = BX ′ − (BC − Y ′C) = AB/2−BC +AC/2. (∗)

Thus the relation AB + AC = 3BC is equivalent to Y ′X ′ = BC/2 = M ′N ′ (notice that the
right-hand part in (∗) can never reach −BC/2 by the triangle inequality).

Assume now the relation X ′Y ′ = M ′N ′; then M ′N ′X ′Y ′ is a parallelogram, so the segments
M ′X ′ and N ′Y ′ share a midpoint. Since the triangles BM ′X ′ and CN ′Y ′ are isosceles, this
common midpoint lies on the angle bisectrices BI and CI, so M ′X ′∩N ′Y ′ = I. Refer to Lemma
2 to deduce that M ′ = M and X ′ = X.

Thus, ωB touches the chord BA of Ω at the midpoint. So the line FMP is perpendicular
to AB and therefore contains diameters FP and MP of Ω and ωB, respectively. Hence ∠IXP =
∠MXP = 90◦, so the angle DXI is right.

Refer now to Lemma 4 to deduce that the angle DIP is also right. Similarly, the angle DIQ
is right, so the points P , I, Q are collinear.
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Conversely, assume that the points P , I, and Q are collinear. Refer to Lemma 4 to write
DX ·DP = DI2 = DY ·DQ and infer thereby that the quadrangle XPQY is cyclic, so ∠QPX =
∠QY B.

By Lemma 3, ∠QY B = ∠QIB, so ∠QPX = ∠QIB. The latter along with collinearity of P ,
I, Q show that BI and DP are parallel, so PX and MX are perpendicular by Lemma 2.

Similarly, QY and NY are perpendicular, so MP and NQ are diameters of ωB and ωC ,
respectively. It follows that M and N are the midpoints of AB and AC, so M ′ = M , X ′ = X,
N ′ = N , Y ′ = Y . By Lemma 2, the quadrangle MNXY is a parallelogram with centre I, so
M ′N ′ = X ′Y ′. This ends the proof.
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G3. Let ABCD be a convex quadrangle and let P and Q be variable points inside this quadrangle
so that ∠APB = ∠CPD = ∠AQB = ∠CQD. Prove that the lines PQ obtained in this way all
pass through a fixed point, or they are all parallel.

Sergey Berlov, Russia

Solution. Assume first that there exists a point M such that the triangles AMC and DMB are
similar and have opposite orientations. We claim that every possible line PQ passes through M .

By the condition in the statement, the points A, B, P , and Q lie on some circle ω1, and the
points C, D, P , and Q lie on some circle ω2. The line PQ is the radical axis of these two circles;
so we need to prove that M also lies on this radical axis.

Let MA meet again ω1 at A′, and let MD meet again ω2 at D′ (if, say, MA is tangent to ω1,
then A′ = A). Then

∠(MA′, A′B) = ∠(AA′, A′B) = ∠(AP,PB) = ∠(CP,PD) = ∠(CD′, D′D) = ∠(CD′, D′M)

and

∠(MA′,MB) = ∠(MA,MB) = ∠(MA,MC) + ∠(MC,MB)

= ∠(MB,MD) + ∠(MC,MB) = ∠(MC,MD) = ∠(MC,MD′).

This means that the triangles MA′B and MD′C are similar and have opposite orientations.
Hence

MA′

MD′
=
MB

MC
=
MD

MA
,

soMA·MA′ = MD·MD′. Since ∠(MA′,MC) = ∠(MB,MD′) and ∠(MA,MC) = ∠(MB,MD),
the point M lies either outside both segments AA′ and BB′, or inside both. Thus the relation
obtained means exactly that M lies on the radical axis of ω1 and ω2.

A

B

C

D
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FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

M

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

A′

D′

ω1
ω2

It remains to check whether such a point M exists, and deal with the exceptional cases. This
can be done in several different ways, e.g., by investigating the orientation-changing similarity
transformation mapping A to D and B to C. We present a more geometrical proof.

