
ALGEBRA



A1. Determine all functions f from the set of non-negative integers to itself such that

f(a+ b) = f(a) + f(b) + f(c) + f(d),

whenever a, b, c, d, are non-negative integers satisfying 2ab = c2 + d2.

Solution 1. (Ilya Bogdanov) The required functions are f(n) = kn2, where k is a non-negative
integer — these clearly satisfy the condition in the statement.

Conversely, let f be a function satisfying the condition in the statement. Setting (a, b, c, d) =
(n, n, n, n) in the functional relation yields f(2n) = 4f(n) for all n. In particular, f(0) = 0 and
f(2) = 2k, where k = f(1).

Setting successively (a, b, c, d) = (n2, 1, n, n), (a, b, c, d) = (n2, 2, 2n, 0) and (a, b, c, d) =
(n2 + 1, 1, n+ 1, n− 1) in the functional relation yields

f(n2 + 1) = f(n2) + k + 2f(n),

f(n2 + 2) = f(n2) + 4k + f(2n) = f(n2) + 4k + 4f(n),

f(n2 + 2) = f(n2 + 1) + k + f(n+ 1) + f(n− 1).

Subtraction of the second relation above from the sum of the other two yields f(n + 1) =
2f(n)− f(n− 1) + 2k.

A straightforward induction on n now shows that f(n) = kn2 for all non-negative n, and
completes the proof.

Solution 2. As in the first solution, consider a function f satisfying the condition in the
statement, and establish that f(2n) = 4f(n) for all n; in particular, f(0) = 0.

We now show by induction on m that f(mn) = m2f(n) for all n. By the preceding, this is
clearly the case if m = 0, 1, 2. For the induction step, let m > 2.

Since
√
m < m, if m is a square, the conclusion follows by the induction hypothesis: f(mn) =

f(
√
m(
√
mn)) = mf(

√
mn) = m2f(n).

Otherwise, use Lagrange’s four-square theorem to write m = A + B, where A and B are
positive integers, each of which is a sum of two squares. Recall that if each factor of a product is
a sum of two squares, then so is the product (use standard identities such as (w2 +x2)(y2 +z2) =
(wy+xz)2+(wz−xy)2 repeatedly), to write 2AB = (12+12)AB = C2+D2 for some non-negative
integers C and D. Clearly, A < m and B < m; C ≤

√
2AB ≤ (A + B)/

√
2 = m/

√
2 < m, and

similarly, D < m. Setting a = An, b = Bn, c = Cn and d = Dn in the functional relation and
applying the induction hypothesis completes the induction step:

f(mn) = f((A+B)n) = f(An) + f(Bn) + f(Cn) + f(Dn)

= A2f(n) +B2f(n) + C2f(n) +D2f(n) = (A2 +B2 + C2 +D2)f(n)

= (A2 +B2 + 2AB)f(n) = (A+B)2f(n) = m2f(n),

for all non-negative integers n.
Consequently, f(mn) = m2f(n) for all m and all n. Setting n = 1 and k = f(1) concludes

the proof.
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A2. Let p > 3 be a prime number, and let Fp denote the (finite) set of residue classes modulo p.
Let Sd denote the set of 2-variable polynomials P (x, y) with coefficients in Fp, total degree ≤ d,
and satisfying P (x, y) = P (y,−x− y). Show that

|Sd| = pd(d+1)(d+2)/6e.

The total degree of a 2-variable polynomial P (x, y) is the largest value of i + j among monomials xiyj

appearing in P .

Solution. Let Td denote the set of 3-variable polynomials Q(x, y, z) with coefficients in Fp,
total degree ≤ d, and satisfying Q(x, y, z) = Q(y, z, x). By construction, if Q(x, y, z) ∈ Td, then
P (x, y) := Q(x, y,−x− y) ∈ Sd. We use this construction to relate the sizes of Sd and Td.

Claim 1. Every P (x, y) in Sd arises from some Q0(x, y, z) in Td as described above.

Proof. Fix some P in Sd, and notice that P (x, y) = P (y,−x − y) = P (−x − y, x). Recall that
p > 3 and set Q0(x, y, z) = (P (x, y) + P (y, z) + P (z, x)) /3. This Q0 clearly lies in Td, and gives
rise to P by the above identity for P . The claim follows.

We have seen that every P in Sd arises from some Q0 in Td. In fact, we can precisely determine
which Q in Td give rise to P .

