


 
 
 
 
 
 

25-th Balkan Mathematical Olympiad 
Ohrid, 04-10 May 2008 
Republic of Macedonia 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Union of Mathematicinas of Macedonia 
              



 Издавач:Сојуз на математичари на Македонија 
 Бул.Александар Маледонски бб 
 1000 Скопје, Република Македонија 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 CIP-Katalogizacija i publikacija 
  Nacionalna i univerzitetska biblioteka “Sv. Kliment Ohridski” 
 
 51(079.1) 
 
 MALCHESKI  Aleksa  
 25-th Balkan mathematical Olympiad:Ohrid, 04-10 May 2008, Republic of Macedonia/ 

[Aleksa Malcheski, Vesna Manova Erakovik].-Skopje:Macedonian mathematical society, 2011,  
-41 str. ilustr.; 24 sm. 

  
 ISBN 978-9989-646-13-3 
 1.Manova-Erakovik,Vesna [avtor] 
 a)Matematika-Zada~i od natprevari 
 COBISS.MK-ID 88095498 

 

 



 Problem Selection Committee    President of SMM 
  Aleksa Malcheski-president        Vesna Manova Erakovik 
  Zdravko Cvetkovski 
  Mirko Petruschevski 
  Simona Samardziska 
  Bojan Prangovski 
  Ilija Jovchevski 
  Valentina Miovska 
  Delcho Leschkovski 
 

Organizing committee       Coordination commitee 
Risto Malceski, Chairman         Chairman: Aleksa Malcheski  

Vesna Manova-Erakovic, Vice-Chairman   Members 

Tatjana Pacemska           Gjorgji Markoski 

Gjorgji Markoski            Biljana Tojtovska 

Valentina Gogovska          Aneta Naumoska 

Mirjana Dokoska           Pavel Dimovski 

Jasmina Markoska           Martin Lukarevski 

Gule Gulev              

Igor Dimovski           1. Inequalities and Algebra 

Zoran Trifunov            Elena Babace 

Aneta Gacovska            Delco Leshkovski 

Vezir Neziri             Ljupco Nastovski 

Samoil Malcheski           Aneta Gacovska 
                 2. Geometry 
 Guides               Valentina Miovska 

Frosina Malcheska           Zoran Misajleski 

Vera Malcheska            Petar Sokoloski 

Aleksandra Arsovska          Bojan Prangoski 

Valentina Stojcevik          3. Theory of numbers  

Sandra Milosheska           Zdravko Cvetkovski 

Julija Roshoska            Aleksa Malcheski 

Meriton Civuli            Mirko Petrushevski 
Ljubica Pop-Tosheva          Martin Shoptrajanov 

                4. Combinatorics 
Biljana Nachevska Nastovska 

Ilija Jovchevski 

Simona Samardziska 

Katerina Saneva 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 
 
 Foreword 
  

The 25-th Balkan Mathematical Olympiad (BMO 2008) for high-school students took place 

from 04.05.2008 until 10.05.2008 in Ohrid, Republic of Macedonia. In some way, the 

manifestations of this kind are forgotten after a short period after they are held, despite the 

existence of numerous electronic versions and copies of both the problems and the results. 

Nevertheless, this and all other Balkan Olympiads deserve to be more decently marked, for 

the benefit of both the students and the leaders, deputy-leaders and hosts, who, as a rule, 

selflessly operate for the taking place of the Olympiads and the preservation of the tradition. 
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  Contributing Countries 
  Moldova, Serbia, Bulgaria,      
  Monte Negro, Romania,Albania,  
  Greece, Cyprus 
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 Number theory 
 
 NT1. 
                         

 Prove that for every natural number a  there exists a natural number that has 
the number a  (the sequence of digits that constitute a ) at its beginning, and 
which decreases a  times when a  is moved from its beginning to its end (any 
number zeros that appear in the beginning of the number obtained in this way 
are to be removed).  
 For example, for 4a =  we have 410256 4 102564= ⋅ ; for 46a =  we have  
  460100021743857360295716 46 10002174385736029571646= ⋅ ;  
for 58a =  we have  
  580100017244352474564 58 10001724435247456458= ⋅ .        

 (Serbia) 
  
   NT2.  
                         

Let a  be a positive integer. The sequence 1{ }n na ∞
=  is defined by 1a a= , 

2 3
1k k ka a a a+ = + +  for every positive integer 1k ≥ . Find all values of a  for 

which there exists a positive integer n  such that 2 3
na a+  is a m -th power, 2m ≥ , 

m∈ℕ , of a positive integer. 
                   (Bulgaria) 

 
NT3.  

                        

 The sequence 1( )n nx ∞
=  is given by  

    1 /2n n nx x x+   
= + , 1 1x = .  

Proof that none of the members of the sequence is divisible by 4 .  
 (Crna Gora) 

 
 NT4. 
                           

 Solve in the prime numbers the equation 
   2 11 2yxyz ++ = . 

                  (Albania) 
 

NT5.  
                        

Let { }na  be the sequence with 1 0a =  and 1 2n na a+ = +  for odd n and 

1 2n na a+ =  for even n. Prove that for each prime p >3 the number 
22 1
3
p

b −=  

divides na  for the infinitely many values of n. 
              (Albania) 



25-th Balkan Mathematical Olimpiad                                             Ohrid-Republika Makedonija 

8 

    NT6.  
                             

  Let  ( ), 1,2,3,...nx n =  be a sequence defined by 1 2008x =  and 

            ( )2
1 2 1 1n nx x x n x−+ + + = −⋯ , for every 2n ≥ .                     

     Let, also, the sequence 1
n n na x S

n
= + , 1,2,3,...n = where 1 2n nS x x x= + + +⋯ . 

     Determine the values of n  for which the terms of the sequence na are perfect 
squares of an integer.                   

(Greece) 
 
 

 Algebra and Inequalities 
   
 A1. 
                              

 For all positive real numbers 1 2 3, ,α α α  prove that 

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 1 1
2 2 2

2 1 1 1
2 1

να α α α να α α α να
ν

ν να να α α να να να α να

+ + >
+ + + + + +

 > + + + + + + + + + 

 , 

for every positive real number ν .   
           (Greece) 

 

 A2. 
                           

 Is there a sequence 1 2, ,...a a  of positive real numbers such that 2

1

n

i
i

a n
=

≤∑  and 

1

1 2008
n

ii a=
≤∑  for any positive integer n ? 

             (Bulgaria) 
 

   A3. 
 

   Let ( )ma  be a sequence satisfaing  
  0na ≥ , 0,1,2,3,...n =  
  0A∃ > , 2

1m m ma a Aa+− ≥ ,  0m ≥ , m∈ℕ .  
Prove that there exists 0B >  such that  

  n
Ba
n

≤ , 1,2,3,...n =                

(Crna Gora) 
 

       A4. 
                          

      We consider the set  
( ){ }1 2 1 2, ,..., : , ,...,z z z z z zν

ν ν= ∈ℂ ℂ , 2ν ≥ , 
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and the function : ν νϕ →ℂ ℂ  mapping every element ( )1 2, ,...,z z zν ∈ νℂ  to  

( ) ( )1 2 1 2 2 3 1, ,..., , ,...,z z z z z z z z zν νϕ = − − − . 

      We also consider the ν-tuple  ( )0 1 2 1, , ,...,w w w w ν
ν − ∈ℂ of the n-th roots of1− , 

where  
2 2

cos sin , 0,1,2,... 1w iµ
π µπ π µπ µ νν ν

+ +   = + = −   
   

. 

      Let after κ , *κ ∈ℕ  successive applications of the function ϕ  to the element 

( )0 1 2 1, , ,...,w w w wν − , we obtain the element 
( ) ( )

( ) ( )

0 1 2 1

0 1 2 1 1 2

, , ,...,

... , , ,..., , ,...,
times

w w w w

w w w w Z Z Z

κ
ν

ν κ κ κν
κ

ϕ

ϕ ϕ ϕ

−

−
−

≡
 
 ≡ =
 
 

� � �
�����

 

Determine: 
(i) the values of ν  for which all coordinates of 

( ) ( )0 1 2 1, , ,...,w w w wκ
νϕ − have measure less or equal to 1, 

(ii)  for 4ν = , the minimal value of *κ ∈ℕ  for which: 
1002iZκ ≥ , for every 1,2,3,4i = . 

      (Greece) 
 

 A5. 
                         

 Consider an ingteger 1n ≥ , 1 2, ,..., na a a  real numbers in [ 1,1]−  satisfying 

1 2 ... 0na a a+ + + =  and a funcion :[ 1,1]f − →ℝ  such that  
   | ( ) ( ) | | |f x f y x y− ≤ −  
for every ,x y  in [ 1,1]− . Prove that  

   1 2( ) ( ) ... ( )
( ) 1nf a f a f a

f x
n

+ + +
− ≤  

for every x  in the interval [ 1,1]− . For a given sequence 1 2, ,..., na a a , find f  and 
x  so that equality holds.                  

(Romania) 
 

   A6. 
 

  Prove that if x, y, z are positive real numbers such that xy, yz and zx are 
lengths of the side of the triangle and ] [1,1k ∈ −  

then the inequality 

 2 1
xy yz zx k

xz yz kxy xy xz kyz xy yz kzx
+ + ≥ −

+ + + + + +
  

is true. In which conditions the equality is hold.         
(Albania) 



25-th Balkan Mathematical Olimpiad                                             Ohrid-Republika Makedonija 

10 

  A7. 
 

 Let , , ,x y z t  be non-negative reals. Show that  

  33xy xz xt yz yt zt xyz xyt xzt yzt+ + + + + ≥ + + + .  

Find all cases when equality holds.                
(Romania) 

 
 
  

  Combinatorics 
 
 C1. 
                          

 All 3n +  offices of University of Somewhere are numbered with numbers 
0,1,2,..., 1, 2n n+ + , for some n∈ℕ . One day, Profesor D  came up with a 
polynomial with real coefficients and power n . Then, on the door of every 
office he wrote the value of that polynomial evaluated in the number assigned 
to that office. On the i-th office, for {0,1,2,..., 1}i n∈ + , he wrote 2i , and on the 
( 2)n + nd office he wrote 22 3n n+ − − .  
 a) Prove that Professor D  made a calculation error.  
 b) Assuming that Professor D  made a calculation error, what is the smallest 
number of errors he made? Prove that in this case the errors are uniquelly 
determined, find them and correct them!  

