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Problems

1.1 The Forty-Sixth IMO
Mérida, Mexico, July 8–19, 2005

1.1.1 Contest Problems

First Day (July 13)

1. Six points are chosen on the sides of an equilateral triangle ABC: A1,A2 on BC;
B1,B2 on CA; C1,C2 on AB. These points are vertices of a convex hexagon
A1A2B1B2C1C2 with equal side lengths. Prove that the linesA1B2, B1C2 and
C1A2 are concurrent.

2. Let a1,a2, . . . be a sequence of integers with infinitely many positive termsand
infinitely many negative terms. Suppose that for each positive integern, the num-
bersa1,a2, . . . ,an leaven different remainders on division byn. Prove that each
integer occurs exactly once in the sequence.

3. Letx,y andz be positive real numbers such thatxyz ≥ 1. Prove that

x5− x2

x5 + y2 + z2 +
y5− y2

y5 + z2+ x2 +
z5− z2

z5 + x2+ y2 ≥ 0.

Second Day (July 14)

4. Consider the sequencea1,a2, . . . defined by

an = 2n +3n +6n −1 (n = 1,2, . . .).

Determine all positive integers that are relatively prime to every term of the
sequence.

5. LetABCD be a given convex quadrilateral with sidesBC andAD equal in length
and not parallel. LetE andF be interior points of the sidesBC andAD respec-
tively such thatBE = DF . The linesAC andBD meet atP, the linesBD andEF
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meet atQ, the linesEF andAC meet atR. Consider all the trianglesPQR asE
andF vary. Show that the circumcircles of these triangles have a common point
other thanP.

6. In a mathematical competition 6 problems were posed to thecontestants. Each
pair of problems was solved by more than 2/5 of the contestants. Nobody solved
all 6 problems. Show that there were at least 2 contestants who each solved
exactly 5 problems.

1.1.2 Shortlisted Problems

1. A1 (ROM) Find all monic polynomialsp(x) with integer coefficients of degree
two for which there exists a polynomialq(x) with integer coefficients such that
p(x)q(x) is a polynomial having all coefficients±1.

2. A2 (BUL) Let R+ denote the set of positive real numbers. Determine all func-
tions f : R+ → R+ such that

f (x) f (y) = 2 f (x + y f (x))

for all positive real numbersx andy.

3. A3 (CZE) Four real numbersp,q,r,s satisfy

p + q + r + s = 9 and p2 + q2+ r2 + s2 = 21.

Prove thatab− cd ≥ 2 holds for some permutation(a,b,c,d) of (p,q,r,s).

4. A4 (IND) Find all functionsf : R → R satisfying the equation

f (x + y)+ f (x) f (y) = f (xy)+2xy +1

for all realx andy.

5. A5 (KOR) IMO3 Let x,y andz be positive real numbers such thatxyz ≥ 1. Prove
that

x5− x2

x5 + y2 + z2 +
y5− y2

y5 + z2+ x2 +
z5− z2

z5 + x2+ y2 ≥ 0.

6. C1 (AUS) A house has an even number of lamps distributed among its rooms
in such a way that there are at least three lamps in every room.Each lamp shares
a switch with exactly one other lamp, not necessarily from the same room. Each
change in the switch shared by two lamps changes their statessimultaneously.
Prove that for every initial state of the lamps there exists asequence of changes
in some of the switches at the end of which each room contains lamps which are
on as well as lamps which are off.

7. C2 (IRN) Let k be a fixed positive integer. A company has a special method to
sell sombreros. Each customer can convince two persons to buy a sombrero after
he/she buys one; convincing someone already convinced doesnot count. Each
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of these new customers can convince two others and so on. If each one of the
two customers convinced by someone makes at leastk persons buy sombreros
(directly or indirectly), then that someone wins a free instructional video. Prove
that if n persons bought sombreros, then at mostn/(k +2) of them got videos.

8. C3 (IRN) In anm×n rectangular board ofmn unit squares,adjacent squares are
ones with a common edge, and apath is a sequence of squares in which any two
consecutive squares are adjacent. Each square of the board can be colored black
or white. LetN denote the number of colorings of the board such that there exists
at least one black path from the left edge of the board to its right edge, and letM
denote the number of colorings in which there exist at least two non-intersecting
black paths from the left edge to the right edge. Prove thatN2 ≥ 2mnM.

9. C4 (COL) Let n ≥ 3 be a given positive integer. We wish to label each side
and each diagonal of a regularn-gonP1 . . .Pn with a positive integer less than or
equal tor so that:
(i) every integer between 1 andr occurs as a label;
(ii) in each trianglePiPjPk two of the labels are equal and greater than the third.
Given these conditions:
(a) Determine the largest positive integerr for which this can be done.
(b) For that value ofr, how many such labellings are there?

10. C5 (SMN) There aren markers, each with one side white and the other side
black, aligned in a row so that their white sides are up. In each step, if possible,
we choose a marker with the white side up (but not one of outermost markers),
remove it and reverse the closest marker to the left and the closest marker to the
right of it. Prove that one can achieve the state with only twomarkers remaining
if and only if n−1 is not divisible by 3.

11. C6 (ROM) IMO6 In a mathematical competition 6 problems were posed to the
contestants. Each pair of problems was solved by more than 2/5 of the contes-
tants. Nobody solved all 6 problems. Show that there were at least 2 contestants
who each solved exactly 5 problems.

12. C7 (USA) Let n ≥ 1 be a given integer, and leta1, . . . ,an be a sequence of inte-
gers such thatn divides the suma1+ · · ·+an. Show that there exist permutations
σ andτ of 1,2, . . . ,n such thatσ(i)+ τ(i) ≡ ai (modn) for all i = 1, . . . ,n.

13. C8 (BUL) Let M be a convexn-gon,n ≥ 4. Somen− 3 of its diagonals are
colored green and some othern−3 diagonals are colored red, so that no two
diagonals of the same color meet insideM. Find the maximum possible number
of intersection points of green and red diagonals insideM.

14. G1 (GRE) In a triangleABC satisfyingAB + BC = 3AC the incircle has center
I and touches the sidesAB andBC at D andE, respectively. LetK andL be the
symmetric points ofD andE with respect toI. Prove that the quadrilateralACKL
is cyclic.
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15. G2 (ROM) IMO1 Six points are chosen on the sides of an equilateral triangleABC:
A1,A2 on BC; B1,B2 onCA; C1,C2 on AB. These points are vertices of a convex
hexagonA1A2B1B2C1C2 with equal side lengths. Prove that the linesA1B2, B1C2

andC1A2 are concurrent.