Claim 2. Let P be a polynomial in Sd and let Q0 be some element of Td giving rise to P . A
polynomial Q in Td gives rise to P if and only if Q(x, y, z) = Q0(x, y, z) + (x+ y + z)Q1(x, y, z)
for some Q1 in Td−1.

Proof. It is clear that any Q of this form gives rise to P (since x+ y+ (−x− y) = 0), so we just
need to prove the converse direction. Thus assume Q gives rise to P . Since Q(x, y,−x − y) =
Q0(x, y,−x−y), it follows that Q−Q0 is divisible by1 x+y+z, so we write Q = Q0+(x+y+z)Q1.
The degree of Q1 is then ≤ d− 1 and it inherits the symmetry condition from Q and Q0, so Q1

is indeed in Td−1. This concludes the proof of the claim.

By the two preceding claims, every element of Sd arises from exactly |Td−1| elements of Td,
so |Sd| = |Td|/|Td−1|.

We now evaluate |Td|. To this end, notice that a polynomial Q(x, y, z) =
∑

i+j+k≤d aijkx
iyjzk

lies in Td if and only if aijk = ajki for all i, j, k. Hence, among the (r + 1)(r + 2)/2 coefficients
aijk with i + j + k = r, we may choose d(r + 1)(r + 2)/6e arbitrarily, and this determines the
other coefficients uniquely. Consequently,

|Td| = p
∑d

r=0d(r+1)(r+2)/6e,

and the conclusion follows.

Remark. (Ilya Bogdanov) Let us reformulate the solution above in more advanced terms.
Clearly, the set Sd is a linear space over Fp. Let Cd be the space of all 3-variable polynomials

Q(x, y, z) of total degree at most d satisfying Q(x, y, z) = Q(y, z, x) = Q(z, x, y), and define the
linear maps φ : Cd → Sd and ψ : Sd → Cd by

φQ(x, y) = Q(x, y,−x− y), ψP (x, y, z) = (P (x, y) + P (y, z) + P (z, x))/3.

It is readily checked that they are well-defined, and φψ = idSd
, so φ is surjective, and dimSd =

dim Imϕ = dimCd − dim Kerϕ.
To find Kerϕ, detect all polynomials Q in Cd vanishing upon the substitution z 7→ −x − y.

Viewing Q as a polynomial in z over Fp(x, y), this is equivalent to Q being divisible by z+x+ y.
Thus Kerϕ = (z + x+ y) · Cd−1, and dim Kerϕ = dimCd−1.

Consequently, dimSd = dimCd − dimCd−1, that is, the dimension of the space of all ho-
mogeneous cyclically-symmetric polynomials of total degree d. This can be evaluated in several
ways.

1To prove this formally, use division-with-remainder to write Q − Q0 = (x + y + z)Q1 + P1(x, y) and observe
that the condition forces P1 = 0.
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COMBINATORICS



C1. We start with any finite list of distinct positive integers. We may replace any pair n, n+ 1
(not necessarily adjacent in the list) by the single integer n−2, now allowing negatives and repeats
in the list. We may also replace any pair n, n+ 4 by n− 1. We may repeat these operations as
many times as we wish. Either determine the most negative integer which can appear in a list,
or prove that there is no such minimum.

Solution. The minimal value that can be achieved is −3, for instance by

1, 2, 3, 4, 5 7→ 0, 1, 4, 5 7→ 0, 1, 2 7→ −1, 0 7→ −3.

To show that no lesser value is achievable, let α be the root of the polynomial X3 + X2 − 1
lying between 0 and 1, and note that α is also a root of the polynomial

X5 +X − 1 = (X3 +X2 − 1)(X2 −X + 1).

Assign the value of αn to each integer n. By construction, αn+1+αn = αn−2 and αn+4+αn =
αn−1, so the given operations do not change the total value of a list. Since the initial total value
of the list is strictly less than α + α2 + · · · = α/(1 − α) = α−4, no integer less than or equal to
−4 can ever appear on the list.
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C2. A frog trainer places one frog at each vertex of an equilateral triangle ABC of unit side-
length. The trainer can make one frog jump over another along the line joining the two, so that
the total length of the jump is an even multiple of the distance between the two frogs just before
the jump. Let M and N be two points on the rays AB and AC, respectively, emanating from A,
such that AM = AN = `, where ` is a positive integer. After a finite number of jumps, the three
frogs all lie in the triangle AMN (inside or on the boundary), and no more jumps are performed.
Determine the number of final positions the three frogs may reach in the triangle AMN . (During
the process, the frogs may leave the triangle AMN ; only their final positions are to be in that
triangle.)