          (Srbija) 
 

 C2. 
                           

 In one of the countries there are 5n ≥  cities operated by two airline 
companies. Every two cities are operated in both directions by at most one of 
the companies. The government introduced a restriction that all round trips that 
a company can offer should have at least six cities. Prove that there no more 
than 2

3
n    flights offered by these companies.           

(Moldova) 
 

    C3. 
 

Let n  be positive integer. The rectangle ABCD  with sides 90 1AB n= +  and 
90 5BC n= +  is divided into unit squares by lines which are parallel to its sides. 

Prove that the number of the different lines which pass through at least two 
vertices of the unit squares is divisible to 4 .          

(Bulgaria) 
 

C4. 
                         

 An array n n×   is given, consisting of 2n  unit squares. A pawn is placed 
arbitrarily on an unit square. A move of the pawn means a jump from a square 
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of the k -th column to any square of the k -th row. Show that the exists a 
sequence of 2n  moves of the pawn so that all the unit squares of the array are 
visited once and, in the end, the pawn returns to the original position. 

       (Romania) 
 
 
 

 Geometry 
 
 G1.                           
 In acute angled triangle ABC  we denote by , ,a b c  the side lengths, by 

, ,a b cm m m  the median lengths and by , ,bc ca abr r r  the radii of the circles tangents 
to two sides and to circumscribed circle of the triangle, respectively. Prove that  

2 2 2
327 3

8
a b c

bc ac ab

m m m
abc

r r r
+ + ≥ .                

(Moldova) 
 

 G2. 
 

 A non-iscosceles acute triangle ABC is given with AC BC>  and Η the point 
of intersection of the heights ΑΖ and CΜ.  We call point P on ΑΒ such that 
ΑΜ=ΡΜ  and Ν the midpoint of  ΑC. If  O  the circumcentre of the triangle ABC 
and  K PH BC≡ ∩ , X ON MK≡ ∩  , T OM AC≡ ∩ , prove that the points Μ, Ν, Τ, 
Χ are lie on the same circumference.              

(Cyprus) 
 

  G3. 
                         

We draw two lines ( )1ℓ , ( )2ℓ  through the orthocenter H of the triangle ABC  

such that each one is dividing the triangle into two figures of equal area and 
equal perimeters. Find the angles of the triangle. 

            (Cyprus) 
 

  G4. 
 

 A triangle ABC  is given with barycentre G  and circumcentre O . The 
perpendicular bisectors of GA ,GB  meet at 1,C of ,GB GC  meet at 1A  and 

,GC GA  meet at 1B . Prove that O  is the barycenter of the triangle1 1 1A B C . 
    (Greece) 

 

 G5.  
 

 The circle ak  touches the extensions of sides AB  and BC , as well as the 
circumscribed circle of the triangle ABC (from the outside). We denote the 
intersection of ak  with the circumscribed circle of the triangle ABC  by 'A . 
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Analogously, we define points 'B  and 'C . Prove that the lines ', 'AA BB  and 
'CC  intersect in one point. 

(Srbija) 
   

G6. 
                         

 On triangle ABC the AM ( )M BC∈  is mediane and 1BB  and 1CC  
( 1 1, )B AC C AB∈ ∈  are altitudes. The stright line d is perpendicular to AM at the 
point A and intersect the lines 1BB  and 1CC  at the points E and F respectively. 

Let denoted with ω  the circle passing through the points E, M and F and with  

1ω  and with 2ω the circles that are tangent to segment EF and with ω at the arc 
EF which is not contain the point M. If the points P and Q are intersections 
points for 1ω  and 2ω  then prove that the points P, Q and M are collinear.  

            (Albania) 
 

 G7. 
 

 In the non-isosceles triangle ABC  consider the points X  on [ ]AB  and Y  on 
[ ]AC  such that [ ] [ ]BX CY= . M  and N  are the midpoints of the segments 
[ ]BC , respectively [ ]XY , and the straight lines XY  and BC  meet in K . Prove 
that the circumcircle of triangle KMN  contains a point, different from M , 
which is independent of the position of the points X  and Y . 

        (Romania) 
 

G8. 
                          

 Let P  be a point in the interior of a triangle ABC  and let , ,a b cd d d  be its 
distances to , ,BC CA AB  respectively. Prove that  

  2 2 2max( , , ) a b cAP BP CP d d d≥ + + . 

             (Moldova) 
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 Number theory 
 
 NT1.                      Medium 
 

 Prove that for every natural number a  there exists a natural number that has 
the number a (the sequence of digits that constitute a ) at its beginning, and 
which decreases a  times when a  is moved from its beginning to its end (any 
number zeros that appear in the beginning of the number obtained in this way 
are to be removed).  
 For example, for 4a =  we have 410256 4 102564= ⋅ ; for 46a =  we have  
  460100021743857360295716 46 10002174385736029571646= ⋅ ;  
for 58a =  we have  
  580100017244352474564 58 10001724435247456458= ⋅ .  
 

 Solution. Let a  be a natural number, and let k  be the number digits of a . We want to 
prove that there exists a number b  (with some zeros possibly added at its beginning) such that 

ab a ba= ⋅ . If b  has l  digits, then we have  

  210 10l ka b a b a⋅ + = ⋅ ⋅ +  ⇔  (10 ) ( 10 1)l ka a b a− = ⋅ − ,  
i.e., it is enough to prove that there exists l k≥  such that  

  ( 10 1) | (10 )k la a⋅ − − ,  

since ( , 10 1) 1la a ⋅ − =  and 1010 0
10 1

ll
k

aa b
a

−> = ≥
⋅ −

 ( l k≥  implies 10l a≥ ). Knowing 

( , 10 1) 1ka a ⋅ − = , we get  

  ( 10 1) | (10 )k la a⋅ − −  if and only if 1( 10 1) | ( 10 )k s l sa a a +⋅ − − ,  

and fixing ( 10 1) 1ks aϕ= ⋅ − − , from Euler Theorem we get that it is enough to find l k≥  such 

that ( 10 1) | ( 10 1)k s la a⋅ − − . Since 10 1(mod( 10 1))k ka a⋅ ≡ ⋅ −  setting l sk=  we get  

  10 ( 10 ) 1 (mod ( 10 1))s sk k s ka a a⋅ = ⋅ ≡ ⋅ − ,  

and with l k≥  the statement is proved.  
(Srbija) 

                  

 NT2.                          Medium 
 

 Let a  be a positive integer. The sequence 1{ }n na ∞
=  is defined by 1a a= , 

2 3
1k k ka a a a+ = + +  for every positive integer 1k ≥ . Find all values of a  for 

which there exists a positive integer n  such that 2 3
na a+  is a m -th power, 2m ≥ , 

m∈ℕ , of a positive integer.  
 

 Solution. We firstly prove by induction that 34 1a +  is coprime with 2 1na + , for every 1n ≥ .  

 Let 1n =  and p  be a prime divisor of 34 1a +  and 12 1 2 1a a+ = + . Then p  divides 
3 22(4 1) (2 1)(4 2 1) 1a a a a+ = + − + +  , whence p  divides 1 , a contradiction. Assume now that 

3(4 1,2 1) 1na a+ + =  for some 1n ≥  and the prime p  divides 34 1a +  and 12 1na + + . Then p  

divides 2 3
14 2 (2 1) 4 1n na a a+ + = + + + , which gives a contradiction.  

 Assume that for some 1n ≥  the number  
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  2 3 2 3 2 3 2 3 2 3
1 ( ) ( )( 2 1 )n n n n nna a a a a a a a a a a+ + = + + + = + + + +  

is a power. It follows from the above that 2 3
na a+  and 2 32 1n na a a+ + +  are coprime. This means 

that 2 3
na a+  is a power as well. The same argument can be further applied giving that 

2 3 2 3 2
1 ( 1)a a a a a a+ = + = +  is a power.  

 If 2( 1) ka a t+ =  with odd 3k ≥ , then 1
ka t=  and 21 ka t+ = , which is impossible. If 

2 2( 1) ka a t+ =  with 2k ≥ , then 1
ka t=  and 21 ka t+ = , which is impossible. Therefore 

2 2( 1)a a t+ =  whence we obtain the solutions 2 1a s= − , 2s ≥ , s ∈ℕ .  
     (Bulgaria) 

 
 NT3.                      Medium 
 

 The sequence 1( )n nx ∞
=  is given by  

    1 /2n n nx x x+   
= + , 1 1x = .  

Proof that none of the members of the sequence is divisible by 4 .  
 

 Solution. From the recurence, we get   
    2 1 2 2 1 2n n n n nx x x x x+ −= + = + ,   1 1x = .  

Therefore, every odd-indexedmember is odd, hence not divisible by 4 .  
 Next, let prove that 4n nx x−  is divisible by 4 . For 1n = ,  

    4 3 2 2 1 2 2 1 1 12 4x x x x x x x x x x= + = + + = + = + ,  

hence 4 1x x−  is divisible by 4 .  

 In a similar member: 
    4( 1) 4 4 4 2 1 14n n n n n nx x x x x x+ + + += = + + − ,  

and  
    4( 1) 1 4 2 1( ) 4n n n n nx x x x x+ + +− = − + .  

By induction, it follows that 44 | 1nx −  and 1 1x = . Hence, the members 4 ,nx n ∈ℕ  are not 

divisible by 4 . It remains to be proved that evey 4 2nx +  is not divisible by 4 : 

    4 2 4 1 2 1 4 2 2 1 4 2 1( ) 2n n n n n n n n nx x x x x x x x x+ + + + += + = + + = − + .  

This gives 4 2 2(mod 4)nx + ≡ .                 

(Crna Gora) 
 
 NT4.                        Easy 
 

 Solve in the prime numbers the equation 
  2 11 2yxyz ++ = . 
 

Solution. It is clear that x, y and z are odd prime and that  2 12 1(mod )y y+ ≡ . From the little 

Fermat theorem we have 12 1(mod )y y− ≡ . If we denote with d the primitive root of the 

congruence 2 1(mod )m y≡  then it is clear that d divides 2 1y +  and 1y − , so d divides 2 2y y− +  

and at the end , d divides 2. Since y is prime then it is clear that d=2 and y=3. Now it is easy to 
show that solutions are (11,3,31) and (31,3,11). 