16. G3 (UKR) Let ABCD be a parallelogram. A variable linel passing through the
pointA intersects the raysBC andDC at pointsX andY , respectively. LetK and
L be the centers of the excircles of trianglesABX andADY , touching the sides
BX andDY , respectively. Prove that the size of angleKCL does not depend on
the choice of the linel.

17. G4 (POL)IMO5 Let ABCD be a given convex quadrilateral with sidesBC andAD
equal in length and not parallel. LetE andF be interior points of the sidesBC
andAD respectively such thatBE = DF. The linesAC andBD meet atP, the
lines BD andEF meet atQ, the linesEF andAC meet atR. Consider all the
trianglesPQR asE andF vary. Show that the circumcircles of these triangles
have a common point other thanP.

18. G5 (ROM) Let ABC be an acute-angled triangle withAB 6= AC, let H be its
orthocenter andM the midpoint ofBC. PointsD on AB andE on AC are such
that AE = AD and D,H,E are collinear. Prove thatHM is orthogonal to the
common chord of the circumcircles of trianglesABC andADE.

19. G6 (RUS) The medianAM of a triangleABC intersects its incircleω at K and
L. The lines throughK andL parallel toBC intersectω again atX andY . The
linesAX andAY intersectBC at P andQ. Prove thatBP = CQ.

20. G7 (KOR) In an acute triangleABC, let D, E, F , P, Q, R be the feet of perpen-
diculars fromA, B, C, A, B, C to BC, CA, AB, EF , FD, DE, respectively. Prove
that p(ABC)p(PQR) ≥ p(DEF)2, wherep(T ) denotes the perimeter of triangle
T .

21. N1 (POL)IMO4 Consider the sequencea1,a2, . . . defined by

an = 2n +3n +6n −1 (n = 1,2, . . .).

Determine all positive integers that are relatively prime to every term of the
sequence.

22. N2 (NET)IMO2 Let a1,a2, . . . be a sequence of integers with infinitely many pos-
itive terms and infinitely many negative terms. Suppose thatfor each positive
integern, the numbersa1,a2, . . . ,an leaven different remainders on division by
n. Prove that each integer occurs exactly once in the sequence.

23. N3 (MON) Let a, b, c, d, e and f be positive integers. Suppose that the sum
S = a+b+c+d +e+ f divides bothabc+de f andab+bc+ca−de−e f − f d.
Prove thatS is composite.

24. N4 (COL) Find all positive integersn > 1 for which there exists a unique integer
a with 0 < a ≤ n! such thatan +1 is divisible byn!.
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25. N5 (NET) Denote byd(n) the number of divisors of the positive integern. A
positive integern is calledhighly divisible if d(n) > d(m) for all positive integers
m < n. Two highly divisible integersm andn with m < n are called consecutive
if there exists no highly divisible integers satisfyingm < s < n.
(a) Show that there are only finitely many pairs of consecutive highly divisible

integers of the form(a,b) with a|b.
(b) Show that for every prime numberp there exist infinitely many positive

highly divisible integersr such thatpr is also highly divisible.

26. N6 (IRN) Let a andb be positive integers such thatan + n dividesbn + n for
every positive integern. Show thata = b.

27. N7 (RUS) Let P(x) = anxn +an−1xn−1 + · · ·+a0, wherea0, . . . ,an are integers,
an > 0, n ≥ 2. Prove that there exists a positive integerm such thatP(m!) is a
composite number.
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2.1 Solutions to the Shortlisted Problems of IMO 2005

1. Clearly,p(x) has to be of the formp(x) = x2 + ax±1 wherea is an integer. For
a = ±1 anda = 0 polynomialp has the required property: it suffices to take
q = 1 andq = x +1, respectively.
Suppose now that|a| ≥ 2. Thenp(x) has two real roots, sayx1,x2, which are
also roots ofp(x)q(x) = xn + an−1xn−1 + · · ·+ a0, ai = ±1. Thus

1 =

∣

∣

∣

∣

an−1

xi
+ · · ·+

a0

xn
i

∣

∣

∣

∣

≤
1
|xi|

+ · · ·+
1

|xi|n
<

1
|xi|−1

which implies|x1|, |x2| < 2. This immediately rules out the case|a| ≥ 3 and the
polynomialsp(x) = x2 ± 2x− 1. The remaining two polynomialsx2 ± 2x + 1
satisfy the condition forq(x) = x∓1.
Summing all, the polynomialsp(x) with the desired property arex2 ± x ± 1,
x2±1 andx2±2x +1.

2. Giveny > 0, consider the functionϕ(x) = x + y f (x), x > 0. This function is
injective: indeed, ifϕ(x1) = ϕ(x2) then f (x1) f (y) = f (ϕ(x1)) = f (ϕ(x2)) =
f (x2) f (y), so f (x1) = f (x2), sox1 = x2 by the definition ofϕ . Now if x1 > x2

and f (x1) < f (x2), we haveϕ(x1) = ϕ(x2) for y = x1−x2
f (x2)− f (x1)

> 0, which
is impossible; hencef is non-decreasing. The functional equation now yields
f (x) f (y) = 2 f (x + y f (x)) ≥ 2 f (x) and consequentlyf (y) ≥ 2 for y > 0. There-
fore

f (x + y f (x)) = f (xy) = f (y + x f (y)) ≥ f (2x)

holds for arbitrarily smally > 0, implying thatf is constant on the interval(x,2x]
for eachx > 0. But thenf is constant on the union of all intervals(x,2x] over all
x > 0, that is, on all ofR+. Now the functional equation gives usf (x) = 2 for all
x, which is clearly a solution.

Second Solution. In the same way as above we prove thatf is non-decreasing,
hence its discontinuity set is at most countable. We can extend f to R∪{0} by
defining f (0) = infx f (x) = limx→0 f (x) and the new functionf is continuous at
0 as well. Ifx is a point of continuity off we havef (x) f (0) = limy→0 f (x) f (y) =
limy→0 2 f (x+y f (x)) = 2 f (x), hencef (0) = 2. Now, if f is continuous at 2y then
2 f (y) = limx→0 f (x) f (y) = limx→0 2 f (x+y f (x)) = 2 f (2y). Thus f (y) = f (2y),
for all but countably many values ofy. Being non-decreasingf is a constant,
hencef (x) = 2.

3. Assume w.l.o.g. thatp ≥ q ≥ r ≥ s. We have

(pq + rs)+ (pr + qs)+ (ps+ qr)=
(p + q + r + s)2− p2−q2− r2− s2

2
= 30.