Solution. The required number is
(
(`+3)/2

2

)3
if ` is odd, and

(
`/2+2

2

)(
`/2+1

2

)2
if ` is even.

Fix the origin at A, and consider the x-axis along AB and the y-axis along AC, so that
B = (1, 0) and C = (0, 1).

Colour the integral lattice points (points whose coordinates are both integral) as follows:
colour red all points whose coordinates are both even, so A is red; colour green all points whose
x-coordinate is odd and y-coordinate is even, so B is green; colour blue all points whose x-
coordinate is even and y-coordinate is odd, so C is blue; finally, let the other points (whose
coordinates are both odd) be all white. A triangle with one red vertex, one green vertex and one
blue vertex will be called an RGB-triangle. Notice that there are no degenerate RGB-triangles.

Since all vectors of jumps have even coordinates, jumps preserve colours, so at each stage the
three frogs are located at the vertices of an RGB-triangle.

We prove that the three frogs can reach any RGB-triangle through a finite chain of successive
jumps. In particular, the RGB-triangles in the triangle AMN are all reachable, so their number
yields the required number. The triangle AMN contains exactly

(
(`+3)/2

2

)
points from each of

the first three classes if ` is odd; otherwise, it contains exactly
(
`/2+2

2

)
red points and exactly(

`/2+1
2

)
points from each of the other three classes. Since there are no degenerate RGB-triangles,

this yields a total of
(
(`+3)/2

2

)3
RGB-triangles if ` is odd, and

(
`/2+2

2

)(
`/2+1

2

)2
if ` is even.

We now show that any RGB-triangle can be traced back to ABC through a finite number of
backward jumps. In what follows, a k-jump is a jump of one frog over another, whose total length
is 2k times the distance between the two frogs just before the jump. Notice that the inverse of a
1-jump is itself a 1-jump. The backward procedure consists of the three steps described below.

Step 1. There exists a finite sequence of 1-jumps, possibly followed by a single backward jump,
from any RGB-triangle to one having a horizontal side of unit length.

To prove this, label the vertices of an RGB-triangle A1 = (x1, y1), A2 = (x2, y2), A3 = (x3, y3),
so that y1 ≤ y2 ≤ y3, ans call the positive integer y3 − y1 the y-breadth of the triangle. Since
lattice points on horizontal lines are dichromatic, at least one of the two inequalities is strict. If
they are both strict, a 1-jump of A1 across A2 yields a triangle with a smaller y-breadth. A finite
number of such 1-jumps produces eventually an RGB-triangle DEF with one horizontal edge,
say DE.

The point E separates exactly one of its lattice neighbours on the line DE, say G, from D.
Since colours alternate on the line DE, and D and E have different colours, it follows that D
and G have like colours, and the segment DG has an even length, say 2k. Consequently, D is the
image of G under a k-jump of G across E, and the triangle EFG satisfies the desired conditions.

Step 2. There exists a finite sequence of 1-jumps, possibly followed by a single backward jump,
transforming any RGB-triangle with one horizontal edge of unit length into another such with (at
least) one more edge of unit length.

To prove this, refer to the triangle EFG, the outcome of step 1. Finitely many alternate
1-jumps of E and G over one another bring the two at some positions H and I, so that H and F
have the same x-coordinate. During the process, the horizontal edge of unit length moves rigidly
from EG to HI.
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At this stage, a backward jump of F across H, as the one described at step 1, brings the
former at one of the lattice neighbours of H on the line FH, say J , and the triangle HIJ satisfies
the desired conditions.

The triangle HIJ either is equilateral of unit side-length or it can be transformed into one
under a further 1-jump of I (or J) across H; this equilateral triangle of unit side-length is, of
course, an RGB-triangle.

Step 3. There exists a finite sequence of 1-jumps moving any equilateral RGB-triangle of unit
side-length to ABC.

To prove this final step, consider such a triangle, and locate its red vertex at (2m, 2n). It is
readily checked that there exist finite sequences of 1-jumps moving this triangle to each of the
four translates of ABC by (2m±2, 2n) and (2m, 2n±2), and thence inductively all the way back
to ABC through a finite chain of successive 1-jumps. This completes the proof.