              (Albania) 
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 NT5.                        Easy 
 

 Let { }na  be the sequence with 1 0a =  and 1 2n na a+ = + for odd n and 

1 2n na a+ =  for even n. Prove that for each  prime p >3 the number 
22 1
3
p

b −=  

divides na  for the infinitely many values of n. 
 

 Solution. It is very easy to show that 1
2 2 2k

ka += −  and 2
2 1 2 4k

ka +
+ = − . If we  take 

2 12 8
3

p
n

+ −=  then 
22 1
32 2
p

na
−

= − . From the Fermat theorem it is clear that 2p divides number 

1b − . Now,  on the system with base  two, we have 6 111.....110b = ( with 2p unity) and 
2 2 111.....110b

na = − =   (with 1b − unity) and the result is clear. 
 

 Another solution. First we show that  
  1

2 2 2k
ka += − ,   1

2 1 2 4k
ka +

+ = − .  
From the recurence  
  2( 1) 2 1 22 2 2n n na a a+ += + + +  
so  
  2( 1) 22 2(2 )n na a+ + = + .  

By induction, having in mind that 2 2a = , we obtain  

  1
2 2 2n

na ++ = . 
Then  

  2
2 1 22 2 4n

n na a +
+ = = − .  

For 2 |p k , 22 1| 2 1p k− − . So for any 4n ps= , s ∈ℕ , | nb a .   
     (Albania) 

 
NT6.                       Easy 
 

  Let  ( ), 1,2,3,...nx n =  be a sequence defined by 1 2008x =  and 
         ( )2

1 2 1 1n nx x x n x−+ + + = −⋯ , for every 2n ≥ .                     (1) 

      Let, also, the sequence 1
n n na x S

n
= + , 1,2,3,...n = where 1 2n nS x x x= + + +⋯ . 

Determine the values of n  for which the terms of the sequence na  are perfect 
squares of an integer. 

 

      Solution.The given relation (1) can be written as 
2

1 2 1n n nx x x x n x−+ + + + =⋯   
2 2

1 1( 1) ( 1) ( 1) ( 1)n n n nn x n x n x n x− −⇔ − = − ⇔ − = + . 
      Therefore we have the relations 

1

1

2

3

2

2

1

1
1

2

2
4

1
3

n

n

n

n

x n
x n
x n
x n

x
x
x
x

−

−

−

−= +


− =





= 

= 


⋮  

      Multiplying by parts the above relations we obtain 
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( )
12

, 1,2,3,...
1n

x
x n

n n
= =

+
, 

     Since 2
1 2n n nS x x x n x= + + + =⋯  we have 

( ) ( )
22 12

1 1 1
( 1)

1 ( 1)
( 2)

n
n n n n

n

S n
S n x n S S

S n n
+

+ + +
+= + = + − ⇒ = +  

and as  in the previous case we find 

                                               1 12 2
( 1) ( 1)n

S n x n
S

n n
= =+ + , 1,2,3,...n = . 

      So, we have 

 
41 1 12 2 2 2 2511

( 1) ( 1)n n n
x x n x

a x S
n n n n n n n

⋅= + = + = =+ + . 

    The term na  is a perfect square of an integer, when 2 4251, 2 251, 2 251n = ⋅ ⋅ . 

   (Greece) 
 
 
 
 Algebra and Inequalities 
 
 A1.                        Hard 
 

     For all positive real numbers 1 2 3, ,α α α  prove that 

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 1 1
2 2 2

2 1 1 1
2 1

να α α α να α α α να
ν

ν να να α α να να να α να

+ + >
+ + + + + +

 > + + + + + + + + + 

, 

for every positive real number ν . 
  

      Solution. It is enough to prove that 
 

         
1 2 3 1 2 3 1 2 3

1 1 1
2 2 2να α α α να α α α να+ + >+ + + + + +  

( ) ( ) ( )1 2 3 1 2 3 2 1 3

2 2 2
2 1 2 1 2 1( ) ( ) (ν ν νν α α α α ν α α α ν α αν ν ν

> + ++ + ++ + + + + +
 

 or 

1 2 3 1 2 3 1 2 3

1 1 1
2 2 2να α α α να α α α να+ + >+ + + + + +  

( ) ( ) ( )1 2 3 1 3 2 2 3 1

2 2 2
1 1 1(2 1)( ) 2 (2 1)( ) 2 (2 1)( ) 2ν α α α ν α α α ν α α αν ν ν

> + +
+ + + + + + + + + + + +

 

  or, it is enough to prove that 

       
1 2 3 1 2 3 1 2 3

1 1 1
2 2 2να α α α να α α α να+ + ≥+ + + + + +  

1 2 3 1 3 2 2 3 1

2 2 2 (1)
(2 1)( ) 2 (2 1)( ) 2 (2 1)( ) 2ν α α α ν α α α ν α α α≥ + ++ + + + + + + + + . 

      We put  

1 2 32x να α α= + + , 1 2 32y α να α= + +  and 1 2 32z α α να= + + , 
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and then we put: 
1 2 3(2 1)( ) 2a x y ν α α α= + = + + +  

2 3 1(2 1)( ) 2b y z ν α α α= + = + + +  

1 3 2(2 1)( ) 2c x z ν α α α= + = + + + . 
      Now we observe that: 

2

2

2

a b x y z x z c

b c x y z x y a

a c x y z y z b

+ = + + > + = 
+ = + + > + = 
+ = + + > + = 

. 

      Therefore the numbers , ,a b c  are measures of the sides of a triangle and we have: 

2 2
21 1 2 (*)
( )

c
b c a c a b cc a b

+ = ≥+ − + − − −
 

 

1 1 2
c a b a b c a

+ ≥+ − + −  
 

1 1 2
a b c b c a b

+ ≥+ − + − . 
 

      Adding the last three inequalities by parts and putting 
2

a b cτ + +=  we obtain: 
 

1 1 1 1 1 1
b c a c a b a b c a b c

+ + ≥ + ++ − + − + −         or 
 

1 1 1 1 1 1
2( ) 2( ) 2( )a b c a b cτ τ τ+ + ≥ + +− − −            or 

 

1 1 1 2 2 2
τ-a τ-b τ-c a b c

+ + ≥ + + .          (2) 
 

     However, we have 

2
a b cτ + +=    and  

1 2 3

2 3 1

1 3 2

(2 1)( ) 2
(2 1)( ) 2
(2 1)( ) 2

a x y
b y z
c x z

ν α α α
ν α α α
ν α α α

= + = + + +
 = + = + + +
 = + = + + +

 

and hence: 

1 2 32( 1) 2( 1) 2( 1)
2

a b cτ ν α ν α ν α+ += = + ⋅ + + ⋅ + + ⋅  

1 2 32aτ α α να− = + +  

1 2 32bτ να α α− = + +  

1 2 32cτ α να α− = + + . 
Substituting the last three equalities to inequality (2) we obtain inequality (1). 
 

Comment 

(*)  In order to prove the inequality
2 2

2 2
( )

c
cc a b

≥
− −

, it is enough to prove that:                     

                                       2 2 22 2 2( )c c a b≥ − −  (which is clear).  
       (Greece) 

 
 A2.                       Medium 
 

 Is there a sequence 1 2, ,...a a  of positive real numbers such that 2

1

n

i
i

a n
=

≤∑  and 

1

1 2008
n

ii a=
≤∑  for any positive integer n ? 
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 Solution. The answer is no. It is enough to show that if 2

1

n

i
i

a n
=

≤∑  for any n , then 

2

2

1
4

n

ii

n
a

=
>∑ . For this, we use that 

1 12 2
2

2 1 2 1

1 2
k k

k k

k
i

ii i

a
a

+ +

= + = +
≥∑ ∑  for any 0k ≥  by the power mean 

inequality. Since 
1 12 2

2 2

2 1 1

2
k k

k

k
i i

i i

a a
+ +

+

= + =
< ≤∑ ∑ , it follows that 

12

2 1

1 1
4

k

k ii
a

+

= +
>∑  and hence  

   
12 1 2

2 0 2 1

1 1
4

n k

k

n

i ii k i

n
a a

+−

= = = +
> >∑ ∑ ∑ .                 

(Bulgaria) 
 

A3.                      Easy→medium 
 

 Let ( )ma  be a sequence satisfaing  
   0na ≥ , 0,1,2,3,...n =  
   0A∃ > , 2

1m m ma a Aa+− ≥ ,  0m ≥ , m∈ℕ .  
Prove that there exists 0B >  such that  

   n
Ba
n

≤ , 1,2,3,...n =  
 

 Solution. If 0ma =
�

 for some m� , then from the condition 2
1n n na a Aa+− ≥ , 0na ≥  we get 

0ma =  for every m m≥ � .  
 So, we can take 1 2max{ , ,..., }mB m a a a= � .  
 Let suppose that 0ma > , 0m∀ ≥ . Then, dividing the given recurent inequality 

2
1m m ma a Aa+− ≥  by 1m ma a +  we get: 

   1

1 1

1 1 0m m m

m m m m m n

a a a
A A

a a a a a
+

+ + +

−− = ≥ ≥ > , n n≥ � .  

Summing up from 0  to 1 0n − ≥ , we get  

   1 1
n

nA
a a

− ≥
�

.  

It follows that  

   
1

1 A
n

Ba
nA n n

≤ = = ,  

where 1B
A

= .                    (Crna Gora) 

 
A4.                        Easy→medium 
 

We consider the set  
   ( ){ }1 2 1 2, ,..., : , ,...,z z z z z zν

ν ν= ∈ℂ ℂ , 2ν ≥ ,  

and the function : ν νϕ →ℂ ℂ  mapping every element ( )1 2, ,...,z z zν ∈ νℂ  to  

( ) ( )1 2 1 2 2 3 1, ,..., , ,...,z z z z z z z z zν νϕ = − − − . 