It is easy to see thatpq+rs≥ pr+qs≥ ps+qr which gives uspq+rs≥ 10. Now
settingp+q = x we obtainx2+(9−x)2 =(p+q)2+(r+s)2 = 21+2(pq+rs)≥
41 which is equivalent to(x−4)(x−5)≥ 0. Sincex = p+q≥ r+s we conclude
thatx ≥ 5. Thus
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25≤ p2 + q2+2pq = 21− (r2+ s2)+2pq ≤ 21+2(pq− rs),

or pq− rs ≥ 2, as desired.
Remark. The quadruple(p,q,r,s) = (3,2,2,2) shows that the estimate 2 is the
best possible.

4. Settingy = 0 yields( f (0) + 1)( f (x)− 1) = 0, and sincef (x) = 1 for all x is
impossible, we getf (0) = −1. Now plugging inx = 1 andy = −1 gives us
f (1) = 1 or f (−1) = 0. In the first case settingx = 1 in the functional equation
yields f (y +1) = 2y +1, i.e. f (x) = 2x−1 which is one solution.
Suppose now thatf (1) = a 6= 1 and f (−1) = 0. Plugging(x,y) = (z,1) and
(x,y) = (−z,−1) in the functional equation yields

f (z+1) = (1−a) f (z)+2z+1
f (−z−1) = f (z)+2z+1.

(∗)

It follows that f (z+1)= (1−a) f (−z−1)+a(2z+1), i.e. f (x)= (1−a) f (−x)+
a(2x−1). Analogouslyf (−x) = (1−a) f (x)+a(−2x−1), which together with
the previous equation yields

(a2−2a) f (x) = −2a2x− (a2−2a).

Now a = 2 is clearly impossible. Fora 6∈ {0,2} we get f (x) = −2ax
a−2 − 1. This

function satisfies the requirements only fora = −2, giving the solutionf (x) =
−x−1. In the remaining case, whena = 0, we havef (x) = f (−x). Settingy = z
andy = −z in the functional equation and subtracting yieldsf (2z) = 4z2−1, so
f (x) = x2−1 which satisfies the equation.
Thus the solutions aref (x) = 2x−1, f (x) = −x−1 and f (x) = x2−1.

5. The desired inequality is equivalent to

x2 + y2 + z2

x5 + y2 + z2 +
x2 + y2+ z2

y5 + z2+ x2 +
x2 + y2 + z2

z5 + x2+ y2 ≤ 3. (∗)

By the Cauchy inequality we have(x5 + y2 + z2)(yz+ y2 + z2) ≥ (x5/2(yz)1/2 +
y2 + z2)2 ≥ (x2 + y2+ z2)2 and therefore

x2 + y2+ z2

x5 + y2+ z2 ≤
yz+ y2+ z2

x2 + y2+ z2 .

We get analogous inequalities for the other two summands in(∗). Summing
these up yields

x2 + y2+ z2

x5 + y2+ z2 +
x2 + y2+ z2

y5 + z2 + x2 +
x2 + y2+ z2

z5 + x2 + y2 ≤ 2+
xy + yz+ zx
x2 + y2 + z2 ,

which together with the well-known inequalityx2 + y2 + z2 ≥ xy + yz+ zx gives
us the result.
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Second solution. Multiplying the both sides with the common denominator and
using the notation as in Chapter 2 (Muirhead’s inequality) we get

T5,5,5 +4T7,5,0+ T5,2,2+ T9,0,0 ≥ T5,5,2 + T6,0,0+2T5,4,0+2T4,2,0+ T2,2,2.

By Schur’s and Muirhead’s inequalities we have thatT9,0,0 + T5,2,2 ≥ 2T7,2,0 ≥
2T7,1,1. Sincexyz ≥ 1 we have thatT7,1,1 ≥ T6,0,0. Therefore

T9,0,0 + T5,2,2 ≥ 2T6,0,0 ≥ T6,0,0 + T4,2,0. (1)

Moreover, Muirhead’s inequality combined withxyz ≥ 1 gives usT7,5,0 ≥ T5,5,2,
2T7,5,0 ≥ 2T6,5,1 ≥ 2T5,4,0, T7,5,0 ≥ T6,4,2 ≥ T4,2,0, andT5,5,5 ≥ T2,2,2. Adding these
four inequalities to (1) yields the desired result.

6. A room will be calledeconomic if some of its lamps are on and some are off.
Two lamps sharing a switch will be calledtwins. The twin of a lampl will be
denoted̄l.
Suppose we have arrived at a state with the minimum possible number of un-
economic rooms, and that this number is strictly positive. Let us choose any
uneconomic room, sayR0, and a lampl0 in it. Let l̄0 be in a roomR1. Switching
l0 we makeR0 economic; thereby, since the number of uneconomic rooms can-
not be decreased, this change must make roomR1 uneconomic. Now choose a
lampl1 in R1 having the twinl̄1 in a roomR2. Switchingl1 makesR1 economic,
and thus must makeR2 uneconomic. Continuing in this manner we obtain a se-
quencel0, l1, . . . of lamps withli in a roomRi andl̄i 6= li+1 in Ri+1 for all i. The
lampsl0, l1, . . . are switched in this order. This sequence has the property that
switchingli andl̄i makes roomRi economic and roomRi+1 uneconomic.
Let Rm = Rk with m > k be the first repetition in the sequence(Ri). Let us stop
switching the lamps atlm−1. The roomRk was uneconomic prior to switching
lk. Thereafter lampslk and l̄m−1 have been switched inRk, but since these two
lamps are distinct (indeed, their twins̄lk and lm−1 are distinct), the roomRk

is now economic as well as all the roomsR0,R1, . . . ,Rm−1. This decreases the
number of uneconomic rooms, contradicting our assumption.

7. Letv be the number of video winners. One easily finds that forv = 1 andv = 2,
the numbern of customers is at least 2k + 3 and 3k + 5 respectively. We prove
by induction onv that if n ≥ k +1 thenn ≥ (k +2)(v +1)−1.
We can assume w.l.o.g. that the total numbern of customers is minimum possible
for givenv > 0. Consider a personP who was convinced by nobody but himself.
ThenP must have won a video; otherwiseP could be removed from the group
without decreasing the number of video winners. LetQ andR be the two persons
convinced byP. We denote byC the set of persons made byP throughQ to buy
a sombrero, includingQ, and byD the set of all other customers excluding
P. Let x be the number of video winners inC . Then there arev− x− 1 video
winners inD . We have|C | ≥ (k + 2)(x + 1)− 1, by induction hypothesis if
x > 0 and becauseP is a winner ifx = 0. Similarly, |D | ≥ (k + 2)(v− x)−1.
Thusn ≥ 1+(k +2)(x +1)−1+(k +2)(v− x)−1, i.e.n ≥ (k +2)(v +1)−1.
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8. Suppose that a two-sidedm× n boardT is considered, where exactlyk of the
squares are transparent. A transparent square is colored only on one side (then
it looks the same from the other side), while a non-transparent one needs to be
colored on both sides, not necessarily in the same color.
Let C = C(T ) be the set of colorings of the board in which there exist two black
paths from the left edge to the right edge, one on top and one underneath, not
intersecting at any transparent square. Ifk = 0 then|C| = N2. We prove by in-
duction onk that 2k|C| ≤ N2: this will imply the statement of the problem, as
|C| = M for k = mn.
Let q be a fixed transparent square. Consider any coloringB in C: If q is con-
verted into a non-transparent square, a new boardT ′ with k − 1 transparent
squares is obtained, so by the induction hypothesis 2k−1|C(T ′)| ≤ N2. Since
B contains two black paths at most one of which passes throughq, color-
ing q in either color on the other side will result in a coloring inC′; hence
|C(T ′)| ≥ 2|C(T )|, implying 2k|C(T )| ≤ N2 and finishing the induction.