Remark. To avoid case consideration one may fix the parity of `.
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C3. A set S = {s1, . . . , sk} of positive real numbers is polygonal if k ≥ 3 and there is a non-
degenerate planar k-gon whose side lengths are exactly s1, . . ., sk; the set S is multipolygonal if
in every partition of S into two subsets, each of which has at least three elements, exactly one of
these two subsets in polygonal. Fix an integer n ≥ 7.

(a) Does there exist an n-element multipolygonal set, removal of whose maximal element
leaves a multipolygonal set?

(b) Is it possible that every (n−1)-element subset of an n-element set of positive real numbers
be multipolygonal?

Solution. Recall that a necessary and sufficient condition for k ≥ 3 positive real numbers s1,
. . ., sk to be the side lengths of a non-degenerate planar k-gon is that a maximal si be less than
the sum of the other sj .

(a) The answer is in the affirmative. Given pairwise distinct positive real numbers ε1, ε2, ε3
less than 1/2, we show that the sets S = {1, 2, 4, . . . , 2n−5, 2n−4+ε1, 2

n−4+ε2, 2
n−4+ε3, 2

n−3−1/2}
and S r {2n−3 − 1/2} are both multipolygonal.

Split any of the two sets into two subsets each of which has at least three elements, let A be
the part containing at least two of the 2n−4 + εi, and let B be the other part.

The set A is polygonal since its maximal element is either one of the 2n−4 + εi or 2n−3− 1/2,
each of which is smaller than the sum of other elements in A.

To prove that B is not polygonal, notice that its maximal element is either 2n−3 − 1/2, or
one of the 2n−4 + εi, or some 2k, k ≤ n− 5. In the first case, the sum of all other elements in B
is less than 1 + 2 + · · ·+ 2n−5 + 2n−4 + εi = 2n−3 − 1 + εi < 2n−3 − 1/2; in the second case, this
sum does not exceed 1 + 2 + · · ·+ 2n−5 = 2n−4 − 1 < 2n−4 + εi; and in the third case, this sum
is at most 1 + 2 + · · ·+ 2k−1 = 2k − 1 < 2k. Consequently, B is not polygonal.

(b) The answer is in the negative. Suppose, if possible, that S is an n-element set of positive
real numbers, each (n− 1)-element subset of which is multipolygonal.

Consider an integer k in the range 3, . . ., n− 4. The key fact is that if some k-element subset
of S is polygonal, then so are all k-element subsets of S, and hence so are all subsets of S of
cardinality at least k.

To prove this, let A be a k-element polygonal subset of S and let A′ be any other k-element
subset of S. Since A′ is obtained from A by a finite number of one-element exchanges — i.e.,
A and A′ are joined by a finite chain of k-element subsets A = A0, A1, . . ., Ar = A′ such that
|Ai∩Ai+1| = k−1 for all indices i, — we may and will further assume that |A∩A′| = k−1. In this
case, let B = Sr (A∪A′) and notice that A, B and A′, B are both partitions of (n− 1)-element
subsets of S. Since A is polygonal, B is not, so A′ is polygonal.

By the preceding, if 3 ≤ k ≤ (n−1)/2, then no k-element subset of S is polygonal — otherwise,
some (n − 1)-element subset of S would split into two polygonal sets, one of cardinality k, and
the other of cardinality n−k−1. In particular, n must be even — otherwise, any (n−1)-element
subset of S would split into non-polygonal halves, — and the n/2-element subsets of S are all
polygonal. Hence, no (n/2− 1)-element subset of S is polygonal.

Finally, label the elements of S decreasingly s1 > s2 > · · · > sn. By the preceding paragraph,
neither s1, s2, s3, nor s3, s4, . . ., sn/2+1 form a polygonal set, so s1 ≥ s2 + s3 and s3 ≥ s4 + · · ·+
sn/2+1. Consequently, s1 ≥ s2 + s4 + · · · + sn/2+1, implying that s1, s2, s4, . . ., sn/2+1 form an
n/2-element subset of S which is not polygonal — a contradiction.
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C4. Prove that a 46-element set of integers contains two distinct doubletons {u, v} and {x, y}
such that u+ v ≡ x+ y (mod 2016).