      We also consider the ν-tuple  ( )0 1 2 1, , ,...,w w w w ν
ν − ∈ℂ of the n-th roots of1− , 

where  
2 2

cos sin , 0,1,2,... 1w iµ
π µπ π µπ µ νν ν

+ +   = + = −   
   

. 
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      Let after κ , *κ ∈ℕ  successive applications of the function ϕ  to the element  

( )0 1 2 1, , ,...,w w w wν − , we obtain the element 

( ) ( ) ( )

( )

0 1 2 1 0 1 2 1

1 2

, , ,..., ... , , ,...,

, ,...,
times

w w w w w w w w

Z Z Z

κ
ν ν

κ

κ κ κν

ϕ ϕ ϕ ϕ− −
−

 
 ≡ =
 
 

=

� � �
�����  

(i)     the values of ν  for which all coordinates of  
  ( ) ( )0 1 2 1, , ,...,w w w wκ

νϕ − have measure less or equal to 1, 

(ii)  for 4ν = , the minimal value of *κ ∈ℕ  for which: 
1002iZκ ≥ , for every 1,2,3,4i = . 

 

Solution. (i) The n-th roots of 1−  can be written as  
2 1

0 1 0 2 0 1 0cos sin , , ,...,w i w w w w w w ν
ν

π π ω ω ων ν
−

−= + = = = , 

where 2 2cos siniπ πω ν ν= +  is such that 1νω = . 

We have 
( )

( ) ( ) ( ) ( )( )
0 1 2 1

2 1
0 0 0 0

, , ,...,

1 , 1 , 1 ,..., 1

w w w w

w w w w

ν
ν

ϕ
ω ω ω ω ω ω ω

−
−

=

= − − − −
 

and using induction we obtain  
( ) ( )

( ) ( ) ( ) ( )( )
0 1 2 1

2 1
0 0 0 0

, , ,...,

1 , 1 , 1 ,..., 1 ,

w w w w

w w w w

κ
ν

κ κ κ κν

ϕ

ω ω ω ω ω ω ω
−

−

=

= − − − −
 

for every *κ ∈ℕ . Therefore we have 

( )1 *
0 1 , 1,2,..., ,i

iZ w iκ
κ ω ω ν κ−= − = ∈ℕ . 

Since 0 1, 1w ω= =  and 11 1,
iiω ω −− = =  for every 1,2,...,i ν= , we have               

( ) ( )1
0

2 21 1 1i
iZ w i

κκκ
κ

π πω ω ω συν ηµν ν
−= − = − = − −  

( ) ( )2 2 222 2 21 2 1iZ

κ κ

κ
π π πσυν ηµ συνν ν ν

   ⇒ = − + = −     
 

( ) ( )22 *4 2 , .iZ
κ κ

κ
π πηµ ηµ κν ν⇒ = = ∈ℕ  

 Hence all the coordinates of ( ) ( )0 1 2 1, , ,...,w w w wκ
νϕ −  have measure( )2

κπηµ ν  and having in 

mind that for every 2ν ≥ , we have 0
2

π π
ν< ≤ ,  we obtain 

( ) 12 1 2 1 6.
2 6iZ

κ
κ

π π π π πηµ ηµ ηµ νν ν ν ν= ≤ ⇔ ≤ ⇔ ≤ ⇔ ≤ ⇔ ≥  

       (ii) We have  

( ) ( )100 100 10022 2 2 2 2 2
4

200.

iZ
κ κκ

κ
πηµ

κ

= ≥ ⇔ ≥ ⇔ ≥

⇔ ≥
 

             Hence the minimal value of κ is 200.             
(Greece)  
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A5.                   Easy→medium 
 

  Consider an ingteger 1n ≥ , 1 2, ,..., na a a  real numbers in [ 1,1]−  satisfying 

1 2 ... 0na a a+ + + =  and a funcion :[ 1,1]f − →ℝ  such that  
     | ( ) ( ) | | |f x f y x y− ≤ −  
for every ,x y  in [ 1,1]− .  
 Prove that  

    1 2( ) ( ) ... ( )
( ) 1nf a f a f a

f x
n

+ + +
− ≤  

for every x  in the interval [ 1,1]− .  
 For a given sequence 1 2, ,..., na a a , find f  and x  so that equality holds.  
 

 Solution. Using the Lipschitz condition we easily get      

 

1 2 1 2

1 2

1 2

1 2

( ) ( ) ... ( ) ( ) ( ( ) ( ) ... ( ))
( )

( ( ) ( )) ( ( ) ( )) ... ( ( ) ( )

| ( ) ( ) | | ( ) ( ) | ... | ( ) ( ) |

| | | | ... | |

n n

n

n

n

f a f a f a nf x f a f a f a
f x

n n

f x f a f x f a f x f a
n

f x f a f x f a f x f a
n

x a x a x a
n

+ + + − + + +
− = =

− + − + + −
= ≤

− + − + + −= ≤

− + − + + −
≤

 

Thus, it is enough to show that  
     1 2( ) | | | | ... | |ng x x a x a x a n= − + − + + − ≤ ,  

on the interval [ 1,1]− . WLOG we may suppose that the numbers are ordered, i.e. 

1 2 ... na a a≤ ≤ ≤ . For 1[ , )k kx a a−∈ , 2,3,...,k n=  we have  

     1 2 1( ) (2 ) ... ...k k ng x k n x a a a a a+= − + + + + − − − ,  

implying that the function g  is decreasing on the interval 1
2

1, na +  
 −
 

 and increasing on 

1
2

,1na +  
 
 

. So, to prove the inequality ( )g x n≤ , it suffices to verify it at 1−  and 1 , where it is 

obvious.  
 It is clear that the equality in the last part of the proof is attaned only when 1x = ± . In this 
case we also need the equalities | (1) ( ) | 1f f x x− = −  for all [ 1,1]x ∈ − (and the similar in 1− ). This 
implies ( ) 1 (1)f x x f= − + +  or ( ) 1 (1)f x x f= − + . In both situations are possible, say 

1 1( ) 1 (1)f x x f= − + +  and 2 2( ) 1 (1)f x x f= − +  we get 1 2 1 2| ( ) ( ) | | 2 |,f x f x x x− = − + in contradiction 

with the given condition. Thus, the equality is possible if and only if ( )f x x k= +  for all x  or 
( )f x x k= − +  for all x  and the value of x  in the problem is 1± .         

(Romania) 
 
 A6.                        Easy 
 

 Prove that if x, y, z are positive real numbers such that xy, yz and zx are 
lengths of the side of the triangle and ] [1,1k ∈ −   

then the inequality 

2 1
xy yz zx k

xz yz kxy xy xz kyz xy yz kzx
+ + ≥ −

+ + + + + +
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is true. In which conditions the equality is hold. 
 

 Solution. We have (1 ) ( )
2

xy yz zx
k xy xz yz kxy

+ +− + + ≤  and it follows that                   

   2 1
xy xy

k
xy yz zxxz yz kxy

≥ − + ++ +
. 

Now  the result is clear. The conditions of equality are  

1 2
y y x xz zk

x y x z y z
− = + = + = +   

and it follows that3 6 ( ) ( ) ( ) 6
y yx xz zk

x z y z x y
− = + + + + + ≥  and equality holds for x y z= =  and 

1
2

k = − .                      

(Albania) 
 
 A7.                       Easy 
 

  Let , , ,x y z t  be non-negative reals. Show that  

   33xy xz xt yz yt zt xyz xyt xzt yzt+ + + + + ≥ + + + .  

Find all cases when equality holds. 
  

 Solution. By the AGM inequality, we have   

   3( ) ( ) ( ) 3 ( )( )( )xy zt xz yt xt yz xy zt xz yt xt yz+ + + + + ≥ + + + .  

Remark that  

   

( )( )( )

( )

xy zt xz yt xt yz

xyz xyt xzt yzt xyzt x y z t
xyz xyt xzt yzt

+ + + =
= + + + + + + + ≥
≥ + + +

,  

thus  
   33xy xz xt yz yt zt xyz xyt xzt yzt+ + + + + ≥ + + + .  

By the above, equality implies 0xyzt = , so one of the numbers is zero. Then, the other numbers 
must be equal.                         

 (Romania) 
 
 
 
 Combinatorics 
 
 C1.                       Hard 
 

 All 3n +  offices of University of Somewhere are numbered with numbers 
0,1,2,..., 1, 2n n+ + , for some n∈ℕ . One day, Profesor D  came up with a 
polynomial with real coefficients and power n . Then, on the door of every 
office he wrote the value of that polynomial evaluated in the number assigned 
to that office. On the i-th office, for {0,1,2,..., 1}i n∈ + , he wrote 2i , and on the 
( 2)n + nd office he wrote 22 3n n+ − − .  
 a) Prove that Professor D  made a calculation error.  
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 b) Assuming that Professor D  made a calculation error, what is the smallest 
number of errors he made? Prove that in this case the errors are uniquely 
determined, find them and correct them! 
 

 Solution. (a) Assume for a contradiction that Professor D  did not make any errors. Denote 
by P  the polynomial that he came up with.  
 We define  

  ( ) ...
0 1
x x xQ x

n
     = + + +     
     

,  

where ( 1) ( 2) ... ( 1)
!

x x x x kx
k k

⋅ − ⋅ − ⋅ ⋅ − +  = 
 

, for every x ∈ℝ  and k ∈ℕ , and 1
0
x  = 
 

, for every 

x ∈ℝ . Hence, for every 0 i n≤ ≤  we have  

  ( ) ... ... (1 1) 2
0 1 0 1

i ii i i i i iQ i
n i

           = + + + = + + + = + =           
           

.  

Both polynomials P  and Q  are of power n , and they have the same values in 1n +  points, 
meaning that Q P≡ . However, that means that  

  
1

1 1

1 1 12 ( 1) ( 1) ...
0 1

1(1 1) 2 1
1

n

n n

n n nP n Q n
n

n
n

+

+ +

+ + +     = + = + = + + + =     
     

+ = + − = − + 

,  

which is obviously not true, a contradiction.  
 

 (b) We will prove that the minimal number of errors Professor D  made is one. Since  

  
1 2

2 2 2( 2) ...
0 1

2 2(1 1) 2 3
1 2

n n

n n nQ n
n

n n n
n n

+ +

+ + +     + = + + + =     
     

+ +   = + − − = − −   + +   

,  

if Professor D  made exactly one error, he must have came up with the polynomial Q . Then, 

the only error would be the value of the polynomial evaluated in ( 1)n + -instead of 12n+ , it 

should be 12 1n+ − .  
 Let us prove that this is the only possibility for making one error. Assume for a 
contradiction that there is another way of making one error. Part (a) implies that the error has 
not been made in evaluation of the polynomial in 2n + . By j , 0 j n≤ ≤ , we denote the point in 
which the polynomial has been evaluated wrongly.  
 Let ( ) 2 jP j g= + , instead of initially evaluated ( ) 2 jP j = , for some g ∈ℝ . Then, Lagrange’s 
Interpolation Formula implies  

  
0

( 0)( 1) ... ( ( 1))( ( 1)) ... ( )
( ) ( )

( 0)( 1) ... ( ( 1))( ( 1)) ... ( )

n

k

x x x k x k x n
P x P k

k k k k k k k n
=

− − ⋅ ⋅ − − − + ⋅ ⋅ −= − − ⋅ ⋅ − − − + ⋅ ⋅ −∑ .  