Second solution. By path we shall mean a black path from the left edge to the
right edge. LetA denote the set of pairs ofm× n boards each of which has a
path. LetB denote the set of pairs of boards such that the first board has two non-
intersecting paths. Obviously,|A | = N2 and|B| = 2mnM. To show|A | ≥ |B|
we will construct an injectionf : B → A .
Among paths on a given board we define pathx to belower thany if the set of
squares “under”x is a subset of the squares undery. This relation is a relation of
incomplete order. However, for each board with at least one path there exists the
lowest path (comparing two intersecting paths, we can always take the “lower
branch” on each non-intersecting segment). Now, for a givenelement ofB, we
“swap” the lowest path and all squares underneath on the firstboard with the
corresponding points on the other board. This swapping operation is the desired
injection f . Indeed, since the first board still contains the highest path (which
didn’t intersect the lowest one), the new configuration belongs toA . On the
other hand, this configuration uniquely determines the lowest path on the original
element ofB; hence no two different elements ofB can go to the same element
of A . This completes the proof.

9. Let [XY ] denote the label of segmentXY , whereX andY are vertices of the
polygon. Consider any segmentMN with the maximum label[MN] = r. By
condition (ii), for anyPi 6= M,N, exactly one ofPiM andPiN is labelled byr.
Thus the set of all vertices of then-gon splits into two complementary groups:
A = {Pi | [PiM] = r} andB = {Pi | [PiN] = r}. We claim that a segmentXY
is labelled byr if and only if it joins two points from different groups. Assume
w.l.o.g. thatX ∈ A . If Y ∈ A , then[XM] = [Y M] = r, so [XY ] < r. If Y ∈ B,
then[XM] = r and[YM] < r, so[XY ] = r by (ii), as we claimed.
We conclude that a labelling satisfying (ii) is uniquely determined by groupsA
andB and labellings satisfying (ii) withinA andB.
(a) We prove by induction onn that the greatest possible value ofr is n−1. The

degenerate casesn = 1,2 are trivial. Ifn ≥ 3, the number of different labels
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of segments joining vertices inA (resp.B) does not exceed|A |−1 (resp.
|B| − 1), while all segments joining a vertex inA and a vertex inB are
labelled byr. Thereforer ≤ (|A |−1)+(|B|−1)+1= n−1. The equality
is achieved if all the mentioned labels are different.

(b) Letan be the number of labellings withr = n−1. We prove by induction that
an = n!(n−1)!

2n−1 . This is trivial for n = 1, so letn ≥ 2. If |A | = k is fixed, the
groupsA andB can be chosen in

(n
k

)

ways. The set of labels used within

A can be selected among 1,2, . . . ,n−2 in
(n−2

k−1

)

ways. Now the segments
within groupsA andB can be labelled so as to satisfy (ii) inak andan−k

ways, respectively. This way every labelling has been counted twice, since
choosingA is equivalent to choosingB. It follows that

an =
1
2

n−1

∑
k=1

(

n
k

)(

n−2
k−1

)

akan−k

=
n!(n−1)!
2(n−1)

n−1

∑
k=1

ak

k!(k−1)!
·

an−k

(n− k)!(n− k−1)!

=
n!(n−1)!
2(n−1)

n−1

∑
k=1

1
2k−1 ·

1
2n−k−1 =

n!(n−1)!
2n−1 .

10. Denote byL the leftmost and byR the rightmost marker. To start with, note that
the parity of the number of black-side-up markers remains unchanged. Hence, if
only two markers remain, these markers must have the same color up.
We ’ll show by induction onn that the game can be successfully finished if and
only if n ≡ 0 or n ≡ 2 (mod 3), and that the upper sides ofL andR will be black
in the first case and white in the second case.
The statement is clear forn = 2,3. Assume that we finished the game for some
n, and denote byk the position of the markerX (counting from the left) that was
last removed. Having finished the game, we have also finished the subgames
with the k markers fromL to X and with then− k + 1 markers fromX to R
(inclusive). Thereby, beforeX was removed, the upper side ofL had been black
if k ≡ 0 and white ifk ≡ 2 (mod 3), while the upper side ofR had been black if
n−k +1≡ 0 and white ifn−k +1≡ 2 (mod 3). MarkersL andR were reversed
upon the removal ofX . Therefore, in the final positionL andR are white if and
only if k ≡ n− k + 1≡ 0, which yieldsn ≡ 2 (mod 3), and black if and only if
k ≡ n− k +1≡ 2, which yieldsn ≡ 0 (mod 3).
On the other hand, a game withn markers can be reduced to a game withn−3
markers by removing the second, fourth, and third marker in this order. This
finishes the induction.

Second solution. An invariant can be defined as follows. To each white marker
with k black markers to its left we assign the number(−1)k. Let S be the sum of
the assigned numbers. Then it is easy to verify that the remainder ofS modulo
3 remains unchanged throughout the game: For example, when awhite marker
with two white neighbors andk black markers to its left is removed,S decreases
by 3(−1)t .
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Initially, S = n. In the final position with two markers remainedS equals 0 if
the two markers are black and 2 if these are white (note that, as before, the two
markers must be of the same color). Thusn ≡ 0 or 2 (mod 3).
Conversely, a game withn markers is reduced ton− 3 markers as in the first
solution.

11. Assume there weren contestants,ai of whom solved exactlyi problems, where
a0 + · · ·+a5 = n. Let us count the numberN of pairs(C,P), where contestantC
solved the pair of problemsP. Each of the 15 pairs of problems was solved by
at least2n+1

5 contestants, implyingN ≥ 15· 2n+1
5 = 6n+3. On the other hand,ai

students solvedi(i−1)
2 pairs; hence

6n +3≤ N ≤ a2 +3a3+6a4+10a5 = 6n +4a5− (3a3+5a2+6a1+6a0).

