THE 1995 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours
NO calculators are to be used.
Each question is worth seven points.

Question 1

Determine all sequences of real numbers $a_{1}, a_{2}, \ldots, a_{1995}$ which satisfy:

$$
2 \sqrt{a_{n}-(n-1)} \geq a_{n+1}-(n-1), \text { for } n=1,2, \ldots 1994,
$$

and

$$
2 \sqrt{a_{1995}-1994} \geq a_{1}+1
$$

Question 2

Let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of integers with values between 2 and 1995 such that:
(i) Any two of the a_{i} 's are realtively prime,
(ii) Each a_{i} is either a prime or a product of primes.

Determine the smallest possible values of n to make sure that the sequence will contain a prime number.

Question 3

Let $P Q R S$ be a cyclic quadrilateral such that the segments $P Q$ and $R S$ are not parallel. Consider the set of circles through P and Q, and the set of circles through R and S. Determine the set A of points of tangency of circles in these two sets.

Question 4

Let C be a circle with radius R and centre O, and S a fixed point in the interior of C. Let $A A^{\prime}$ and $B B^{\prime}$ be perpendicular chords through S. Consider the rectangles $S A M B, S B N^{\prime} A^{\prime}$, $S A^{\prime} M^{\prime} B^{\prime}$, and $S B^{\prime} N A$. Find the set of all points $M, N^{\prime}, M^{\prime}$, and N when A moves around the whole circle.

Question 5

Find the minimum positive integer k such that there exists a function f from the set \mathbb{Z} of all integers to $\{1,2, \ldots k\}$ with the property that $f(x) \neq f(y)$ whenever $|x-y| \in\{5,7,12\}$.

SOLUTIONS

Note: On the left side of the page the maximum number of points that may be awarded for every part of the solution is indicated in brackets.

Question 1. Suppose that $\left(a_{1}, a_{2}, \ldots, a_{1995}\right)$ is a solution of the given system of inequalities. Then

$$
\sum_{n=1}^{1995} 2 \sqrt{a_{n}-(n-1)} \geq \sum_{n=1}^{1995} a_{n}-\sum_{n=1}^{1994}(n-1)+1=\sum_{n=1}^{1995} a_{n}-\sum_{n=1}^{1995}\{(n-1)+1\}
$$

i.e.

$$
0 \geq \sum_{n=1}^{1995}\left\{a_{n}-(n-1)+1-2 \sqrt{a_{n}-(n-1)} .\right.
$$

[2 points]
Next, note that

$$
\left[\sqrt{a_{n}-(n-1)}-1\right]^{2}=a_{n}-(n-1)-2 \sqrt{a_{n}-(n-1)}+1
$$

for $n=1,2, \ldots, 1995$.
[1 point]
Hence,
$0 \geq \sum_{n=1}^{1995}\left[a_{n}-(n-1)-2 \sqrt{a_{n}-(n-1)}+1\right]=\sum_{n=1}^{1995}\left[\sqrt{a_{n}-(n-1)}-1\right]^{2} \geq 0$.
Therefore, $\sqrt{a_{n}-(n-1)}=1$, for $\mathrm{n}=1,2, \ldots, 1995$. It follows that $a_{n}=\mathrm{n}$ for $\mathrm{n}=1,2, \ldots, 1995$.
[2 points]
Conversely, if $\sqrt{a_{n}-(n-1)}=1$, for $\mathrm{n}=1,2, \ldots, 1995$, then

$$
2 \sqrt{n-(n-1)}=2=n+1-(n-1), \text { for } n=1,2, \ldots, 1994
$$

and

$$
2 \sqrt{1995-1994}=2=1+1
$$

which shows that $a_{\mathrm{n}}=\mathrm{n}$, for $\mathrm{n}=1,2, \ldots, 1995$, is indeed a solution of the given system of inequalities.
[2 points]
Question 2. The answer is 14 .
[1 point]
Denote the required number by M . We observe that the sequence $2 \cdot 101,3 \cdot 97$, $5 \cdot 89,7 \cdot 83,11 \cdot 79,13 \cdot 73,17 \cdot 71,19 \cdot 67,23 \cdot 61=1403,29 \cdot 59=1711,31 \cdot 53=1643$, $37 \cdot 47=1739,41 \cdot 43=1763$ satisfies conditions i) and ii) and contains no prime number. Hence, $M>13$.
[3 points]
Now we show that a sequence with 14 elements that satisfies conditions i) and ii) will contain a prime number. We proceed by contradiction. Suppose the elements are $a_{1}, a_{2}, \ldots, a_{14}$. Since none of them is a prime number, each element will contain at least two prime factors. We take any two prime factors from each a_{i}, and list them in ascending order $p_{1}<p_{2}<\ldots<p_{26}<p_{27}<p_{28}$. As the 14 th prime is 43 , this means $43 \leq p_{14}, 47 \leq p_{15}$ and so on. Now $43 \cdot 47=2021>1995$. This means that p_{14} must pair up with one of the $p_{1}, p_{2} \ldots p_{13}$ to form a certain a_{i}. Likewise p_{15} must pair up with one of the $p_{1}, p_{2} \ldots p_{13}$ to form another a_{i}, and so on (without repetition). Hence there exist $p_{i}, p_{j}, 13<i<j$, that must pair up together to form some a_{i}. But then $a_{i} \geq p_{i} p_{j} \geq 43.47>1995$, a contradiction.
[3 points]
Question 3. Let T be the intersection of $P Q$ and $R S, T$ lies outside C, the circle PQRS.
i) Clearly any point on C belongs to the set A .
ii) Let $\mathrm{r}=\sqrt{T P \cdot T Q}=\sqrt{T R \cdot T S}$, and consider the circle with center T and radius r. Let V a point on this circle. Since $\mathrm{TV}^{2}=\mathrm{TP} \cdot \mathrm{TQ}=\mathrm{TR} \cdot \mathrm{TS}$, TV is tangent to the circles PQV and RSV. Therefore, PQV is tangent to RSV. That means, V is in the set A:
[4 points]
Conversely, assume V is in A, i.e. PQV is tangent to RSV. If the circles PQV and $R S V$ are the same, then $P Q V=R S V=P Q R S$. Otherwise, let the line $T V$ intersect $P Q V$ in V_{1}, and RSV in V_{2}. Then