It follows that  

  

1

0

( 1 0)( 1 1) ... ( 1 ( 1))( 1 ( 1)) ... ( 1 )
2 ( 1) 2

( 0)( 1) ... ( ( 1))( ( 1)) ... ( )

( 1 0)( 1 1) ... ( 1 ( 1))( 1 ( 1)) ... ( 1 )
( 0)( 1) ... ( ( 1))( (

n
n k

k

n n n k n k n n
P n

k k k k k k k n

n n n j n j n n
g

j j j j j j

+

=

+ − + − ⋅ ⋅ + − − + − + ⋅ ⋅ + −= + = +− − ⋅ ⋅ − − − + ⋅ ⋅ −
+ − + − ⋅ ⋅ + − − + − + ⋅ ⋅ + −+ − − ⋅ ⋅ − − −

∑

1

0

1)) ... ( )

1 1 1( 1) 2 ( 1) ( 1) 1 2 ,
n

n j k n k n j n

k

j n

n n ng g
j k j

− − − +

=

+ ⋅ ⋅ −
+ + +     = − + − = − − +     

     
∑

 

i.e.,  

  1 ( 1) 1n jng
j

−+  − = 
 

.                 (1) 
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 Similarly, when we use 1( 1) 2nP n ++ =  for the polynomial evaluation using Lagrange’s 
Interpolation Formula, we get 

  2 1 222 3 ( 1) 1 2n n j nnn g
j

+ + − ++ − − = − − + 
 

,  

and  

  2 ( 1) 2n jng n
j

−+  − = + 
 

.                (2) 

Dividing (2) by (1) we obtain  

  2 1( 2)n nn
j j
+ +   = +   

   
, 

and  

  2 2 ( 2)n n n j
j j
+ +   = − +   

   
,  

i.e., 1j n= + . This, is however in contradiction with the assumption that j n≤ . 
   (Srbija) 

 
 C2.                        Hard 
 

 In one of the countries there are 5n ≥  cities operated by two airline 
companies. Every two cities are operated in both directions by at most one of 
the companies. The government introduced a restriction that all round trips that 
a company can offer should have at least six cities. Prove that there no more 
than 2

3
n    flights offered by these companies.  

 

 Solution. Consider the graph G  with n  vertices representing cities with edges colored in 
two colors(blue and red), representing connections between them operated by two companies. 
The condition of the problem is equivalent that there does not exist circuit subgraphs 3 4 5, ,C C C . 

Assume to the contrary that are at least 2

3
1n  +

 
 edges in the graph G . Using the Turan’s 

Theorem we conclude there exist a complete subgraph 4 1 2 3 4{ , , , }K A A A A=  of the graph G  with 

all its edges colored in two colors (blue and red). As there no circuit subgraphs 3 4 5, ,C C C  in G , 

the only possible coloring is the following: the edges 1 2 2 3 3 4, ,A A A A A A  are colored blue and 

1 3 1 4 2 4, ,A A A A A A  are colored red.  
 First of all we prove that we get contradiction for 5,6,7,8n = . Extract from the graph G  
four vertices 1 2 3 4, , ,A A A A  of the subgraph 4K  and observe that each of the remaining 4n −  
vertices has at most 2  connections with these 4  vertices. If there will be three connections that 
two of them will be of the same color and they together with vertices of 4K  will form the 

subgraphs 2 3,C C  or 5C . There are at most ( 4)( 5)
2

n n− −  edges between 4n −  remaining vertices. 

Thus there are totally at most ( 4)( 5)
6 2( 4)

2
n n

n
− −+ − +   edges in the graph G . But  

  
2( 4)( 5)

6 2( 4)
2 3

n n nn
− −+ − + ≤   for 5 8n≤ ≤ ,  

because  
  212 12 3( 4)( 5) 2n n n n− + − − ≤   or  2 15 48 0n n− + ≤ .  
So, the statement of the problem is true for 5,6,7,8n = .  
 Now we prove it using mathematical induction, using the above result as a base case. We 
apply the same idea. We assume the contrary and find the subgraph 4K  whose existence is 
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 ensured by Thuran’s Theorem. By the induction hypothesis there will be no more than 
2( 4)

3
n−  

edges between the remaining 4n −  vertices. Thus in the graph G  there will be at most 
2( 4)

2
6 2( 4) nn −+ − +  edges. But  

  
2 2( 4)

6 2( 4)
3 3

n nn
−+ − + ≤ ,  

because  
  2 26 12 ( 4)n n n− + − ≤  or 4 2n≤ ,  
a contradiction and we are done. The problem is solved.           

(Moldova) 
 
 C3.                    Eesy-medium 
 

 Let n  be positive integer. The rectangle ABCD  with sides 90 1AB n= +  and 
90 5BC n= +  is divided into unit squares by lines which are parallel to its sides. 

Prove that the number of the different lines which pass through at least two 
vertices of the unit squares is divisible to 4 . 
  

 Solution. Denote 90 1n m+ = . We investigate the number of the lines modulo 4  consecuti-
vely reducing different types of lines.  
 The vertical and horizontal lines are ( 5) ( 1) 2( 3)m m m+ + + = +  which is divisible to 4 . 
Moreover, every line which makes an acute angle to the axe Ox  (i.e. that line has a positive 
angular coefficient) corresponds to unique line with an obtuse angle (consider the symmetry 
with respect to the line through the midpoints of AB  and CD ). Therefore it is enough to prove 
that the lines with acute angles are an even number.  
 Every line which does not pass through the center O  of the rectangle corresponds to another 
line with the same angular coefficient (consider the symmetry with respect to O ). Therefore it 
is enough to consider the lines through O .  

 Every line through O  has an angular coefficient p
q

, where ( , ) 1p q = , p  and q  are odd 

positive integers. (To see this, consider the two nearest, from the two sides, to O  points of the 

line). If 1p ≠ , 1q ≠ , p m≤  and q m≤ , the line with angular coefficient p
q

, uniquely 

corresponds to the line with angular coefficient p
q

. It remains to prove that the number of the 

remaining lines is even.  
 The last number is  

    ( 2) ( 4) ( 2) ( 4)
1 1

2 2 2
m m m mϕ ϕ ϕ ϕ+ + + + ++ + − =   

because we have: 
  1)  one line with 1p q= = ;  

   2) ( 2)
2

mϕ +  lines with angular coefficient 
2

p
m + , p m≤  is odd and ( , 2) 1p m + = ;  

   3) ( 4)
1

2
mϕ + −  lines with angular coefficient 

4
p

m + , p m≤  is odd and ( , 4) 1p m + = .  

 Now the assertion follows from the fact that the number 
   ( 2) ( 4) (90 3) (90 5)m m n nϕ ϕ ϕ ϕ+ + + = + + +   
is divisible to 4 .  

        (Bulgaria) 
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 C4.                        Easy 
 

 An array n n×   is given, consisting of 2n  unit squares. A pawn is placed 
arbitrarily on an unit square. A move of the pawn means a jump from a square 
of the k -th column to any square of the k -th row. Show that the exists a 
sequence of 2n  moves of the pawn so that all the unit squares of the array are 
visited once and, in the end, the pawn returns to the original position. 
  

 Solution. Label the unit squares ( , )i j . A move will be denoted ( , ) ( , )i k k t→ .  

 We use induction on n ; the base case is trivial.  
 Consider now a ( 1) ( 1)n n+ × +  array and assume that the pawn starts in the n n×  array  A  
situated in the upper left corner and that a circuit exists inside A . Let ( , )ii a  be the next square 

visited after ( , )i i  in this circuit. Now replace the move ( , ) ( , )nn n n a→  with the moves 

  ( , ) ( , 1) ( 1, 1) ( 1, ) ( , )nn n n n n n n n n a→ + → + + → + → ,  

and replace ( , ) ( , )ii i i a→ , 1,2,..., 1i n= −  by the sequence  

  ( , ) ( , 1) ( 1, ) ( , )ii i i n n i i a→ + → + → .  

 With the rest of the moves unaltered, notice that all the 2 23 2( 1) 2 1 ( 1)n n n n+ − = + = + −  new 
squares of the ( 1) ( 1)n n+ × +  array are visited, so we are done.  
 If the pawn starts from an unit square S  situated the ( 1)n + -th row or column, take any 
circuit which covers the ( 1) ( 1)n n+ × +  array and starts in a square P  of A , then rearrange the 
sequence of moves ... ...P S P→ → → →  in the form ... ...S P S→ → → → , to get a circuit at S . 
  

                             (Romania) 

  
 
 
 Geometry 
 
 G1.                       Medium 
 

 In acute angled triangle ABC  we denote  by , ,a b c  the side lengths, by 
, ,a b cm m m  the median lengths and by , ,bc ca abr r r  the radii of the circles tangents 

to two sides and to circumscribed circle of the triangle, respectively. Prove that  

  
2 2 2

327 3
8

a b c

bc ac ab

m m m
abc

r r r
+ + ≥ .  

 

 Solution. Let the circle with center 1O  is tangent to the sides AC  and AB  at the points 1B  

and 1C  respectively and the point P  is the common point of this circle and circumscribed circle 

of the triangle ABC . If O  is the circumcenter, then the points 1, ,P O I  are collinear and  

  OA R= , 1 bcOI R r= − , 1
2

sin
bc

A

r
AI = , 1cos( ) cos

2
B COAI −∠ = .  

By applying the cosinus law in the triangle 1OAI  we obtain  

  24 sin sin sin cos
2 2 2 2bc

CA B AR r r= = ,  

where r  is the radius of the incircle of the triangle ABC . So, we have  
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2

2
cos

bc A
rr = ,

2
2

cos
ca B

rr = , 
2

2
cos

ab C
rr = .  