Consequentlya5 ≥ 1. Assume thata5 = 1. Then we must haveN = 6n + 4,
which is only possible if 14 of the pairs of problems were solved by exactly
2n+1

5 students and the remaining one by2n+1
5 + 1 students, and all students but

the winner solved 4 problems.
The problemt not solved by the winner will be calledtough and the pair of
problems solved by2n+1

5 +1 studentsspecial.
Let us count the numberMp of pairs(C,P) for whichP contains a fixed problem
p. Let bp be the number of contestants who solvedp. ThenMt = 3bt (each of
the bt students solved three pairs of problems containingt), andMp = 3bp + 1
for p 6= t (the winner solved four such pairs). On the other hand, each of the five
pairs containingp was solved by2n+1

5 or 2n+1
5 + 1 students, soMp = 2n + 2 if

the special pair containsp, andMp = 2n +1 otherwise.
Now sinceMt = 3bt = 2n + 1 or 2n + 2, we have 2n + 1≡ 0 or 2 (mod 3). But
if p 6= t is a problem not contained in the special pair, we haveMp = 3bp +1 =
2n +1; hence 2n +1≡ 1 (mod 3), which is a contradiction.

12. Suppose that there exist desired permutationsσ and τ for some sequence
a1, . . . ,an. Given a sequence(bi) with sum divisible byn which differs mod-
ulo n from (ai) only in two positions, sayi1 andi2, we show how to construct
desired permutationsσ ′ andτ ′ for sequence(bi). In this way, starting from an
arbitrary sequence(ai) for whichσ andτ exist, we can construct desired permu-
tations for any other sequence with sum divisible byn. All congruences below
are modulon.
We know thatσ(i) + τ(i) ≡ bi for all i 6= i1, i2. We construct the sequence
i1, i2, i3, . . . as follows: for eachk ≥ 2, ik+1 is the unique index such that

σ(ik−1)+ τ(ik+1) ≡ bik . (∗)

Let ip = iq be the repetition in the sequence with the smallestq. We claim that
p = 1 or p = 2. Assume on the contrary thatp > 2. Summing up(∗) for k =
p, p+1, . . . ,q−1 and taking the equalitiesσ(ik)+ τ(ik) = bik for ik 6= i1, i2 into
account we obtainσ(ip−1)+σ(ip)+τ(iq−1)+τ(iq)≡ bp+bq−1. Sinceiq = ip, it
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follows thatσ(ip−1)+τ(iq−1)≡ bq−1 and thereforeip−1 = iq−1, a contradiction.
Thusp = 1 or p = 2 as claimed.
Now we define the following permutations:

σ ′(ik) = σ(ik−1) for k = 2,3, . . . ,q−1 and σ ′(i1) = σ(iq−1),

τ ′(ik) = τ(ik+1) for k = 2,3, . . . ,q−1 and τ ′(i1) =

{

τ(i2) if p = 1,
τ(i1) if p = 2;

σ ′(i) = σ(i) and τ ′(i) = τ(i) for i 6∈ {i1, . . . , iq−1}.

Permutationsσ ′ andτ ′ have the desired property. Indeed,σ ′(i)+ τ ′(i) = bi ob-
viously holds for alli 6= i1, but then it must also hold fori = i1.

13. For every green diagonald, let Cd denote the number of green-red intersection
points ond. The task is to find the maximum possible value of the sum∑d Cd

over all green diagonals.
Let di andd j be two green diagonals and let the part of polygonM lying between
di andd j havem vertices. There are at mostn−m−1 red diagonals intersecting
bothdi andd j, while each of the remainingm−2 diagonals meets at most one
of di,d j. It follows that

Cdi +Cd j ≤ 2(n−m−1)+ (m−2)= 2n−m−4. (∗)

We now arrange the green diagonals in a sequenced1,d2, . . . ,dn−3 as follows.
It is easily seen that there are two green diagonalsd1 andd2 that divideM into
two triangles and an(n−2)-gon; then there are two green diagonalsd3 andd4

that divide the(n−2)-gon into two triangles and an(n−4)-gon, and so on. We
continue this procedure until we end up with a triangle or a quadrilateral. Now
the part ofM betweend2k−1 andd2k has at leastn− 2k vertices for 1≤ k ≤
r, wheren− 3 = 2r + e, e ∈ {0,1}; hence, by(∗), Cd2k−1 +Cd2k ≤ n + 2k−4.
Moreover,Cdn−3 ≤ n−3. Summing up yields

Cd1 +Cd2 + · · ·+Cdn−3 ≤
r

∑
k=1

(n +2k−4)+ e(n−3)

= 3r2 + e(3r +1) =

⌈

3
4
(n−3)2

⌉

.

This value is attained in the following example. LetA1A2 . . .An be then-gonM
and letl =

[

n
2

]

+ 1. The diagonalsA1Ai, i = 3, . . . , l andAlA j, j = l + 2, . . . ,n
are colored in green, whereas the diagonalsA2Ai, i = l + 1, . . . ,n, andAl+1A j,
j = 3, . . . , l −1 are colored in red.
Thus the answer is⌈3

4(n−3)2⌉.

14. LetF be the point of tangency of the incircle withAC and letM andN be the
respective points of tangency ofAB andBC with the corresponding excircles. If
I is the incenter andIa andP respectively the center and the tangency point with
ray AC of the excircle corresponding toA, we haveAI

IL = AI
IF = AIa

IaP = AIa
IaN , which

implies that△AIL ∼△AIaN. ThusL lies onAN, and analogouslyK lies onCM.
Denotex = AF andy = CF. SinceBD = BE, AD = BM = x, andCE = BN = y,
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the conditionAB + BC = 3AC gives usDM = y andEN = x. Now the triangles
CLN andMKA are congruent since their altitudesKD andLE satisfyDK = EL,
DM = CE, andAD = EN. Thus∠AKM = ∠CLN, implying thatACKL is cyclic.

15. LetP be the fourth vertex of the rhombusC2A1A2P. Since△C2PC1 is equilateral,
we easily conclude thatB1B2C1P is also a rhombus. Thus△PB1A2 is equilateral
and∠(C2A1,C1B2) = ∠A2PB1 = 60◦. It easily follows that△AC1B2

∼= △BA1C2

and consequentlyAC1 = BA1; similarly BA1 = CB1. Therefore triangleA1B1C1

is equilateral. Now it follows fromB1B2 = B2C1 that A1B2 bisects∠C1A1B1.
Similarly, B1C2 andC1A2 bisect∠A1B1C1 and ∠B1C1A1; henceA1B2, B1C2,
C1A2 meet at the incenter ofA1B1C1, i.e. at the center ofABC.