Solution. Suppose that S ⊆ Z/2016Z has the property that its pairwise sums of unordered pairs
are distinct, and consider the pairwise differences of ordered pairs.

The crucial observation is that if a difference d 6= 0 occurs twice in S, then these two occur-
rences must be adjacent in a 3-term arithmetic progression in S (with difference d). Indeed, if
a, a + d, a′, a′ + d are all in S with a 6= a′, then a + (a′ + d) = a′ + (a + d) so (by assumption
on S) we must have a′ = a± d, i.e. the ordered pairs (a, a+ d) and (a′, a′ + d) are adjacent in a
3-term arithmetic progression.

We also observe that, excepting the arithmetic progression of common difference 1008, no
two 3-term arithmetic progressions can have the same central term, since if a, a± d, a± d′ are all
in S with d, d′ 6= 0, 1008 distinct, then (a + d′) + (a − d′) = (a + d) + (a − d) would violate our
assumption on S.

It follows that the number of 3-term arithmetic progressions in S is at most |S|+ 2. Now any
non-zero difference not occurring in a 3-term arithmetic progression can appear at most once in
S, and those which do appear in 3-term arithmetic progressions can appear at most twice, except
±672 = ±2016/3, which can appear three times.

Consequently, the total number of non-zero differences appearing in S is at least

|S|(|S| − 1)− (|S|+ 2)− 2 = |S|2 − 2|S| − 4.

If |S| = 46, this quantity is greater than 2015 — a contradiction.

Remark. Given a positive integer n, the argument in the solution shows that for no set of
integers modulo n, whose size exceeds 1 +

√
n+ 4, is it possible that the pairwise sums be all

distinct. This agrees with the Erdős-Turán estimate for Sidon sequences (or Sidon sets). A Sidon
sequence is a sequence a0, a1, a2, . . . of natural numbers all of whose pairwise sums ai+aj , i ≤ j,
are different. Erdős and Turán showed that, for every positive real number x, the number of
elements smaller than x in a Sidon sequence is at most

√
x+O( 4

√
x).
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GEOMETRY



G1. Two circles, ω1 and ω2, centred at O1 and O2, respectively, meet at points A and B. A
line through B meets ω1 again at C, and ω2 again at D. The tangents to ω1 and ω2 at C and
D, respectively, meet at E, and the line AE meets the circle ω through A, O1, O2 again at F .
Prove that the length of the segment EF is equal to the diameter of ω.

Solution. Begin by noticing that the lines CO1 and DO2 meet at a point P on ω, since
∠(PO1, PO2) = ∠(O1C,CB) + ∠(BD,DO2) = ∠(CB,BO1) + ∠(O2B,BD) = ∠(O2B,BO1) =
∠(O1A,AO2). In what follows, we consider the case when O1 and O2 lie on the segments CP
and DP , respectively; other cases are similar.

Since the angles PCE and PDE are both right, and 2∠ACP = ∠AO1P = ∠AO2P = 2∠ADP
(the equality in the middle holds on account of P lying on ω), the points A, C, D, E, P all lie on
the circle on diameter EP , so FP is a diameter of ω, and it is therefore sufficient to show that
EF = FP . Finally, since ∠AFP = ∠AO1P = 2∠ACP = 2∠AEP (the first, respectively third,
equality holds on account of APFO1, respectively ACEP , being inscribed), it follows that the
triangle EFP is isosceles with apex at F .

A

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

C

D

E

F

P

O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1 O2

Fig. 1
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NUMBER THEORY



N1. Determine all integers n ≥ 3 whose decimal expansion has less than 20 digits, such that
every quadratic non-residue modulo n is a primitive root modulo n.

An integer a is a quadratic non-residue modulo n, if there is no integer b such that a − b2 is divisible by

n. An integer a is a primitive root modulo n, if for every integer b relatively prime to n there is a positive

integer k such that ak − b is divisible by n.

Solution 1. The required numbers are the first five Fermat numbers: n = 22
k
+1, k = 0, 1, . . . , 4.

The main thrust is that an integer n ≥ 3 satisfies the second condition in the statement if and
only if n is a Fermat prime. The first five Fermat numbers are indeed prime (and have at most
five decimal digits), the sixth is not (Euler showed it divisible by 641), and the higher rank

Fermat numbers all have at least 20 decimal digits: if k ≥ 6, then Fk = 22
k

+ 1 ≥ 22
6

+ 1 =
24 · (210)6 + 1 > 24 · (103)6 + 1 = 16 · 1018 + 1 > 1019.