Let 2p a b c= + + , and R  is the radius of the circumcircle of the triangle ABC . Then  

  4abc pRr= , 3 3p r≥ , 
2

2 3
1

16bc ca ab

p
r r r R r

= .  

 Suppose WLOG that in the acute angled triangle ABC  we have a b c≥ ≥ . Then  

  2 2 2
a cbm m m≤ ≤ ,  2 2 2cos cos cos

2 2 2
CA B≤ ≤ ,  1 1 1

bc ca abr r r
≤ ≤ .  

 Thus, the triples 2 2 2( , , )a cbm m m  and 1 1 1, ,
bc ca abr r r

 
 
 

 have the same ordering. By applying 

Chebyshev inequality we obtain 
 

22 2
2 2 2 2 2 2

2
2 2 233

2 3

2
2 3

2

31 1 1 1 1 1 1 1( ) ( )
3 3 4

1 1 1 1 1 1 1( ) ( ) ( )
12 4 4 16

1 1 1( ) (
4 16 4( )

a b c
a cb

bc ac ab bc ca ab bc ca ab

bc ca ab bc ca ab

mm m
m m m a b c

r r r r r r r r r

p
a b c a b c a b c

r r r r r r R r

p
a b c a b

r Rr

   + + ≥ + + + + = ⋅ ⋅ + + + + ≥   
   

 ≥ + + + + ≥ + + = + + = 
 

= + + ⋅ = +
4 4

2 23 3
2 2

3 32 3 33
2 3 32 2

3 31 1) ( )
4( ) ( )

3 3 3 27 31 1 1( ) ( ) (3 )
4 8 8 8( ) ( ) ( )

p p
c a b c

r pabc abc

p a b c a b c abc abc
abc abc abc

+ ⋅ ≥ + + ⋅ =

= ⋅ ⋅ + + ⋅ = + + ≥ =

 

The equality holds for the equilateral triangle ABC . The problem is solved.     
(Moldova) 

 
G2.                    Easy-medium 
 

 A non-iscosceles acute triangle ABC is given with AC BC>  and Η the point 
of intersection of the heights ΑΖ and CΜ.  We call point P on ΑΒ such that 
ΑΜ=ΡΜ  and Ν the midpoint of  ΑC. If  O  the circumcentre of the triangle ABC 
and  K PH BC≡ ∩ , X ON MK≡ ∩ , T OM AC≡ ∩ , prove that the points Μ, Ν, Τ, 
Χ are lie on the same circumference.              

 

Solution. It is enough to show that OM MK⊥  . 
Let  OE AB⊥ , then it is trivial that :  

  2CH OE= .                  (1) 
Since from the hypothesis we have PM AM=  then we take PB PM BM= −  or  

  PM AM BM= −                  (2) 
Also,   KPB HAP∠ = ∠  and HAP HCK∠ = ∠   since ΑΜΖC in inscribable, so KPB HCK∠ = ∠  and 
since BKP HKC∠ = ∠ , the triangles ΚΗC and ΚΒΡ are similar. 

If  KL and KD  are respectively the heights of the triangles  ΚΗC and ΚΒΡ we have: 
KD PB
KL CH

= , and from (1) and  (2) we get: 

2
KD AM BM ME KD ME
KL OE OE MD OE

−= = ⇒ =  

Therefore the triangles ΚΜD, OEM are similar and we get: 
90OMK OMC LMK MOE MKD KMD MKD∠ = ∠ + ∠ = ∠ + ∠ = ∠ + ∠ = � ,  

so OM MK⊥ . 
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(Cyprus) 
 

G3.                       Easy 
 

We draw two lines ( )1ℓ , ( )2ℓ  through the orthocenter H of the triangle ABC  

such that each one is dividing the triangle into two figures of equal area and 
equal perimeters. Find the angles of the triangle. 

 

Solution. Lemma: If a line divides a triangle into two equal area figures with equal 
perimeters then this line passes through the incentre I of the triangle. 
  

 Proof of Lemma. Let in triangle ABC  the line ( )ℓ  intersects the sides ,AB AC  at the points 

D, E respectively. Then  ( ) ( )area ADE area BDEC=  and  

  AD DE EA BD DE EC CB AD EA BD EC CB+ + = + + + ⇒ + = + +       (1) 
We observe that if r the radius of the inscribed circle of the triangle ABC , then 

  ( ) ( )1
2

area ADIE AD EA r= +                 (2)  

and  

  ( ) ( )1
2

area DBCEI DB BC CE r= + + .              (3) 

From ( ) ( ) ( )1 , 2 , 3  we obtain,  

  ( ) ( ) ( ) ( ) ( ) ( ),area ADIE area DBCEI area ADE area DIE area DBCE area DIE= ⇒ + = −  

through which ( ) 0area DIE = , so the line ( )ℓ  passes through the incentre Ι of the triangle. 

B

C

A

Η

Μ

Ζ

Ρ

Ν

Κ

Ο

Χ

Τ

D

L

Ε
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 According to the lemma and through the data of the problem, the lines ( )1ℓ , ( )2ℓ  pass 

through the incentre Ι and the orthocenter of the Η of the triangle ABC . 
 Therefore the triangle is equilateral.              

(Cyprus) 
 
  G4.                      Medium 
 

 A triangle ABC  is given with barycentre  G  and circumcentre O . The 
perpendicular bisectors of GA , GB  meet at 1,C of ,GB GC  meet at 1A  and ,GC  
GA  meet at 1B . Prove that O  is the barycenter of the triangle1 1 1A B C . 

 

      Solution. Let , ,D E F  be the midpoints of the sides , ,BC AC AB  of the triangleABC , 

respectively. Let, also1 1B C , 1 1A C  and 1 1A B  the perpendicular bisectors of the line segmentsGA , 

GB  andGC . 

Then the points 1 1,A B  and 1C  are the circumcenters of the trianglesGBC , GAC  and GAB , 

respectively. (They are the points of intersection of the perpendicular bisectors of their sides). 
      Therefore1A D , 1B E  and 1C F   are the perpendicular bisectors of the sidesBC , AC  andAB , 

respectively, and hence they are passing through the circumcenter  O  of the triangleABC . 

      We shall prove that1A D , 1B E  and 1C F  are the medians of the triangle1 1 1A B C . 

       Let the extension of 1A D  intersects  1 1B C  at the pointN . We shall prove that N  is the 

midpoint of the segment1 1B C .       
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From the cyclic quadrilateral 1AMEB  ( 90M E= = �∡ ∡ ), we get.  

1MAE MB E ω= =∡ ∡ ∡                      (1) 

      From the cyclic quadrilateral DOEC  ( 90D E= = �∡ ∡ ), we get 
ECD EON ϕ= =∡ ∡ ∡ .                       (2) 

      From (1) and (2) we conclude that the triangles ADC and 1B NO  are similar and therefore                                                                   

    1 .
NB AD
NO CD

=                            (3) 

      From the cyclic quadrilateral 1AMFC  ( 90M F= = �∡ ∡ ), we get 

1MAF MC F x= =∡ ∡ ∡ .                   (4) 

      From the cyclic quadrilateral DOFB  ( 90D F= = �∡ ∡ ), we get  
FBD FON y= =∡ ∡ ∡ .                      (5) 

      From (4) and (5) we conclude that the triangles ADB and 1C NO  are similar, and so:                                                       

   1 .
NC AD
NO BD

=                         (6) 

      From the relations (3) and (6) we find:   
1 1NB NC= . 

      Similarly, we prove that1B E , 1C F  are medians of the triangle1 1 1A B C .  
(Greece) 

 

 G5.                       Medium 
 

 The circle ak  touches the extensions of sides AB  and BC , as well as the 
circumscribed circle of the triangle ABC (from the outside). We denote the 
intersection of ak  with the circumscribed circle of the triangle ABC  by 'A . 
Analogously, we define points 'B  and 'C . Prove that the lines ', 'AA BB  and 

'CC  intersect in one point. 
  

 Solution. Let R  and r  be the radii of the circumscribed and inscribed circle of ABC∆ , 
respectively, let , ,a b cr r r  be the radii of the escribed circles of ABC∆ touching , ,BC CA AB  , 
respectively, and let , ,a b cρ ρ ρ  be the radii of circles , ,a b ck k k , respectively.  
 Let 1'BAA α=∡ , 2'CAA α=∡  and letO  be the center of the circumscribed circle of ABC∆ . 
Let aO  be the center of the circle ak  and let ak  touch the extensions of AB  and AC  in D  and 

E , respectively. We have 
2

2
cos

a
a

r
αρ = . The points aO , 'A  and O  are colinear. We have 

1' 2aBOO BOA α= =∡ ∡ , as they are the inscribed angle and the central angle of the same arc. As 
BO R=  and a aOO R ρ= + , applying law of cosines on aBOO∆  we get  

  
2 2 2 2 2 2

1 1
2 2

1

( ) 2 ( )cos2 2 2 2 ( )(1 2sin )

4 ( )sin
a a a a a a

a a

BO R R R R R R R R

R R

ρ ρ α ρ ρ ρ α
ρ ρ α

= + + − + = + + − + − =
= + +

. 

Looking at aADO∆ , we obtain ctg
2aAD αρ= , so  

  
2 2

2 2

1
cos cos

a
a

r rs
s aα αρ = = − .  

This implies  

  
2

2 2 2

21 1ctg
2 sin( )cos sin cos

4R .
( ) ( )

rs rs rsAD
s a s as a

rs abc bc
s a a s a a s a

α α α
α

α= = = =− −−

= = =− − −
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Hence, ( )c s cbcBD AD AB c
s a s a

−= − = − =− − .  

Applying Pythagorean theorem on aBDO∆  we obtain  

  
2 2

2 2 2 2
2

( )
( )a a

c s c
BO BD DO

s a
ρ −= + = +

−
.  

Thus,  

  
2 2

2
1 2

( )
sin

( ) 4 ( )a

c s c
s a R R

α
ρ

−=
− +

.  

Analogously, we get  

  
2 2

2
2 2

( )
sin

( ) 4 ( )a

b s b
s a R R

α
ρ

−=
− +

,  

so  1

2

sin ( )
sin ( )

c s c
b s b

α
α

−= − .  