16. Since∠ADL = ∠KBA = 180◦− 1
2∠BCD and∠ALD = 1

2∠AY D = ∠KAB, trian-
glesABK andLDA are similar. ThusBK

BC = BK
AD = AB

DL = DC
DL , which together with

∠LDC = ∠CBK gives us△LDC ∼△CBK. Therefore∠KCL = 360◦−∠BCD−
(∠LCD+∠KCB) = 360◦−∠BCD− (∠CKB+∠KCB) = 180◦−∠CBK, which
is constant.

17. To start with, we note that pointsB,E,C are the images ofD,F,A respec-
tively under the rotation around pointO for the angleω = ∠DOB, whereO is
the intersection of the perpendicular bisectors ofAC andBD. ThenOE = OF
and ∠OFE = ∠OAC = 90− ω

2 ; hence the pointsA,F,R,O are on a circle
and ∠ORP = 180◦ −∠OFA. Analogously, the pointsB,E,Q,O are on a cir-
cle and∠OQP = 180◦−∠OEB = ∠OEC = ∠OFA. This shows that∠ORP =
180◦−∠OQP, i.e. the pointO lies on the circumcircle of△PQR, thus being the
desired point.

18. Let O and O1 be the circumcenters of trianglesABC and ADE, respectively.
It is enough to show thatHM ‖ OO1. Let AA′ be the diameter of the cir-
cumcircle ofABC. We note that ifB1 is the foot of the altitude fromB, then
HE bisects∠CHB1. Since the trianglesCOM andCHB1 are similar (indeed,
∠CHB = ∠COM = ∠A), we haveCE

EB1
= CH

HB1
= CO

OM = 2CO
AH = A′A

AH .

Thus, if Q is the intersection point
of the bisector of∠A′AH with HA′,
we obtain CE

EB1
= A′Q

QH , which together
with A′C ⊥ AC and HB1 ⊥ AC gives
usQE ⊥ AC. Analogously,QD ⊥ AB.
ThereforeAQ is a diameter of the cir-
cumcircle of△ADE andO1 is the mid-
point of AQ. It follows that OO1 is a
middle line in△A′AQ which is paral-
lel to HM.

A

B C

D

E

H

M

O

A′

Q

B1

O1

Second solution. We again prove thatOO1 ‖ HM. SinceAA′ = 2AO, it suffices
to proveAQ = 2AO1.
Elementary calculations of angles give us∠ADE = ∠AED = 90◦− α

2 . Applying

the law of sines to△DAH and△EAH we now haveDE = DH +EH = AH cosβ
cosα

2
+
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AH cosγ
cosα

2
. SinceAH = 2OM = 2Rcosα, we obtain

AO1 =
DE

2sinα
=

AH(cosβ +cosγ)

2sinα cosα
2

=
2Rcosα sin α

2 cos(β−γ
2 )

sinα cosα
2

.

We now calculateAQ. Let N be the intersection ofAQ with the circumcircle.
Since∠NAO = β−γ

2 , we haveAN = 2Rcos(β−γ
2 ). Noting that△QAH ∼△QNM

(and thatMN = R−OM), we have

AQ =
AN ·AH

MN + AH
=

2Rcos(β−γ
2 ) ·2cosα

1+cosα
=

2Rcos(β−γ
2 )cosα

cos2 α
2

= 2AO1.

19. We denote byD,E,F the points of tan-
gency of the incircle withBC,CA,AB,
respectively, byI the incenter, and by
Y ′ the intersection ofAX andLY . Since
EF is the polar line to the pointA
with respect to the incircle, it meets
AL at point R such thatA,R;K,L are
conjugated, i.e.KR

RL = KA
AL . Then KX

LY ′ =
KA
AL = KR

RL = KX
LY

and thereforeLY =

LY , whereY is the intersection ofXR
andLY . Thus showing thatLY = LY ′

A

B CD

E

F
I

R

K

L

M

Y

X

Y ′

I′

PQ

(which is the same as showing thatPM = MQ, i.e.CP = QB) is equivalent to
showing thatXY containsR. SinceXKYL is an inscribed trapezoid, it is enough
to show thatR lies on its axis of symmetry, that is,DI.
SinceAM is the median, the trianglesARB andARC have equal areas and since

∠(RF,AB) = ∠(RE,AC) we have that 1=
S△ABR
S△ACR

= (AB·FR)
(AC·ER) . HenceAB

AC = ER
FR .

Let I′ be the point of intersection of the line throughF parallel toIE with the
line IR. ThenFI′

EI = FR
RE = AC

AB and∠I′FI = ∠BAC (angles with orthogonal rays).
Thus the trianglesABC andFII′ are similar, implying that∠FII′ = ∠ABC. Since
∠FID = 180◦−∠ABC, it follows thatR, I, andD are collinear.

20. We shall show the inequalitiesp(ABC) ≥ 2p(DEF) andp(PQR) ≥ 1
2 p(DEF).

The statement of the problem will immediately follow.
Let Db and Dc be the reflections ofD in AB and AC, and letA1,B1,C1 be
the midpoints ofBC,CA,AB, respectively. It is easy to see thatDb,F,E,Dc are
collinear. Hencep(DEF) = DbF +FE +EDc = DbDc ≤DbC1+C1B1+B1Dc =
1
2(AB + BC+CA) = 1

2 p(ABC).
To prove the second inequality we observe thatP, Q, andR are the points of
tangency of the excircles with the sides of△DEF. Let FQ = ER = x, DR =
FP = y, andDQ = EP = z, and letδ ,ε,ϕ be the angles of△DEF at D,E,F ,
respectively. LetQ′ andR′ be the projections ofQ andR ontoEF , respectively.
Then QR ≥ Q′R′ = EF − FQ′ − R′E = EF − x(cosϕ + cosε). Summing this
with the analogous inequalities forFD andDE we obtain
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p(PQR) ≥ p(DEF)− x(cosϕ +cosε)− y(cosδ +cosϕ)− z(cosδ +cosε).

Assuming w.l.o.g. thatx ≤ y ≤ z we also haveDE ≤ FD ≤ FE and consequently
cosϕ +cosε ≥ cosδ +cosϕ ≥ cosδ +cosε. Now Chebyshev’s inequality gives
us p(PQR) ≥ p(DEF)− 2

3(x + y + z)(cosε + cosϕ + cosδ ) ≥ p(DEF)− (x +

y + z) = 1
2 p(DEF), where we usedx + y + z = 1

2 p(DEF) and the fact that the
sum of the cosines of the angles in a triangle does not exceed3

2. This finishes the
proof.

21. We will show that 1 is the only such number. It is sufficientto prove that for
every prime numberp there exists someam such thatp | am. For p = 2,3 we
havep | a2 = 48. Assume now thatp > 3. Appyling Fermat’s theorem, we have:

6ap−2 = 3 ·2p−1+2 ·3p−1+6p−1−6≡ 3+2+1−6= 0 (mod p).