$$
\begin{aligned}
& \mathrm{TP} \cdot \mathrm{TQ}=\mathrm{TV} \cdot \mathrm{TV} \\
& \mathrm{TR} \cdot \mathrm{TS}=\mathrm{TV} \cdot \mathrm{TV}_{2} .
\end{aligned}
$$

Due to the fact that $P Q R$ and S are on a circle, we have $T P \cdot T Q=T R \cdot T S$, thus $T V \cdot T V_{1}=T V \cdot T V_{2}$. Moreover, since T does not lie on $C, T \neq V$, which implies $T V_{1}=T V_{2}$, i.e., $V_{1}=V_{2}=V$.
All this means that TV is tangent to the circles PQV and RSV, therefore V lies on the circle with center T and radius $\mathrm{r}=\sqrt{T P \cdot T Q}=\sqrt{T R \cdot T S}$.
[3 points]
Question 4. First, we will show that MS is perpendicular to A'B'. Since SAMB, SBN'A', SA'M'B' and SB'NA are rectangles, it follows that MNM'N' is a rectangle with its sides parallel to AA^{\prime} and BB^{\prime}.
Moreover, the perpendicular bisectors of AA^{\prime} and BB^{\prime} pass through O , and they coincide with those of $M N^{\prime}$ and NM^{\prime}. Therefore, O is the center of the rectangle.
Let I and H be the intersections of $M S$ with $A B$ and $A^{\prime} B^{\prime}$. We then have
$\angle \mathrm{HSA}^{\prime}=\angle \mathrm{ASI}$,
$\angle \mathrm{ASI}=\angle \mathrm{SAI}$,
$\angle \mathrm{SAI}=\angle \mathrm{A}^{\prime} \mathrm{AB}=\angle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{B}$.
In the triangle $\mathrm{SA}^{\prime} \mathrm{B}^{\prime}, \angle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{B}$ or $\angle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{S}$ is the complementary angle of $\angle \mathrm{SA}^{\prime} \mathrm{B}^{\prime}$. The angles HSA' and SA'B are complementary angles and the triangle SA'H is a right-angled triangle with right angle at H . Therefore, $\mathrm{MS} \perp \mathrm{A}^{\prime} \mathrm{B}^{\prime}$.
[1 point]
Next, we will show that $A B^{2}+A^{\prime} B^{\prime 2}=4 R^{2}$ and that $M N^{\prime 2}+N^{\prime} M^{\prime 2}$ is constant.
Let D be the second intersection of $M N '^{\prime}$ with the circle, then $A D=A B$, since they subtend equal angles. This implies

$$
\mathrm{AB}^{2}+\mathrm{A}^{\prime} \mathrm{B}^{\prime 2}=\mathrm{A}^{\prime} \mathrm{D}^{2}+\mathrm{A}^{\prime} \mathrm{B}^{12}
$$

But, we know $\mathrm{DA}^{\prime} \| \mathrm{MH}$, since $\angle \mathrm{BDA}^{\prime}=\angle \mathrm{BAA}^{\prime}=\angle \mathrm{BMH}^{\prime}$, that means $\angle \mathrm{DA}^{\prime} \mathrm{B}^{\prime}$ $=90^{\circ}$ and it is inscribed in the circle, therefore D and B^{\prime} are diametrically opposed, what finally implies

$$
\mathrm{AB}^{2}+\mathrm{A}^{\prime} \mathrm{B}^{12}=\mathrm{A}^{\prime} \mathrm{D}^{2}+\mathrm{A}^{\prime} \mathrm{B}^{12}=\mathrm{DB}^{\prime 2}=(2 \mathrm{R})^{2}=4 \mathrm{R}^{2}
$$

i.e.