Similarly, we get 1

2

sin ( )
sin ( )

a s a
c s c

β
β

−= −  and 1

2

sin ( )
sin ( )

b s b
a s a

γ
γ

−= − . Multiplying those three equalities, we 

obtain  

  1 1 1

2 2 2

sin sin sin ( ) ( ) ( )
1

sin sin sin ( ) ( ) ( )
c s c a s a b s b
b s b c s c a s a

α β γ
α β γ

− − −= =− − − ,  

and the statement of the problem follows from Ceva’s Theorem.  
 

                        (Srbija) 
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 G6.                         Medium 
 

 On triangle ABC the AM ( )M BC∈  is mediane and 1BB  and 1CC  
( 1 1, )B AC C AB∈ ∈ are altitudes. The stright line d is perpendicular to AM at the 
point A and intersect the lines 1BB  and 1CC  at the points E and F respectively. 

Let denoted with ω  the circle passing through the points E, M and F and with  

1ω  and with 2ω the circles that are  tangent to segment EF and with ω at the arc 
EF which is not contain the point M. If the points P and Q are intersections 
points for 1ω  and 2ω  then prove that the points P, Q and M are collinear. 
 

 Solution. Let K be the midpoint of  1BB  and L the midpoint of 1CC . It is clear that 

quadrilateral EAKM  is cyclic and that AME AKE∠ = ∠ . In a similar way we can show that 
AMF ALF∠ = ∠ . Since the triangles 1ABB  and 1ACC   are similar, it follows that AKE ALF∠ = ∠  

and that A is the midpoint of EF. Now it is clear that the center O of ω lies in the line AM and 
that M is the midpoint of arc EF. From the generalized Ptolemy theorem in quadrilateral 
MF 1ω E, if we denote with S the tangent point of  1ω  with EF  and  with T  the point of 

tangence from M to 1ω , we have MF ES MF FS MT EF⋅ + ⋅ = ⋅  and consequentely that MT = 

MF. Now it is clear that if we denote with 1O  and 2O  centers of 1ω  and 2ω , respectively we 

have  
 2 2 2 2

1 21 2MO O P MO O P− = −   

and the result is clear.                        (Albania) 
 
 G7.                         Medium 
 

 In the non-isosceles triangle ABC  consider the points X  on [ ]AB  and Y  on 
[ ]AC  such that [ ] [ ]BX CY= . M  and N  are the midpoints of the segments 
[ ]BC , respectively [ ]XY , and the straight lines XY  and BC  meet in K . Prove 
that the circumcircle of triangle KMN  contains a point, different from M , 
which is independent of the position of the points X  and Y .  
 

 Solution. Let L  be the midpoint of the arc �BAC  belonging to the circumcircle of ABC . We 
shall prove that L  is the fixed point we are looking for.  
 As [ ] [ ]BL CL= , [ ] [ ]BX CY= , and ABL ACL=∡ ∡  we have LBX LCY∆ = ∆ . As a consequence, 

AXL AYL=∡ ∡  and [ ] [ ]XL YL= . Thus L  is the midpoint of the arc �XAY  of the circumscribed 

circle of XAY . This implies 90LNK LMK= = �∡ ∡ , which means that the point L  belongs to the 
circumcircle of triangle KMN . 

                     (Romania) 
 
 G8.                       Easy 
 

 Let P  be a point in the interior of a triangle ABC  and let , ,a b cd d d  be its 
distances to , ,BC CA AB  respectively. Prove that  

   2 2 2max( , , ) a b cAP BP CP d d d≥ + + .  
 

 Solution. Let a AP= , b BP= , c CP=  and denote  



25-th Balkan Mathematical Olimpiad                                             Ohrid-Republika Makedonija 

33 

   1 ( )x m PAB= ∡ , 2 ( )x m PAC= ∡ , 1 ( )y m PBC= ∡ , 

   2 ( )y m PBA= ∡ , 1 ( )z m PCA= ∡ , 2 ( )z m PCB= ∡ .  

Because 1 1 1 2 2 2( ) ( )x y z x y z π+ + + + + = , then WLOG assume that 1 1 1 2
x y z π+ + ≤ .  

 Suppose that max( , , )AP BP CP a= , and 2 2 2 2
a cba d d d< + + . Then  

   
2 2

2
1 2 2 2 2

sin c c

a cb

d d
x

a d d d
= >

+ +
,  

   
2 2 2

2
1 2 2 2 2 2

sin a a a

a cb

d d d
y

b a d d d
= ≥ >

+ +
,  

  
2 2 2

2
1 2 2 2 2 2

sin b b b

a cb

d d d
z

c a d d d
= ≥ >

+ +
.  

By ssuming these relations we obtain 2 2 2
1 1 1sin sin sin 1x y z+ + > . But this is false, because the 

following result holds: if 0
2

x π< < , 0
2

y π< < , 
2

x y π+ < , then 2 2 2sin sin sin ( )x y x y+ ≤ + , 

which is true because the triangle with angles , ,x y x yπ − −  is obtuse-angled or right-angled. 
Therefore  
  2 2 2 2 2 2

1 1 1 1 1 1 1 1 1sin sin sin sin ( ) sin sin ( ) 1x y z x y z x y z+ + ≤ + + ≤ + + ≤ ,  

a contradiction. So, 2 2 2 2
a cba d d d≥ + + . The problem is solved.         

(Moldova) 
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25th Balkan Mathematical Olympiad 
Ohrid, 6th May, 2008 

 
 
 Problems   
 

 1. An acute-angled scalene triangle ABC is given, with AC BC> . Let O be its 
circumcentre, Η its orthocentre, and F the foot of the altitude from C.  Let P be 
the point (other than A) on the line ΑΒ such that ΑF=ΡF, and M be the midpoint 
of ΑC. We denote the intersection of PH and BC by X, the intersection of OM 
and FX by Y, and the intersection of OF and AC by Z. Prove that the points F, M, 
Y and Z are concyclic.  
 
 2. Does there exist a sequence 1 2, ,..., ,...na a a  of positive real numbers 
satisfying both of the following conditions: 

   (i) 2

1

n

i
i

a n
=

≤∑ , for every positive integer n; 

   (ii) 
1

1 2008
n

ii a=
≤∑ , for every positive integer n ? 

 
 3. Let n  be a positive integer. The rectangle ABCD  with side lengths 

90 1AB n= +  and 90 5BC n= +  is partitioned into unit squares with sides parallel 
to the sides of ABCD. Let S be the set of all points which are vertices of these 
unit squares. Prove that the number of lines which pass through at least two 
points from S is divisible by 4 .  
 
 4. Let c be a positive integer. The sequence 1 2, ,..., ,...na a a  is defined by 

1a c= , and 2 3
1n n na a a c+ = + + , for every positive integer n . Find all values of c  

for which there exist some integers 1k ≥  and 2m ≥ , such that 2 3
ka c+  is the thm  

power of some positive integer.  
 
 
 
 
 
 
 
 

Time allowed: 4.5 hours. 
Each problem is worth 10 points. 
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 National teams participating in BMO 2008 
 
 
  

country part. name 

ALBANIA 

leader Edmond Pisha 
deputy leader Fatos Kopliku 
contestant Redi Haderi 
contestant Beniada Shabani 
contestant Andi Reçi 
contestant Manushaqe Muço 
contestant Elona Hasa 
contestant Erion Dervishi 

 
country part. name 

BOSNIA & HERZEGOVINA  

leader Vidan Govedarica 
deputy leader Amer Krivošija 
contestant Admir Beširević  
contestant Vedran Karahodžić 
contestant Salem Malikić 
contestant Jelena Radović 
contestant Franjo Šarčević 
contestant Vlado Uljarević 

 
country part. name 

BULGARIA  

leader Nikolai Nikolov 
deputy leader Peter Boyvalenkov 
observer Oleg Mushkarov 
contestant Nikolay Beluhov 
contestant Lyuboslav Panchev 
contestant Svetozar Stankov 
contestant Aleksander Daskalov 
contestant Evgeni Dimitrov 
contestant Galin Statev 

 
country part. Name 

CYPRUS 

leader Andreas Philippou 
deputy leader Theoklitos Paragyiou 
contestant Anastos Michael 
contestant Anastassiades Christos 
contestant Assiotis Theodoros 
contestant Demetriou Charis 
contestant Makris Christos 
contestant Katsamba Panagiota 
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country part. Name 

GREECE 

leader Anargyros Felouris 
deputy leader Evangelos Zotos 
contestant Silouanos Brazitikos 
contestant Ilias Giechaskiel 
contestant Alkistis Mavroeidi 
contestant Dimitrios Papadimitriou 
contestant Nikolaos Rapanos 
contestant Anastasios Vafeidis 

 
country part. name 

MACEDONIA 1 

leader Petar Sokoloski 
deputy leader Ljupco Nastovski 
contestant Bodan Arsovski 
contestant Bojan Joveski 
contestant Dimitar Trenevski 
contestant Stefan Lozanovski 
contestant Matej Dobrevski 
contestant Kujtim Rahmani 

MACEDONIA 2 

contestant Predrag Gruevski 
contestant Zlatko Joveski 
contestant Filip Talimdzioski 
contestant Petar Filev 
contestant Andrej Risteski 
contestant Darko Domazetoski 

 
country part. name 

MOLDOVA 

leader Teleucă Marcel 
deputy leader Bairac Radu 
contestant Frimu Andrei 
contestant Gramaţki Iulian 
contestant Grecu Mircea 
contestant Iliaşenco Andrei 
contestant Sanduleanu Ştefan 
contestant Zubarev Alexei 

 
country part. name 

MONTENEGRO 

leader Romeo Meštrović 
deputy leader Velibor Bojković 
contestant Marica Knežević 
contestant Nikola Milinković 
contestant Radovan Krtolica 
contestant Bećo Merulić 
contestant Tanja Ivošević 
contestant Rastko Pajković 
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country part. name 

ROMANIA 

leader Mihai Bălună 
deputy leader Mariean Andronache  
observer Dan Schwarz  
observer Cristian Alexandrescu  
contestant Mihail Eugen Dumitrescu 
contestant Daniel  Tiberiu Rimovecz 
contestant Victor Pădureanu 
contestant Mădălina Elena Persu  
contestant Edgar Dobriban  
contestant Eugenia Cristina Roşu 

 

country part. name 

SERBIA 

leader Miloš Stojaković 
deputy leader Miloš Milosavljević 
contestant Dušan Milijančević 
contestant Luka Milićević 
contestant Aleksandar Vasiljković 
contestant Teodor fon Burg 
contestant Vladimir Nikolić 
contestant Marija Jelić 