Hencep | ap−2, i.e. gcd(p,ap−2) = p > 1. This completes the proof.

22. It immediately follows from the condition of the problemthat all the terms of
the sequence are distinct. We also note that|ai −an| ≤ n−1 for all integersi,n
wherei < n, because ifd = |ai−an| ≥ n then{a1, . . . ,ad} contains two elements
congruent to each other modulod, which is a contradiction. It easily follows
by induction that for everyn ∈ N the set{a1, . . . ,an} consists of consecutive
integers. Thus, if we assumed some integerk did not appear in the sequence
a1,a2, . . . , the same would have to hold for all integers either larger orsmaller
thank, which contradicts the condition that infinitely many positive and negative
integers appear in the sequence. Thus, the sequence contains all integers.

23. Let us consider the polynomial

P(x) = (x + a)(x + b)(x + c)− (x−d)(x− e)(x− f )= Sx2 + Qx + R,

whereQ = ab + bc + ca−de− e f − f d andR = abc + de f .
SinceS | Q,R, it follows thatS | P(x) for everyx ∈ Z. Hence,S | P(d) = (d +
a)(d + b)(d + c). SinceS > d + a, d + b, d + c and thus cannot divide any of
them, it follows thatS must be composite.

24. We will show thatn has the desired property if and only if it is prime.
For n = 2 we can take onlya = 1. For n > 2 and even, 4| n!, but an + 1 ≡
1,2 (mod 4), which is impossible. Now we assume thatn is odd. Obviously
(n!−1)n +1≡ (−1)n +1= 0 (modn!). If n is composite andd its prime divisor,

then
(

n!
d −1

)n
+1= ∑n

k=1

(n
k

)

n!k

dk , where each summand is divisible byn! because

d2 | n!; thereforen! divides
(

n!
d −1

)n
+1. Thus, all composite numbers are ruled

out.
It remains to show that ifn is an odd prime andn! | an + 1, thenn! | a + 1 and
thereforea = n!−1 is the only relevant value for whichn! | an +1. Consider any
prime numberp ≤ n. If p | an+1

a+1 , we havep | (−a)n−1 and by Fermat’s theorem

p | (−a)p−1−1. Thereforep | (−a)(n,p−1)−1 = −a−1, i.e.a ≡ −1 (modp).
But then an+1

a+1 = an−1−an−2+ · · ·−a +1≡ n (mod p), implying thatp = n. It
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follows that an+1
a+1 is coprime to(n−1)! and consequently(n−1)! dividesa+1.

Moreover, the above consideration shows thatn must dividea+1. Thusn! | a+1
as claimed. This finishes our proof.

25. We will use the abbreviation HD to denote a “highly divisible integer”. Let
n = 2α2(n)3α3(n) · · · pαp(n) be the factorization ofn into primes. We haved(n) =
(α2(n)+1) · · ·(αp(n)+1). We start with the following two lemmas.
Lemma 1. If n is a HD andp,q primes withpk < ql (k, l ∈ N), then

kαq(n) ≤ lαp(n)+ (k +1)(l−1).

Proof. The inequality is trivial if αq(n) < l. Suppose thatαq(n) ≥ l. Then
npk/ql is an integer less thanq, andd(npk/ql) < d(n), which is equiva-
lent to (αq(n)+ 1)(αp(n)+ 1) > (αq(n)− l + 1)(αp(n)+ k + 1) implying
the desired inequality.

Lemma 2. For eachp andk there exist only finitely many HD’sn such that
αp(n) ≤ k.

Proof. It follows from Lemma 1 that ifn is a HD withαp(n) ≤ k, thenαq(n) is
bounded for each primeq andαq(n) = 0 for q > pk+1. Therefore there are
only finitely many possibilities forn.

We are now ready to prove both parts of the problem.
(a) Suppose that there are infinitely many pairs(a,b) of consecutive HD’s with

a | b. Sinced(2a) > d(a), we must haveb = 2a. In particular,d(s) ≤ d(a)
for all s < 2a. All but finitely many HD’s a are divisible by 2 and by 37.
Thend(8a/9) < d(a) andd(3a/2) < d(a) yield

(α2(a)+4)(α3(a)−1) < (α2(a)+1)(α3(a)+1)⇒ 3α3(a)−5 < 2α2(a),

α2(a)(α3(a)+2)≤ (α2(a)+1)(α3(a)+1)⇒ α2(a) ≤ α3(a)+1.

We now have 3α3(a)−5 < 2α2(a) ≤ 2α3(a)+ 2⇒ α3(a) < 7, which is a
contradiction.

(b) Assume for a given primep and positive integerk thatn is the smallest HD
with αp ≥ k. We show thatnp is also a HD. Assume the opposite, i.e. that
there exists a HDm < n

p such thatd(m) ≥ d( n
p). By assumption,m must

also satisfyαp(m)+1≤ αp(n). Then

d(mp) = d(m)
αp(m)+2
αp(m)+1

≥ d(n/p)
αp(n)+1

αp(n)
= d(n),

contradicting the initial assumption thatn is a HD (sincemp < n). This
proves thatnp is a HD. Since this is true for every positive integerk the proof
is complete.

26. Assumingb 6= a, it trivially follows that b > a. Let p > b be a prime number and
let n = (a+1)(p−1)+1.We note thatn≡ 1 (mod p−1) andn≡−a (mod p). It
follows thatrn = r ·(rp−1)a+1 ≡ r (mod p) for every integerr. We now havean +
n ≡ a−a = 0 (mod p). Thus,an +n is divisible byp, and hence by the condition
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of the problembn + n is also divisible byp. However, we also havebn + n ≡
b−a (mod p), i.e. p |b−a, which contradictsp > b. Hence, it must follow that
b = a. We note thatb = a trivially fulfills the conditions of the problem for all
a ∈ N.