Set K = AC ∩BD. Choose the points F and G on the diagonals AC and BD, respectively,
so that the configurations (A,F,K,C) and (D,K,G,B) are similar. If AD 6 ‖BC, then we have
F 6= K 6= G. Due to similarity, it suffices to find the point M such that the triangles MKF
and MGK are similar and have opposite orientations. If KF 6= KG, one may choose M to be
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the point where FG meets the tangent at K to the circumcircle of the triangle FGK; so in this
case we are done.

The exceptional cases are AD ‖ BC and KF = KG (which means that AC = BD due to
similarity). These cases may be considered as limit cases: in the former case, M comes to K
(and this can be dealt with along the above lines); in the latter, M becomes an ideal point (so
the lines PQ are all parallel to each other). In fact, both cases can be dealt with independently
(and are relatively easy).

It is worth mentioning that the triangles MA′B and MD′C used in the solution may become
degenerate. It happens when M = AB ∩ CD, i.e. when the quadrilateral ABCD is cyclic. But
in this case M is the radical center of the circles ω1, ω2, and (ABCD), so in this case the claim
holds. This may also happen when M = A′ = D′; but then M coincides with one of P and Q,
and the claim is also trivial.

Remarks. Let us sketch some other approaches which may lead to different solutions (and also
to different versions of the same solution).

1. The required point M can be described in different ways; we provide one more such. Choose
a point X on the segment AD so that AX/XD = AC/BD. Next, choose a point Y so that
∠(XY,XD) = ∠(DB,DA) + ∠(AC,AD) and Y X = XA. Let the internal bisectrix of the
angle AXY meet DY at M . Then M is a required point.

To see this, notice that the points A and Y are symmetric to each other with respect to MX.
Therefore,

MD

MA
=
MD

MY
=
DX

XY
=
DX

XA
=
BD

AC
,

and ∠(AM,AC) = ∠(AM,AD) + ∠(AD,AC) = ∠(Y X, YM) + ∠(AD,AC) = ∠(AD,AC) +
∠(XY,XD) +∠(DX,DY ) = ∠(DB,DA) +∠(DA,DM) = ∠(DB,DM). These relations, along
with the position of M , yield that the triangles MAC and MDB are similar and oriented differ-
ently.
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Ω1
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2. Denote by A1 and B1 the second meeting points of ω1 with BD and AC, respectively; denote
by C1 and D1 the second meeting points of ω2 with BD and AC, respectively. Then

∠(CC1, C1D) = ∠(CD1, D1D) = ∠(AA1, A1B) = ∠(AB1, B1B) = ∠(AP,PB).

Thus AA1 ‖ CC1 and BB1 ‖ DD1.
Moreover, one sees that the quadrilaterals AD1A1D and BC1B1C are inscribed into some

circles Ω1 and Ω2. Thus the points P ′ = AA1 ∩ DD1 and Q′ = BB1 ∩ CC1 are the radical
centers of (ω1, ω2,Ω1) and (ω1, ω2,Ω2), so the lines PQ and P ′Q′ coincide. Hereafter we deal
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with the line P ′Q′ defined uniquely in terms of an angle α = ∠(A1A,A1B) = ∠(B1A,B1B) =
∠(C1C,C1D) = ∠(D1C,D1D).

Let us fix the points A and D and the value of α, and move B and C along BD and AC so
that the ratio AC/BD remains constant. Then the point P ′ remains constant, while the point Q′

moves along some line; it comes to P ′ when B comes to D, so this line is P ′Q′. Thus all the lines
of the form P ′Q′ remain constant during such movement.

Apply such movement firstly to put B into K. Then fix B and C, and apply a similar
movement to A and D passing A to K as well. The quadrilateral ABCD comes to a degenerate
quadrilateral KKFG from the Solution. Thus it suffices to solve the problem for this degenerate
quadrilateral.

Now the point M becomes more visible (from some particular cases), and it is easier to prove
the problem statement for this point.

