

## $17^{th}$ South Eastern European Mathematical Olympiad for University Students SEEMOUS 2023

## Struga, N. Macedonia

March  $7^{th} - 12^{th}$ , 2023

**Problem 1.** Prove that if A and B are  $n \times n$  square matrices with complex entries satisfying

$$A = AB - BA + A^2B - 2ABA + BA^2 + A^2BA - ABA^2$$

then  $\det(A) = 0$ .

**Problem 2.** For the sequence

$$S_n = \frac{1}{\sqrt{n^2 + 1^2}} + \frac{1}{\sqrt{n^2 + 2^2}} + \ldots + \frac{1}{\sqrt{n^2 + n^2}},$$

find

$$\lim_{n \to \infty} n \left( n(\ln(1+\sqrt{2}) - S_n) - \frac{1}{2\sqrt{2}(1+\sqrt{2})} \right)$$

**Problem 3.** Prove that: if A is  $n \times n$  square matrix with complex entries such that  $A + A^* = A^2 A^*$ , then  $A = A^*$ . (For any matrix M, denote by  $M^* = \overline{M}^t$  the conjugate transpose of M.)

**Problem 4.** Let  $f : \mathbb{R} \to \mathbb{R}$  be a continuous, strictly decreasing function such that  $f([0,1]) \subseteq [0,1]$ .

(i) For all  $n \in \mathbb{N} \setminus \{0\}$ , prove that there exists a unique  $a_n \in (0,1)$ , solution of the equation

$$f\left(x\right) = x^{n}.$$

Moreover, if  $(a_n)$  is the sequence defined as above, prove that  $\lim a_n = 1$ .

(ii) Suppose f has a continuous derivative, with f(1) = 0 and f'(1) < 0. For any  $x \in \mathbb{R}$ , we define

$$F(x) = \int_{x}^{1} f(t) dt.$$

Study the convergence of the series  $\sum_{n=1}^{\infty} (F(a_n))^{\alpha}$ , with  $\alpha \in \mathbb{R}$ .

**Problem 1.** Prove that if A and B are  $n \times n$  square matrices with complex entries satisfying

$$A = AB - BA + A^2B - 2ABA + BA^2 + A^2BA - ABA^2$$

then  $\det(A) = 0$ .

Solution: 1. We have  $A^{k} = A^{k}B - A^{k-1}BA + A^{k+1}B - A^{k}BA - A^{k}BA + A^{k-1}BA^{2} + A^{k+1}BA - A^{k}BA^{2}.$ Taking the trace and employing  $\operatorname{tr}(MN) = \operatorname{tr}(NM)$  we deduce  $\operatorname{tr}(A^{k}) = \operatorname{tr}(A^{k}B) - \operatorname{tr}((A^{k-1}B)A) + \operatorname{tr}(A^{k+1}B) - \operatorname{tr}((A^{k}B)A) - \operatorname{tr}((A^{k}B)A)) - \operatorname{tr}((A^{k-1}B)A^{2}) + \operatorname{tr}((A^{k+1}B)A) - \operatorname{tr}((A^{k}B)A^{2}) = 0.$ For any  $k \geq 1$ ,  $\operatorname{tr}(A^{k}) = 0$  and hence A is nilpotent. Therefore  $\det(A) = 0$ .

Solution: 2. If det(A)  $\neq 0$ , multiplying the equation by  $A^{-1}$  from left (right), we get  $I_n = B - A^{-1}BA + AB - 2BA + A^{-1}BA^2 + ABA - BA^2$ . Taking trace and having in mind that  $\operatorname{tr}(MN) = \operatorname{tr}(NM)$  we deduce:  $n = \operatorname{tr}(I_n) = \operatorname{tr}(A(A^{-1}B)) - \operatorname{tr}((A^{-1}B)A) + \operatorname{tr}(AB) - \operatorname{tr}(BA) - \operatorname{tr}((BA^2)A^{-1}) + \operatorname{tr}(A^{-1}(BA^2)) + \operatorname{tr}(A(BA)) - \operatorname{tr}((BA)A) = 0$ ,

which is a contradiction. Hence det(A) = 0.