Since a primitive root modulo n is necessarily a quadratic non-residue modulo n (otherwise,
the multiplicative order of the former would be at most φ(n)/2), and for a Fermat prime the
number of primitive roots and the number of quadratic non-residues are equal (for a Fermat
prime Fk both are 2k), all Fermat primes satisfy the second condition in the statement.

To prove the converse, we deliberately ignore the characterisation of moduli admitting prim-
itive roots, and first show that if all quadratic non-residues modulo n are relatively prime to n,
then n is prime. To this end, let U be the set of integers in the range 0, 1, . . ., n − 1 that are
relatively prime to n, so |U | = φ(n), and let S = {0, 1, . . . , n}r U . By hypothesis, all quadratic
non-residues modulo n are in U , so all of S are quadratic residues modulo n. Therefore, the
function f : S → S, f(k) ≡ k2 (modn) is surjective, and hence injective. Since f(k) = f(n − k)
for all k, it follows that 2k ≡ 0 (modn) for all k in S, so either k = 0 or the additive order
of k modulo n is 2. Since (Zn,+) has at most two elements of order at most 2, it follows that
n − φ(n) = n − |U | = |S| ≤ 2. Recall that n ≥ 3, so φ(n) is even. If n − φ(n) = 2, then n is
even, so φ(n) ≤ n/2, in which case n = 4 and f is not injective. Consequently, φ(n) = n− 1, and
therefore n is prime. Hence the number of quadratic non-residues is (n− 1)/2, and the number
of primitive roots is φ(n− 1).

If, in addition, every quadratic non-residue is a primitive root, then φ(n − 1) ≥ (n − 1)/2.
Since n is odd, it follows that φ(n− 1) ≤ (n− 1)/2, so φ(n− 1) = (n− 1)/2, in which case n− 1

is a power of 2; that is, n is a Fermat prime: n = 22
k

+ 1, where k is a non-negative integer.

Solution 2. We prove that an integer n ≥ 3 satisfying the second condition in the statement
must be a Fermat prime. To this end, we show that φ(φ(n)) = φ(n)/2, so φ(n) is a power of 2,
and then use the fact that the only moduli admitting primitive roots are 2, 4, pα and 2pα, where
p is an odd prime, and α is a positive integer.

To show that φ(φ(n)) = φ(n)/2, begin by noticing that at least half of the elements of U (see
the notation in Solution 1), are quadratic non-residues — this is because every square k2 (modn)
in U comes from at least two distinct elements of U , namely, k and n − k. Consequently, there
are at least |U |/2 = φ(n)/2 quadratic non-residues, so, by hypothesis, at least as many primitive
roots.

Now, a primitive root is necessarily a quadratic non-residue (otherwise, the multiplicative
order of the former would be at most φ(n)/2). Since there are at most φ(|U |) = φ(φ(n)) primitive
roots, φ(φ(n)) ≥ φ(n)/2, by the preceding. But φ(n) is even if n ≥ 3, so φ(φ(n)) ≤ φ(n)/2, and
consequently φ(φ(n)) = φ(n)/2, forcing in turn φ(n) to be a power of 2.

By the preceding, inspection of moduli admitting primitive roots rules out the first two cases
and forces α = 1 in the other two, so either n = p, in which case n is a Fermat prime, or n = 2p.
To rule out the latter case, it is sufficient to produce an even quadratic non-residue modulo 2p.
To this end, recall that there are exactly (p − 1)/2 quadratic residues modulo p, and exactly as
many quadratic non-residues modulo p. Since 1 is clearly a quadratic residue modulo p, some
quadratic non-residue modulo p must be even. The latter is also a quadratic non-residue modulo
2p, and the conclusion follows.
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Remarks. (1) To avoid Euler’s result, we may require n to have less than 10 decimal digits.
(2) (Ilya Bogdanov) The integers n ≥ 3 such that every quadratic non-residue modulo n

relatively prime to n is a primitive root modulo n are 4, the Fermat primes, and the doubles of
the latter.