3. Yet another way of defining the point M . Let Γ1 and Γ2 be the Apollonius circles constructed
for the segments AD and CB, respectively, and a common ratio AC/BD (by definition, if X ∈ Γ1

and Y ∈ Γ2, then AX/XD = CY/Y B = AC/BD). One of their common points is the (unique)
center of rotational homothety mapping AC to DB. The other common point can serve as M ,
if it exists.

So, while dealing with this approach, one should elaborate on the following exceptional cases:
(i) the circles Γ1 and Γ2 are tangent, and (ii) they degenerate to lines (which happens when
AC = BD).
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N1. Let S(k) denote the sum of digits in the decimal representation of a positive integer k. Prove
that there exists a positive integer k that does not contain the digit 9 in its decimal representation,
such that S(224

2017
k) = S(k).

Bojan Bašić, Serbia

Solution 1. Set N = 224
2017

. A routine check shows that N ends with digit 6. Define f(k) =
S(Nk) − S(k), and let A be the range of f on positive integers with no 9s in the decimal
representation. Notice that A + A ⊆ A, since for every positive integers a and b we have
f(10sa+ b) = f(a) + f(b), provided that s is large enough. Thus, in order to solve the problem,
it suffices to find positive integers m and ` with no 9s in their decimal representations, satisfying
f(m) ≤ 0 and f(`) > 0, since then 0 = f(m) + · · ·+ f(m)︸ ︷︷ ︸

f(`)

+ f(`) + · · ·+ f(`)︸ ︷︷ ︸
|f(m)|

∈ A. Clearly, the

value ` = 1 fits, so the problem is reduced to finding a suitable m.

In order to preform this, it suffices to prove that for every positive integer d there is a d-digit
number md such that each of the last d digits in Nmd is strictly smaller than the corresponding
digit in md. Indeed, choosing D so that 10D > N , one may take m = m10D. To check this choice,
notice that Nm contains at most 11D digits, and the sum of its 10D last digits does not exceed
S(m)− 10D, while the sum of the remaining digits is at most 9D. Thus f(m) ≤ −10D + 9D =
−D < 0.

Finally, we prove the desired claim by the induction on d. In the base case d = 1 one may
set m1 = 7, since 7N ends with 2. In order to prove the step, assume that the number md−1 has
been already constructed, and denote by j the dth tail digit of Nmd−1.

If j ≤ 4, then we set md = 7md−1 = 7 · 10d−1 + md−1. Then the d − 1 tail digits in md and
Nmd are the same as those in md−1 and Nmd−1, respectively. Next, their dth tail digits are 7
and 2 + j < 7, respectively; so md satisfies all the requirements imposed on it.

Otherwise, if 5 ≤ j ≥ 9, we set md = 8md−1 = 8 · 10d−1 +md−1. A similar argument applies,
since the dth tail digits in md and Nmf in this case are 8 and j − 2 < 8, respectively. This
completes the proof.

Solution 2. As in Solution 1, we reduce the problem to finding a positive integer m with no 9s
in its decimal representation such that S(m) > S(Nm). Now we provide a different choice for m.
Namely, we show that

md = 8787 . . . 87︸ ︷︷ ︸
d times

= 87 · 102d − 1

99

fits, provided that d is large enough.
A routine check shows that N ≡ 82 (mod 99), so 87N ≡ 6 (mod 99). Fix a number q such

that 102q > 87N . Then

Nmd =
87N · 102d − 87N

99
=

87N − 6

99
· 102d + 6 · 102(d−q) − 1

99
· 102q +

6 · 102q − 87N

99
,

where all three summands are positive integers. Thus the decimal representation of Nm contains
a run of d−q copies of 06, flanked by the decimal representations of the fixed numbers 87N−6

99 and
6·102q−87N

99 . Therefore, S(Nmd) = 6(d− q) + const, so S(md) = 87d > S(Nmd) if d is sufficiently
large. This ends the proof.