**Problem 2.** For the sequence

$$S_n = \frac{1}{\sqrt{n^2 + 1^2}} + \frac{1}{\sqrt{n^2 + 2^2}} + \dots + \frac{1}{\sqrt{n^2 + n^2}},$$
  
$$\lim_{n \to \infty} n \left( n(\ln(1 + \sqrt{2}) - S_n) - \frac{1}{2} \right)$$

find

$$\lim_{n \to \infty} n \left( n (\ln(1 + \sqrt{2}) - S_n) - \frac{1}{2\sqrt{2}(1 + \sqrt{2})} \right)$$

**Solution:** In what follows  $O(x^k)$  stays for  $Cx^k$  where C is some constant.

$$f(x) = f(b) + f'(b)(x-b) + \frac{1}{2}f''(b)(x-b)^2 + \frac{1}{6}f'''(\theta)(x-b)^3$$

for some  $\theta$  between a and b. It follows that

$$\int_{a}^{b} f(x)dx = f(b)(b-a) - \frac{1}{2}f'(b)(b-a)^{2} + \frac{1}{6}f''(b)(b-a)^{3} + O((b-a)^{4}).$$
(1)

Now, let n be a positive integer. Then, for k = 0, 1, 2, ..., n - 1,

$$\int_{(k-1)/n}^{k/n} f(x)dx = \frac{1}{n}f\left(\frac{k}{n}\right) - \frac{1}{2n^2}f'\left(\frac{k}{n}\right) + \frac{1}{6n^3}f''\left(\frac{k}{n}\right) + O\left(\frac{1}{n^4}\right).$$
 (2)

Summing over k then yields

$$\int_{0}^{1} f(x)dx = \frac{1}{n}\sum_{k=1}^{n} f\left(\frac{k}{n}\right) - \frac{1}{2n^{2}}\sum_{k=1}^{n} f'\left(\frac{k}{n}\right) + \frac{1}{6n^{3}}\sum_{k=1}^{n} f''\left(\frac{k}{n}\right) + O\left(\frac{1}{n^{3}}\right).$$
(3)

Similarly, we can get

$$f(1) - f(0) = \int_0^1 f'(x) dx = \frac{1}{n} \sum_{k=1}^n f'\left(\frac{k}{n}\right) - \frac{1}{2n^2} \sum_{k=1}^n f''\left(\frac{k}{n}\right) + O\left(\frac{1}{n^2}\right), \quad (4)$$

and

$$f'(1) - f'(0) = \int_0^1 f''(x) dx = \frac{1}{n} \sum_{k=1}^n f''\left(\frac{k}{n}\right) + O\left(\frac{1}{n}\right).$$
(5)

Combining (3), (4) and (5) we obtain

$$\int_0^1 f(x)dx = \frac{1}{n}\sum_{k=1}^n f\left(\frac{k}{n}\right) - \frac{1}{2n}(f(1) - f(0)) - \frac{1}{12n^2}(f'(1) - f'(0)) + O\left(\frac{1}{n^3}\right).$$

Now, let

$$f(x) = \frac{1}{\sqrt{1+x^2}}.$$

Then

$$\int_{0}^{1} f(x)dx = \ln \left| x + \sqrt{1 + x^{2}} \right| \Big|_{0}^{1} = \ln(1 + \sqrt{2}) - \ln(1) = \ln(1 + \sqrt{2});$$
  
$$\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1 + (k/n)^{2}}} = \sum_{k=1}^{n} \frac{1}{\sqrt{n^{2} + k^{2}}} = S_{n};$$
  
$$f(1) - f(0) = \frac{1}{\sqrt{2}} - 1 = \frac{1 - \sqrt{2}}{\sqrt{2}} = -\frac{1}{\sqrt{2}(1 + \sqrt{2})};$$
  
$$f'(1) - f'(0) = -\frac{1}{2\sqrt{2}} - 0 = -\frac{1}{2\sqrt{2}}.$$

Hence

$$\ln(1+\sqrt{2}) = S_n + \frac{1}{2\sqrt{2}(1+\sqrt{2})n} + \frac{1}{24\sqrt{2}n^2} + O\left(\frac{1}{n^3}\right).$$

Finally,

$$\lim_{n \to \infty} n \left( n (\ln(1 + \sqrt{2}) - S_n) - \frac{1}{2\sqrt{2}(1 + \sqrt{2})} \right) = \frac{1}{24\sqrt{2}}.$$

**Problem 3.** Prove that: if A is  $n \times n$  square matrix with complex entries such that  $A + A^* = A^2 A^*$ , then  $A = A^*$ . (For any matrix M, denote by  $M^* = \overline{M}^t$  the conjugate transpose of M.)