 

country part. name 

TURKEY 

leader Ali Doğanaksoy 
deputy leader Fatih Sulak 
contestant Ömer Faruk Tekin 
contestant Melih Üçer 
contestant Alper İnecik 
contestant Fehmi Emre Kadan 
contestant Umut Varolgüneş 
contestant Semih Yavuz 

 

country part. name 

AZERBAIJAN 

leader Fuad Garayev 
contestant Sarkhan Badirli 
contestant Ruslan Muslumov 
contestant Farid Mammadov 
contestant Eldar Babayev 

 

country part. name 

FRANCE 

leader Claude Deschamps 
contestant Martin Clochard 
contestant Juliette Fournier  
contestant Ambroise Marigot 
contestant Jean-François Martin 
contestant Sergio Véga  
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country part. name 

ITALY 

leader Massimo Gobbino 
deputy leader Francesco Morandin 
observer Ludovico Pernazza 
contestant Andrea Fogari 
contestant Mattia Francesko Galeotti 
contestant Kirill Kuzmin 
contestant Giovanni Paolini 
contestant Leonardo Patimo 
contestant Pietro Vertechi 

 
country part. name 

KAZAKHSTAN 

leader Assan Zholdassov 
deputy leader Iskakova Aliya  
contestant Yegor Klochkov 
contestant Asset Daliyev 
contestant Tussupbekov Yerken 
contestant Nursultan Khajimuratov 
contestant Sanzhar Orazbayev 
contestant Yeskendir Kassenov 

 
country part. name 

TAJIKISTAN 
leader Erdal Eravcı 
contestant Igor Korobeynikov 
contestant Inomzhon Mirzaev 

 
country part. name 

TURKMENISTAN 

leader Erol Aslan 
contestant Nazar Emirov 
contestant Azat Meredov 
contestant Merdan Artykov 

 
country part. name 

UNITED KINGDOM & IRELAND 

leader Adrian Sanders 
deputy leader Jacqui Lewis 
contestant Galin Ganchev 
contestant Andrew Hyer 
contestant Peter Leach 
contestant Craig Newbold 
contestant Hannah Roberts 
contestant Rong Zhou 
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Complete results of BMO 2008 

    

contestant 

pr
ob

le
m

 1
 

pr
ob

le
m
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total medal 
1 ROM6 Eugenia Cristina Roşu 10 10 9 10 39 gold 
2 BUL1 Nikolay Beluhov 10 10 9 7 36 gold 
3 ITA1 Andrea Fogari 10 10 9 5 34 gold 
4 TUR2 Melih Üçer 10 10 3 10 33 gold 
5 BUL3 Svetozar Stankov 6 10 5 10 31 gold 
6 ROM3 Victor Pădureanu 10 10 10 0 30 gold 
7 TUR1 Ömer Faruk Tekin 10 8 2 10 30 gold 
8 BUL2 Lyuboslav Panchev 10 9 9 1 29 gold 
9 MDA4 Ilia şenco Andrei 10 9 9 1 29 gold 

10 MDA1 Frimu Andrei 10  2 9 7 28 silver 
11 BUL4 Aleksander Daskalov 10 2 5 10 27 silver 
12 SRB2 Luka Mili ćević 10 3 4 10 27 silver 
13 SRB6 Marija Jelić 10 9 7 1 27 silver 
14 ROM2 Daniel  Tiberiu Rimovecz 10 10 3 3 26 silver 
15 ROM4 Mădălina Elena Persu  10 1 8 6 25 silver 
16 TUR5 Umut Varolgüneş 10 1 8 4 23 silver 
17 ITA6 Pietro Vertechi 10 1 10 2 23 silver 
18 BUL5 Evgeni Dimitrov 10 2 5 5 22 silver 
19 KAZ1 Yegor Klochkov 10 2 10 0 22 silver 
20 SRB4 Teodor fon Burg 10 0 8 3 21 silver 
21 BUL6 Galin Statev 10 2 3 5 20 silver 
22 KAZ5 Sanzhar Orazbayev 10 0 3 7 20 silver 
23 KAZ6 Yeskendir Kassenov 10 0 8 2 20 silver 
24 ALB1 Redi Haderi 10 9 0 0 19 silver 
25 ITA3 Kirill Kuzmin 7  1 10 1 19 silver 
26 UNK&IRL1  Galin Ganchev 10 0 2 7 19 silver 
27 SRB1 Dušan Milijančević 10 0 7 1 18 silver 
28 FRA5 Jean-François Martin 6 5 6 1 18 silver 
29 GRE6 Anastasios Vafeidis 10 4 1 2 17 silver 
30 MKD1A Bodan Arsovski 10 3 4 0 17 silver 
31 MNG1 Marica Knežević 8 2 3 4 17 silver 
32 ROM1 Mihail Eugen Dumitrescu 5 3 9 0 17 silver 
33 TUR6 Semih Yavuz 10 0 2 5 17 silver 
34 ITA2 Mattia Francesko Galeotti 8 8 1 0 17 silver 
35 KAZ2 Asset Daliyev 10 3 3 1 17 silver 
36 BIH3 Salem Malikić 10 3 2 1 16 bronze 
37 MDA5 Sanduleanu Ştefan 6 9 1 0 16 bronze 
38 TUR3 Alper İnecik 10 0 3 3 16 bronze 
39 ITA4 Giovanni Paolini 7 0 9 0 16 bronze 
40 UNK&IRL2  Andrew Hyer 1 9 6 0 16 bronze 
41 SRB5 Vladimir Nikoli ć 9 0 6 0 15 bronze 
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42 AZE2 Ruslan Muslumov 4 1 0 10 15 bronze 
43 FRA1 Martin Clochard 0  10 5 0 15 bronze 
44 ROM5 Edgar Dobriban  8 0 6 0 14 bronze 
45 SRB3 Aleksandar Vasiljković 10 0 2 2 14 bronze 
46 KAZ3 Tussupbekov Yerken 10 3 1 0 14 bronze 
47 UNK&IRL5  Hannah Roberts 10 4 0 0 14 bronze 
48 TJK2 Inomzhon Mirzaev 10 0 0 3 13 bronze 
49 ALB2 Beniada Shabani 10 0 2 0 12 bronze 
50 TUR4 Fehmi Emre Kadan 10 0 0 2 12 bronze 
51 AZE3 Farid Mammadov 10 1 1 0 12 bronze 
52 KAZ4 Nursultan Khajimuratov 10  2 0 0 12 bronze 
53 UNK&IRL3  Peter Leach 0 4 2 6 12 bronze 
54 GRE4 Dimitrios Papadimitriou 10 1 0 0 11 bronze 
55 ITA5 Leonardo Patimo 0 10 1 0 11 bronze 
56 UNK&IRL4  Craig Newbold 10 0 1 0 11 bronze 
57 GRE1 Silouanos Brazitikos 8 1 0 1 10 bronze 
58 GRE2 Ilias Giechaskiel 1 6 2 1 10 bronze 
59 MKD3B Filip Talimdzioski 2  3 3 2 10 bronze 
60 MDA3 Grecu Mircea 10 0 0 0 10 bronze 
61 GRE5 Nikolaos Rapanos 9 0 0 0 9 bronze 
62 MKD1B Predrag Gruevski 2 2 5 0 9 bronze 
63 CYP2 Anastassiades Christos 2 2 3 1 8 bronze 
63 MDA6 Zubarev Alexei 0 2 6 0 8 bronze 
65 MKD4A Stefan Lozanovski 1 0 4 2 7 bronze 
66 MDA2 Gramaţki Iulian 0  0 6 0 6 bronze 
67 ALB3 Andi Reçi 1 1 2 1 5 bronze 
68 BIH4 Jelena Radović 0 0 5 0 5 bronze 
69 MKD3A Dimitar Trenevski 4  0 1 0 5 bronze 
70 BIH6 Vlado Uljarevi ć 3 1 0 0 4   
71 CYP5 Makris Christos 1 0 2 1 4   
72 MKD6A Kujtim Rahmani 3  0 0 1 4   
73 MKD4B Petar Filev 0 1 1 2 4   
74 FRA3 Juliette Fournier  1 0 3 0 4   
75 BIH1 Admir Beširevi ć  1 0 1 1 3   
76 BIH2 Vedran Karahodžić 1 1 0 1 3   
77 CYP1 Anastos Michael 0 0 3 0 3   
78 MKD2A Bojan Joveski 1 0 2 0 3   
79 MNG2 Nikola Milinkovi ć 2 1 0 0 3   
80 CYP3 Assiotis Theodoros 0 0 2 0 2   
81 GRE3 Alkistis Mavroeidi 1 0 0 1 2   
82 MKD5A Matej Dobrevski 0  0 2 0 2   
83 MKD2B Zlatko Joveski 1 0 1 0 2   
84 TKM2 Azat Meredov 0 0 0 2 2   
85 TKM3 Merdan Artykov 1  0 0 1 2   
86 ALB4 Manushaqe Muço 1 0 0 0 1   
87 BIH5 Franjo Šarčević 0 0 1 0 1   
88 CYP6 Katsamba Panagiota 1 0 0 0 1   
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89 MKD5B Andrej Risteski 0 0 1 0 1   
90 MKD6B Darko Domazetoski 0 0 0 1 1   
91 MNG3 Radovan Krtolica 0 0 1 0 1   
92 FRA6 Sergio Véga  0 0 1 0 1   
93 TJK1 Igor Korobeynikov 0  1 0 0 1   
94 UNK&IRL6  Rong Zhou 0 1 0 0 1   
95 ALB5 Elona Hasa 0 0 0 0 0   
96 ALB6 Erion Dervishi 0 0 0 0 0   
97 CYP4 Demetriou Charis 0 0 0 0 0   
98 MNG4 Bećo Meruli ć 0 0 0 0 0   
99 MNG5 Tanja Ivošević 0 0 0 0 0   

100 MNG6 Rastko Pajković 0 0 0 0 0   
101 AZE1 Sarkhan Badirli 0 0 0 0 0   
102 AZE4 Eldar Babayev 0 0 0 0 0   
103 FRA4 Ambroise Marigot 0 0 0 0 0   
104 TKM1 Nazar Emirov 0  0 0 0 0   
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