$$
\mathrm{AB}^{2}+\mathrm{A}^{\prime} \mathrm{B}^{12}=4 \mathrm{R}^{2}
$$

[2 points]
To see that $\mathrm{MN}^{12}+\mathrm{N}^{\prime} \mathrm{M}^{12}$ is constant consider the following equalities

$$
\begin{aligned}
\mathrm{MN}^{\prime 2}=\left(\mathrm{MB}+\mathrm{BN} N^{\prime}\right)^{2} & =\mathrm{MB}^{2}+\mathrm{BN}^{\prime 2}+2 \mathrm{MB} \cdot \mathrm{BN}^{\prime} \\
& =\mathrm{SA}^{2}+\mathrm{SA}^{\prime 2}+2 \mathrm{SA} \cdot \mathrm{SA}^{\prime 2} \\
M^{\prime} \mathrm{N}^{\prime 2}=\left(\mathrm{N}^{\prime} \mathrm{A}^{\prime}+\mathrm{A}^{\prime} \mathrm{M}^{\prime}\right)^{2} & =\mathrm{N}^{\prime} \mathrm{A}^{\prime 2}+\mathrm{A}^{\prime} \mathrm{M}^{\prime 2}+2 \mathrm{~N}^{\prime} \mathrm{A}^{\prime} \cdot \mathrm{A}^{\prime} \mathrm{M}^{\prime} \\
& =\mathrm{SB}^{2}+\mathrm{SB}^{\prime 2}+2 \mathrm{SB} \cdot \mathrm{SB}^{\prime}
\end{aligned}
$$

By Pythagoras, we have

$$
\mathrm{AB}^{2}+\mathrm{A}^{\prime} \mathrm{B}^{12}=\left(\mathrm{SA}^{2}+\mathrm{SB}^{2}\right)+\left(\mathrm{SA}^{12}+\mathrm{SB}^{12}\right)
$$

This implies,

$$
\begin{aligned}
\mathrm{MN}^{\prime 2}+\mathrm{M}^{\prime} \mathrm{N}^{\prime 2}= & \mathrm{SA}^{2}+\mathrm{SB}^{2}+\mathrm{SA}^{12}+\mathrm{SB}^{12}+2 \mathrm{SA} \cdot \mathrm{SA}^{\prime}+2 \mathrm{SBSB}^{\prime} \\
& =\mathrm{AB}^{2}+\mathrm{A}^{\prime} \mathrm{B}^{12}+4 \mathrm{SA} \cdot \mathrm{SA}^{\prime} \\
& =8 \mathrm{R}^{2}-4 \mathrm{OS}^{2}
\end{aligned}
$$

Additionally we know that

$$
\mathrm{MN}^{\prime 2}+\mathrm{M}^{\prime} \mathrm{N}^{\prime 2}=\mathrm{MM}^{\prime 2}=4 \mathrm{OM}^{2}
$$

[2 points]
But, $40 M^{2}=8 R^{2}-40 S^{2}$.
Therefore,

$$
\mathrm{MN}^{12}+\mathrm{M}^{\prime} \mathrm{N}^{12}=4 \mathrm{OM}^{2}
$$

This last quantity is clearly a constant.

[1 point]

Finally, it is clear that the vertices of the rectangle MNM'N' lie on the circle with center O and radius $\mathrm{OM}=\sqrt{2 R^{2}-O S^{2}}$. Therefore, the set of points consists of a circle.
[1 point]
Question 5. The minimum value of k is $k=4$.

[1 point]

First, we define a function f from Z to $\{1,2,3,4\}$ recursively as follows: $f(0)=1$. For any positive integer $i, f(i)$ is defined to be the minimum positive integer not in $A_{i}:=\{f(j): i-j \in\{5,7,12\}$ and $-i<j<i\}$, and $f(-i)$ the minimum positive integer not in $B_{i}:=\{f(j): j+i \in\{5,7,12\}$ and $-i<j<i\}$. Note that $\left|A_{i}\right| \leq 3$ and $\left|B_{i}\right| \leq 3$ for any i. So, f is a function from Z to $\{1,2,3,4\}$ such that $f(x) \neq f(y)$ whenever $\mid x$ $-\mathrm{y} \mid \in\{5,7,12\}$. This gives that $\mathrm{k}^{*} \leq 4$.
[3 points]
Next, we claim that $\mathrm{k}^{*} \geq 4$. Suppose it is not the case. Then there exists a function f from Z to $\{1,2,3\}$ with the property that $f(x) \neq f(y)$ whenever $|x-y| \in$ $\{5,7,12\}$. For any integer x, consider the values $f(x), f(x-5)$, and $f(x+7)$. These three values are different. Now consider $f(x+2)$. Since $f(x+2) \notin\{f(x-5), f(x+$ 7) $\}$

$$
f(x)=f(x+2) \text { for any integer } x
$$

Hence,

$$
f(x)=f(x+2)=f(x+4)=\ldots=f(x+12)
$$

which is impossible. Thus $\mathrm{k}^{*}>4$.
[3 points]