**Solution:** We show first that A is normal, i.e.,  $A A^* = A^* A$ . We have that  $A + A^* = A^2 A^*$  leads to  $A = (A^2 - I_n)A^*$  (1), hence  $A \pm I_n = (A - I_n)(A + I_n)A^* \pm I_n$ , so

$$(A - I_n) [(A + I_n)A^* - I_n] = I_n (A + I_n) [I_n - (A - I_n)A^*] = I_n,$$

which leads to  $A - I_n$  and  $A + I_n$  being invertible. From here,  $A^2 - I_n$  is also invertible, and by (1) it follows that  $A^* = (A^2 - I_n)^{-1}A$ . Using the Cayley-Hamilton theorem, it follows that  $(A^2 - I_n)^{-1}$  is a polynomial of  $A^2 - I_n$ , hence a polynomial of A, so  $A^* A = A A^*$ .

Since A is normal, it is unitary diagonalizable, i.e., there exist a unitary matrix  $U \in \mathcal{M}_n(\mathbb{C})$  and  $D = \text{diag}[\lambda_1, \lambda_2, \ldots, \lambda_n]$  a diagonal matrix such that  $A = UDU^*$ . Then  $A^* = U\overline{D}U^*$ , which, by the hypothesis leads to  $D + \overline{D} = D^2\overline{D}$ , meaning that  $\lambda_i + \overline{\lambda_i} = \lambda_i^2 \overline{\lambda_i}$ , for all  $i \in \{1, 2, \ldots, n\}$ . Then  $2 \operatorname{Re} \lambda_i = \lambda_i \cdot |\lambda_i|^2$ , so  $\lambda_i$  are all real, and  $D = \overline{D}$ . This is now enough for  $A = A^*$ .

**Problem 4.** Let  $f : \mathbb{R} \to \mathbb{R}$  be a continuous, strictly decreasing function such that  $f([0,1]) \subseteq [0,1]$ .

(i) For all  $n \in \mathbb{N} \setminus \{0\}$ , prove that there exists a unique  $a_n \in (0,1)$ , solution of the equation

$$f\left(x\right) = x^{n}.$$

Moreover, if  $(a_n)$  is the sequence defined as above, prove that  $\lim a_n = 1$ .

(ii) Suppose f has a continuous derivative, with f(1) = 0 and  $\widetilde{f}'(1) < 0$ . For any  $x \in \mathbb{R}$ , we define

$$F(x) = \int_{x}^{1} f(t) dt.$$

Study the convergence of the series  $\sum_{n=1}^{\infty} (F(a_n))^{\alpha}$ , with  $\alpha \in \mathbb{R}$ .

**Solution:** (i) Consider the continuous function  $g: [0,1] \to \mathbb{R}$  given by  $g(x) = f(x) - x^n$ , and observe that g(0) = f(0) > 0, and g(1) = f(1) - 1 < 0. It follows the existence of  $a_n \in (0,1)$  such that  $g(a_n) = 0$ . For uniqueness, observe that if would exists two solutions of the equation (4), say  $a_n < b_n$ , we would obtain

$$f(a_n) > f(b_n) \Leftrightarrow a_n^n > b_n^n \Leftrightarrow a_n > b_n,$$

a contradiction.

We prove that the sequence  $(a_n)$  is strictly increasing. If it would exist  $n \in \mathbb{N}^*$  such that  $a_n \geq a_{n+1}$ , we would obtain that

$$f(a_n) \le f(a_{n+1}) \Leftrightarrow a_n^n \le a_{n+1}^{n+1} < a_{n+1}^n,$$

since f is strictly decreasing and  $a_{n+1} \in (0, 1)$ . It follows that  $a_n < a_{n+1}$ , a contradiction. Hence,  $(a_n)$  is strictly increasing and bounded above by 1, so it converges to  $\ell \in (0, 1]$ . Suppose, by contradiction, that  $\ell < 1$ . Since  $f(a_n) = a_n^n$  for any n, using the continuity of f it follows that  $f(\ell) = 0$  for  $\ell < 1$ , contradicting the fact that f is strictly decreasing with  $f(1) \ge 0$ . Hence,  $\lim_{n \to \infty} a_n = 1$ .