In what follows, the obvious case n = 4 is left aside.
Consider such an n and let U be the set of integers in the range 0, 1, . . ., n − 1 that are

relatively prime to n. Since k2 ≡ (n−k)2 (modn) for all k in U , and n/2 is not in U for n ≥ 3, it
follows that U contains at most |U |/2 = φ(n)/2 quadratic residues, and hence at least as many
quadratic non-residues. Therefore, there is at least one primitive root a. With reference to the
characterisation of moduli admitting primitive roots, n = pα or n = 2pα, where p is an odd prime
and α is a positive integer.

If an odd prime q divided φ(n), then aq would be a quadratic non-residue that is not a
primitive root — a contradiction.

Consequently, φ(n) is a power of 2 and, by the preceding, n is a Fermat prime or twice a
Fermat prime.

Conversely, if n is a Fermat prime or twice a Fermat prime, and a is a primitive root modulo
n, then the multiplicative order of a is a power of 2, so ak is a primitive root if and only if k is
odd, and this is the case if and only if ak is a quadratic non-residue.
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N2. Given a prime p, prove that the sum
∑bq/pc

k=1 kp−1 is not divisible by q for all but finitely
many primes q.

Solution 1. In what follows, k, m, n are non-negative integers. A straightforward induction
on n shows that Xn =

∑n
k=0 ak

(
X
k

)
in Q[X], where the ak are all integral, an = n!, and

(
X
k

)
=

X(X − 1) · · · (X − k + 1)/k!. Since
∑m

j=0

(
j
k

)
=
(
m+1
k+1

)
, it follows that

∑m
j=0 j

n =
∑n

k=0 ak
(
m+1
k+1

)
.

Consider the particular case n = p− 1 and the degree p polynomial with rational coefficients

f =

p−1∑
k=0

ak

(
X + 1

k + 1

)
=

1

p
(X + 1)X(X − 1) · · · (X − p+ 2) + · · · .

Fix r in the range 1, . . ., p− 1, and write f(−r/p) = a/b, where a and b are integers, and b > 0
is minimal. Notice that b is divisible by no prime q > p.

We now consider a prime q = mp+ r > |a|, m a positive integer, and show that
∑m

k=1 k
p−1 =

f(m) is not divisible by q. Notice that bf(m) − a = b(f(m) − f(−r/p)) is divisible by q, since
m − (−r/p) = q/p. Since b is not divisible by q and |a| < q, it is sufficient to show that a 6= 0.
To this end, notice that pp · p!f(−r/p) = (p− 1)!

∏p−1
i=0 ((i− 1)p− r) + p2s for some integer s. By

Wilson’s and Fermat’s theorems, the right-hand member is an integer congruent to r modulo p,
so f(−r/p) is not integral. In particular, a 6= 0, and the conclusion follows.

Solution 2. (Ilya Bogdanov) Although conceptually the same, this approach seems more down-
to-earth.

We first prove the existence of a degree p monic polynomial with rational coefficients f =
Xp + ap−1X

p−1 + · · ·+ a1X such that p divides the denominator of no ak (in lowest terms), and

f(k) = p(1p−1 + 2p−1 + · · ·+ kp−1) (∗)

for all positive integers k. Since the polynomials of the desired form all have a root at 0, (∗) is
equivalent to f(k)− f(k − 1) = pkp−1 for all positive integers k. Alternatively, but equivalently,
f(X)− f(X − 1) = pXp−1. Identification of coefficients (or, which is the same, successive formal
differentiation) on both sides yields a triangular (p− 1)-by-(p− 1) system of linear equations in
the ak:

kak + φk(ak+1, . . . , ap−1) = 0, k = 1, . . . , p− 1,

where φk is linear and has integral coefficients; of course, φp−1 is an integral constant. An obvious
backwards recursion shows the ak rational and no denominator divisible by p.

Next, consider an r in the range 1, . . ., p− 1, and notice that f(−r/p) = (−r/p)p + a, where
a is a rational number whose denominator (in lowest terms) is not divisible by pp. Consequently,
f(−r/p) 6= 0.

The polynomials f and pX+r are therefore coprime in Q[X], so there exist a positive integer
N and two polynomials φ and ψ with integral coefficients such that fφ+ (pX + r)ψ = N .

Finally, if q = mp + r is prime, and f(m) is divisible by q, then so is N = f(m)φ(m)+
(pm+ r)ψ(m), and the conclusion follows.

Remark. The original version of the problem dealt only with primes q of the form q = pk + 1.
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