The $15^{\text {th }}$ Romanian Master of Mathematics Competition

Day 1: Wednesday, February $28^{\text {th }}$, 2024, Bucharest

Language: English

Problem 1. Let n be a positive integer. Initially, a bishop is placed in each square of the top row of a $2^{n} \times 2^{n}$ chessboard; those bishops are numbered from 1 to 2^{n}, from left to right. A jump is a simultaneous move made by all bishops such that the following conditions are satisfied:

- each bishop moves diagonally, in a straight line, some number of squares, and
- at the end of the jump, the bishops all stand in different squares of the same row.

Find the total number of permutations σ of the numbers $1,2, \ldots, 2^{n}$ with the following property: There exists a sequence of jumps such that all bishops end up on the bottom row arranged in the order $\sigma(1), \sigma(2), \ldots, \sigma\left(2^{n}\right)$, from left to right.

Problem 2. Consider an odd prime p and a positive integer $N<50 p$. Let $a_{1}, a_{2}, \ldots, a_{N}$ be a list of positive integers less than p such that any specific value occurs at most $\frac{51}{100} N$ times and $a_{1}+a_{2}+\cdots+a_{N}$ is not divisible by p. Prove that there exists a permutation $b_{1}, b_{2}, \ldots, b_{N}$ of the a_{i} such that, for all $k=1,2, \ldots, N$, the sum $b_{1}+b_{2}+\cdots+b_{k}$ is not divisible by p.

Problem 3. Given a positive integer n, a set \mathcal{S} is n-admissible if

- each element of \mathcal{S} is an unordered triple of integers in $\{1,2, \ldots, n\}$,
- $|\mathcal{S}|=n-2$, and
- for each $1 \leq k \leq n-2$ and each choice of k distinct $A_{1}, A_{2}, \ldots, A_{k} \in \mathcal{S}$,

$$
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{k}\right| \geq k+2
$$

Is it true that, for all $n>3$ and for each n-admissible set \mathcal{S}, there exist pairwise distinct points P_{1}, \ldots, P_{n} in the plane such that the angles of the triangle $P_{i} P_{j} P_{k}$ are all less than 61° for any triple $\{i, j, k\}$ in \mathcal{S} ?

Each problem is worth 7 marks.
Time allowed: $4 \frac{1}{2}$ hours.

The $15^{\text {th }}$ Romanian Master of Mathematics Competition

Day 2: Thursday, February $29^{\text {th }}, 2024$, Bucharest

Language: English

Problem 4. Fix integers a and b greater than 1. For any positive integer n, let r_{n} be the (non-negative) remainder that b^{n} leaves upon division by a^{n}. Assume there exists a positive integer N such that $r_{n}<2^{n} / n$ for all integers $n \geq N$. Prove that a divides b.

Problem 5. Let $B C$ be a fixed segment in the plane, and let A be a variable point in the plane not on the line $B C$. Distinct points X and Y are chosen on the rays $\overrightarrow{C A}$ and $\overrightarrow{B A}$, respectively, such that $\angle C B X=\angle Y C B=\angle B A C$. Assume that the tangents to the circumcircle of $A B C$ at B and C meet line $X Y$ at P and Q, respectively, such that the points X, P, Y, and Q are pairwise distinct and lie on the same side of $B C$. Let Ω_{1} be the circle through X and P centred on $B C$. Similarly, let Ω_{2} be the circle through Y and Q centred on $B C$. Prove that Ω_{1} and Ω_{2} intersect at two fixed points as A varies.

Problem 6. A polynomial P with integer coefficients is square-free if it is not expressible in the form $P=Q^{2} R$, where Q and R are polynomials with integer coefficients and Q is not constant. For a positive integer n, let \mathcal{P}_{n} be the set of polynomials of the form

$$
1+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

with $a_{1}, a_{2}, \ldots, a_{n} \in\{0,1\}$. Prove that there exists an integer N so that, for all integers $n \geq N$, more than 99% of the polynomials in \mathcal{P}_{n} are square-free.

Each problem is worth 7 marks.
Time allowed: $4 \frac{1}{2}$ hours.