(ii) Observe that F is well-defined, of class  $C^2$ , with F(1) = 0,  $F'(x) = -f(x) \Rightarrow F'(1) = 0$ ,  $F''(x) = -f'(x) \Rightarrow F''(1) > 0$ . Moreover, remark that F(x) > 0 on [0,1). Using the Taylor formula on the interval  $[a_n, 1]$ , it follows that for any n, there exist  $c_n, d_n \in (a_n, 1)$  such that

$$F(a_n) = F(1) + F'(1)(a_n - 1) + \frac{F''(c_n)}{2}(a_n - 1)^2 = \frac{F''(c_n)}{2}(a_n - 1)^2,$$
  

$$f(a_n) = f(1) + f'(d_n)(a_n - 1) = f'(d_n)(a_n - 1).$$
(1)

Hence, since  $c_n \to 1$  and F is  $C^2$ , we obtain

$$\lim_{n \to \infty} \frac{(1 - a_n)^2}{F(a_n)} = \frac{2}{F''(1)} \in (0, +\infty) \,$$

so due to the comparison test,

$$\sum_{n=1}^{\infty} (F(a_n))^{\alpha} \sim \sum_{n=1}^{\infty} (1-a_n)^{2\alpha}.$$

But

$$\lim_{n \to \infty} n \left( 1 - a_n \right) = -\lim_{n \to \infty} n \cdot \frac{(a_n - 1)}{\ln \left( 1 + (a_n - 1) \right)} \cdot \ln a_n$$
$$= -\lim_{n \to \infty} \ln a_n^n = -\lim_{n \to \infty} \ln f \left( a_n \right) = -\ln \left( \lim_{n \to \infty} f \left( a_n \right) \right) = +\infty.$$

It follows that  $\sum_{n=1}^{\infty} (1-a_n)$  diverges and, furthermore,  $\sum_{n=1}^{\infty} (1-a_n)^{2\alpha}$  diverges for any  $2\alpha \leq 1$ .

Next, consider arbitrary  $\gamma \in (0,1)$ . Using (1) and the fact that  $d_n \to 1$ , we obtain

$$\lim_{n \to \infty} n^{\gamma} (1 - a_n) = \lim_{n \to \infty} [n (1 - a_n)]^{\gamma} \cdot (1 - a_n)^{1 - \gamma}$$
$$= \lim_{n \to \infty} [n (1 - a_n)]^{\gamma} \cdot \left[\frac{f(a_n)}{-f'(d_n)}\right]^{1 - \gamma} = \frac{1}{(-f'(1))^{1 - \gamma}} \cdot \lim_{n \to \infty} [-\ln f(a_n)]^{\gamma} \cdot \left[e^{\ln f(a_n)}\right]^{1 - \gamma}.$$

Observe that

$$-\ln f(a_n) \to +\infty$$
 and  $\lim_{x \to +\infty} \frac{x^{\gamma}}{e^{(1-\gamma)x}} = 0,$ 

hence  $\lim_{n\to\infty} n^{\gamma} (1-a_n) = 0$ . So, if  $\alpha > \frac{1}{2}$ , we obtain that there exists  $\varepsilon > 0$  such that  $2\alpha > 1 + \varepsilon$ , hence for  $\gamma := \frac{1+\varepsilon}{2\alpha} < 1$ , we get

$$\lim_{n \to \infty} n^{2\alpha\gamma} \left( 1 - a_n \right)^{2\alpha} = \lim_{n \to \infty} n^{(1+\varepsilon)} \left( 1 - a_n \right)^{2\alpha} = 0$$

Using the comparison test, it follows that the series  $\sum_{n=1}^{\infty} (1-a_n)^{2\alpha}$  converges. In conclusion, the series  $\sum_{n=1}^{\infty} (F(a_n))^{\alpha}$  converges iff  $\alpha > \frac{1}{2}$ .