27. Let p be a prime andk < p an even number. We note that(p− k)!(k− 1)! ≡
(−1)k−1(p− k)!(p− k +1) . . .(p−1) = (−1)k−1(p−1)! ≡ 1 (mod p) by Wil-
son’s theorem. Therefore

(k−1)!nP((p− k)!) = ∑n
i=0 ai[(k−1)!]n−i[(p− k)!(k−1)!]i

≡ ∑n
i=0 ai[(k−1)!]n−i = S((k−1)!) (mod p),

whereS(x) = an + an−1x + · · ·+ a0xn. Hencep | P((p− k)!) if and only if p |
S((k − 1)!). Note thatS((k − 1)!) depends only onk. Let k > 2an + 1. Then,
s = (k − 1)!/an is an integer which is divisible by all primes smaller thank.
HenceS((k−1)!) = anbk for somebk ≡ 1 (mods). It follows thatbk is divisible
only by primes larger thank. For large enoughk we have|bk|> 1. Thus for every
prime divisorp of bk we havep | P((p− k)!).
It remains to select a large enoughk for which |P((p− k)!)| > p. We takek =
(q−1)!, whereq is a large prime. All the numbersk+ i for i = 1,2, . . . ,q−1 are
composite (by Wilson’s theorem,q | k +1). Thusp = k + q + r, for somer ≥ 0.
We now have|P((p− k)!)|= |P((q+ r)!)|> (q+ r)! > (q−1)! +q+ r = p, for
large enoughq, sincen = degP ≥ 2. This completes the proof.
Remark. The above solution actually also works for all linear polynomials P
other thanP(x) = x+a0. Nevertheless, these particular cases are easily handled.
If |a0| > 1, thenP(m!) is composite form > |a0|, whereasP(x) = x + 1 and
P(x) = x−1 are both composite for, say,x = 5!. Thus the conditionn ≥ 2 was
redundant.





A

Notation and Abbreviations

A.1 Notation

We assume familiarity with standard elementary notation ofset theory, algebra, logic,
geometry (including vectors), analysis, number theory (including divisibility and
congruences), and combinatorics. We use this notation liberally.
We assume familiarity with the basic elements of the game of chess (the movement
of pieces and the coloring of the board).
The following is notation that deserves additional clarification.

◦ B(A,B,C), A−B−C: indicates the relation ofbetweenness, i.e., thatB is be-
tween A and C (this automatically means thatA,B,C are different collinear
points).

◦ A = l1∩ l2: indicates thatA is the intersection point of the linesl1 andl2.

◦ AB: line throughA andB, segmentAB, length of segmentAB (depending on
context).

◦ [AB: ray starting inA and containingB.

◦ (AB: ray starting inA and containingB, but without the pointA.

◦ (AB): open intervalAB, set of points betweenA andB.

◦ [AB]: closed intervalAB, segmentAB, (AB)∪{A,B}.

◦ (AB]: semiopen intervalAB, closed atB and open atA, (AB)∪{B}.
The same bracket notation is applied to real numbers, e.g.,[a,b) = {x | a ≤ x <
b}.

◦ ABC: plane determined by pointsA,B,C, triangleABC (△ABC) (depending on
context).

◦ [AB,C: half-plane consisting of lineAB and all points in the plane on the same
side ofAB asC.

◦ (AB,C: [AB,C without the lineAB.
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◦ a,b,c,α,β ,γ: the respective sides and angles of triangleABC (unless otherwise
indicated).

◦ k(O,r): circlek with centerO and radiusr.

◦ d(A, p): distance from pointA to line p.

◦ SA1A2...An : area ofn-gonA1A2 . . .An (special case forn = 3,SABC: area of△ABC).

◦ N, Z, Q, R, C: the sets of natural, integer, rational, real, complex numbers (re-
spectively).

◦ Zn: the ring of residues modulon, n ∈ N.

◦ Zp: the field of residues modulop, p being prime.

◦ Z[x], R[x]: the rings of polynomials inx with integer and real coefficients respec-
tively.

◦ R∗: the set of nonzero elements of a ringR.

◦ R[α], R(α), whereα is a root of a quadratic polynomial inR[x]: {a+bα | a,b ∈
R}.

◦ X0: X ∪{0} for X such that 0/∈ X .

◦ X+, X−, aX +b, aX +bY : {x | x ∈ X ,x > 0}, {x | x ∈ X ,x < 0}, {ax+b | x ∈ X},
{ax + by | x ∈ X ,y ∈Y} (respectively) forX ,Y ⊆ R, a,b ∈ R.

◦ [x], ⌊x⌋: the greatest integer smaller than or equal tox.

◦ ⌈x⌉: the smallest integer greater than or equal tox.

The following is notation simultaneously used in differentconcepts (depending on
context).

◦ |AB|, |x|, |S|: the distance between two pointsAB, the absolute value of the num-
berx, the number of elements of the setS (respectively).

◦ (x,y), (m,n), (a,b): (ordered) pairx andy, the greatest common divisor of inte-
gersm andn, the open interval between real numbersa andb (respectively).

A.2 Abbreviations

We tried to avoid using nonstandard notation and abbreviations as much as possible.
However, one nonstandard abbreviation stood out as particularly convenient:

◦ w.l.o.g.: without loss of generality.

Other abbreviations include:

◦ RHS: right-hand side (of a given equation).

◦ LHS: left-hand side (of a given equation).
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◦ QM, AM, GM, HM: the quadratic mean, the arithmetic mean, the geometric
mean, the harmonic mean (respectively).

◦ gcd, lcm: greatest common divisor, least common multiple (respectively).

◦ i.e.: in other words.

◦ e.g.: for example.





B

Codes of the Countries of Origin

ARG Argentina
ARM Armenia
AUS Australia
AUT Austria
BEL Belgium
BLR Belarus
BRA Brazil
BUL Bulgaria
CAN Canada
CHN China
COL Colombia
CRO Croatia
CUB Cuba
CYP Cyprus
CZE Czech Republic
CZS Czechoslovakia
EST Estonia
FIN Finland
FRA France
FRG Germany, FR
GBR United Kingdom
GDR Germany, DR
GEO Georgia
GER Germany
GRE Greece

HKG Hong Kong
HUN Hungary
ICE Iceland
INA Indonesia
IND India
IRE Ireland
IRN Iran
ISR Israel
ITA Italy
JAP Japan
KAZ Kazakhstan
KOR Korea, South
KUW Kuwait
LAT Latvia
LIT Lithuania
LUX Luxembourg
MCD Macedonia
MEX Mexico
MON Mongolia
MOR Morocco
NET Netherlands
NOR Norway
NZL New Zealand
PER Peru
PHI Philippines

POL Poland
POR Portugal
PRK Korea, North
PUR Puerto Rico
ROM Romania
RUS Russia
SAF South Africa
SER Serbia
SIN Singapore
SLO Slovenia
SMN Serbia and Montenegro
SPA Spain
SVK Slovakia
SWE Sweden
THA Thailand
TUN Tunisia
TUR Turkey
TWN Taiwan
UKR Ukraine
USA United States
USS Soviet Union
UZB Uzbekistan
VIE Vietnam
YUG Yugoslavia