Remark 1. The author mentions that the assertion in the problem actually holds for each
positive integer N ; the sketch of the proof follows.

The problem is easily reducible to the case when N does not end with 0. If N ends with
the digit a 6= 1, the proof is a straightforward generalization of the one given above: for every
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possible value of j, one may find a suitable value for the first digit of md; moreover, this digit
can always be chosen from the set {6, 7, 8}. The proof for the case a = 1 is based on a similar
idea, but it is much more technically involved.

Remark 2. The choice of the number N = 224
2017

is motivated by two observations. On one
hand, in view of the above remark, the rightmost nonzero digit of N should be greater than 1,
in order to avoid technicalities. On the other hand, the number N is chosen to be large enough,
and also satisfy N ≡ 1 (mod 9).

The other residue classes modulo 9 admit a simpler solution. If n ≡ 0 (mod 3), then a
sufficiently long number of the form m = 33 . . . 36 fits. On the other hand, if n 6≡ 0, 1 (mod 9),
then a sufficiently long number of the form m = 888 . . . 888 fits.

Finally, notice that omission of the condition of k not containing a digit 9 would also admit
a much simpler problem. If N | 10n for some n (as in the problem statement), then one may
simply set m = 10n/N . More generally, for an arbitrary N it suffices to choose m such that Nm
is the least multiple of N having exactly d digits, for an appropriately chosen value of d.
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N2. Let x, y, and k be three positive integers. Prove that there exist a positive integer N and
a set of k + 1 positive integers {b0, b1, b2, . . . , bk} such that for every i = 0, 1, . . . , k the bi-ary
expansion of N is a 3-digit palindrome, and the b0-ary expansion is exactly xyx.

Bojan Bašić, Serbia

Solution. We provide a general construction which may be specified in many different ways.

To start, we choose some distinct positive integers d1, d2, . . . , dk satisfying the following con-
ditions: (i) each of them is coprime with x; (ii) di > 100(x + y) for all i; and (iii) the number
L = lcm(d1 + 1, d2 + 1, . . . , dk + 1) is coprime with D = d1d2 . . . dk. Such k-tuples of numbers
exist; for instance, one may choose di = 2pi − 1, where pi are distinct large primes. Another
option is to choose some large odd d1 coprime with x, and then proceed inductively by setting
di+1 = xd1(d1 + 1)d2(d2 + 1) . . . di(di + 1) + 1.

Since gcd(xL,D) = 1, the multiples of xL represent all residue classes moduloD; in particular,
there exists a positive integer m such that xLm ≡ −y (mod D). Set B = Lm.

Finally, we define

b0 = B, ci =
B

di + 1
, bi = dici = B − ci, and N = xyxB = x(B2 + 1) + yB.

We claim that these values satisfy all the requirements; moreover, for every i = 1, . . . , k the bi-ary
representation of N has three digits, starting and ending with x.

To show this, notice that for every i ∈ {1, 2, . . . , k} we have

N = x(di + 1)2c2i + y(di + 1)ci + x =
(
x · (dici)2 + x

)
+ (2cix+ y) · (dici) + (xc2i + yci).

Clearly, x is a bi-ary digit, since bi ≥ di > x. Denote `i = (2cix + y) · (dici) and ri = xc2i + yci.
Now it remains to prove that the number `i + ri is divisible by bi = dici, and that `i + ri < b2i .

Notice that

xci + y =
xB + y(di + 1)

di + 1
=

(xB + y) + diy

di + 1
.

The numerator of the last fraction is divisible by di (due to the choice of B), and the denominator
is coprime with di; so di | xci + y. Thus bi = dici | ri; set ri = biqi. Notice that qi ≤ xci + y.

Hence, `i+ri = bi(2cix+y+qi), where 0 ≤ 2cix+y+qi ≤ 3cix+2y < 100ci(x+y) < cidi = bi.
Thus the bi-ary expansion of N is a palindrome of the form N = x(2cix+ y + qi)xbi .
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