XIV APMO: Solutions and Marking Schemes

1. Let $a_1, a_2, a_3, \ldots, a_n$ be a sequence of non-negative integers, where n is a positive integer. Let

$$A_n = \frac{a_1 + a_2 + \dots + a_n}{n} \; .$$

Prove that

$$a_1!a_2!\ldots a_n! \ge \left(\lfloor A_n \rfloor !\right)^n,$$

where $\lfloor A_n \rfloor$ is the greatest integer less than or equal to A_n , and $a! = 1 \times 2 \times \cdots \times a$ for $a \ge 1$ (and 0! = 1). When does equality hold?

Solution 1.

Assume without loss of generality that $a_1 \ge a_2 \ge \cdots \ge a_n \ge 0$, and let $s = \lfloor A_n \rfloor$. Let k be any (fixed) index for which $a_k \ge s \ge a_{k+1}$.

Our inequality is equivalent to proving that

$$\frac{a_{1}!}{s!} \cdot \frac{a_{2}!}{s!} \cdot \dots \cdot \frac{a_{k}!}{s!} \ge \frac{s!}{a_{k+1}!} \cdot \frac{s!}{a_{k+2}!} \cdot \dots \cdot \frac{s!}{a_{n}!} .$$
(1)

Now for i = 1, 2, ..., k, $a_i!/s!$ is the product of $a_i - s$ factors. For example, $9!/5! = 9 \cdot 8 \cdot 7 \cdot 6$. The left side of inequality (1) therefore is the product of $A = a_1 + a_2 + \cdots + a_k - ks$ factors, all of which are greater than s. Similarly, the right side of (1) is the product of $B = (n - k)s - (a_{k+1} + a_{k+2} + \cdots + a_n)$ factors, all of which are at most s. Since $\sum_{i=1}^n a_i = nA_n \ge ns$, $A \ge B$. This proves the inequality. [5 marks to here.]

Equality in (1) holds if and only if either:

(i) A = B = 0, that is, both sides of (1) are the empty product, which occurs if and only if $a_1 = a_2 = \cdots = a_n$; or

(ii) $a_1 = 1$ and s = 0, that is, the only factors on either side of (1) are 1's, which occurs if and only if $a_i \in \{0,1\}$ for all *i*. [2 marks for both (i) and (ii), no marks for (i) only.]

Solution 2.

Assume without loss of generality that $0 \le a_1 \le a_2 \le \cdots \le a_n$. Let $d = a_n - a_1$ and $m = |\{i : a_i = a_1\}|$. Our proof is by induction on d.

We first do the case $d = a_n - a_1 = 0$ or 1 separately. Then $a_1 = a_2 = \cdots = a_m = a$ and $a_{m+1} = \cdots = a_n = a + 1$ for some $1 \le m \le n$ and $a \ge 0$. In this case we have $\lfloor A_n \rfloor = a$, so the inequality to be proven is just $a_1!a_2!\ldots a_n! \ge (a!)^n$, which is obvious. Equality holds if and only if either m = n, that is, $a_1 = a_2 = \cdots = a_n = a$; or if a = 0, that is, $a_1 = \cdots = a_m = 0$ and $a_{m+1} = \cdots = a_n = 1$. [2 marks to here.]

So assume that $d = a_n - a_1 \ge 2$ and that the inequality holds for all sequences with smaller values of d, or with the same value of d and smaller values of m. Then the sequence

$$a_1 + 1, a_2; a_3, \ldots, a_{n-1}, a_n - 1,$$

though not necessarily in non-decreasing order any more, does have either a smaller value of d, or the same value of d and a smaller value of m, but in any case has the same value of A_n . Thus, by induction and since $a_n > a_1 + 1$,

$$a_{1}!a_{2}!\dots a_{n}! = (a_{1}+1)!a_{2}!\dots a_{n-1}!(a_{n}-1)! \cdot \frac{a_{n}}{a_{1}+1}$$

$$\geq (\lfloor A_{n} \rfloor!)^{n} \cdot \frac{a_{n}}{a_{1}+1}$$

$$> (\lfloor A_{n} \rfloor!)^{n},$$

which completes the proof. Equality cannot hold in this case.

2. Find all positive integers a and b such that

$$\frac{a^2+b}{b^2-a} \quad \text{and} \quad \frac{b^2+a}{a^2-b}$$

are both integers.

Solution.

By the symmetry of the problem, we may suppose that $a \leq b$. Notice that $b^2 - a \geq 0$, so that if $\frac{a^2+b}{b^2-a}$ is a positive integer, then $a^2+b \ge b^2-a$. Rearranging this inequality and factorizing, we find that $(a+b)(a-b+1) \ge 0$. Since a,b > 0, we must have $a \ge b-1$. [3] marks to here.] We therefore have two cases:

Case 1: a = b. Substituting, we have

$$\frac{a^2+a}{a^2-a} = \frac{a+1}{a-1} = 1 + \frac{2}{a-1} ,$$

which is an integer if and only if $(a-1)|_2$. As a > 0, the only possible values are a-1 = 1 or 2. Hence, (a, b) = (2, 2) or (3, 3). [1 mark.]

Case 2: a = b - 1. Substituting, we have

$$\frac{b^2 + a}{a^2 - b} = \frac{(a+1)^2 + a}{a^2 - (a+1)} = \frac{a^2 + 3a + 1}{a^2 - a - 1} = 1 + \frac{4a + 2}{a^2 - a - 1}$$

Once again, notice that 4a + 2 > 0, and hence, for $\frac{4a+2}{a^2 - a - 1}$ to be an integer, we must have $4a+2 \ge a^2-a-1$, that is, $a^2-5a-3 \le 0$. Hence, since a is an integer, we can bound a by $1 \le a \le 5$. Checking all the ordered pairs $(a, b) = (1, 2), (2, 3), \dots, (5, 6)$, we find that only (1,2) and (2,3) satisfy the given conditions. [3 marks.]

Thus, the ordered pairs that work are

$$(2, 2), (3, 3), (1, 2), (2, 3), (2, 1), (3, 2),$$

where the last two pairs follow by symmetry. [2 marks if these solutions are found without proof that there are no others.]

3. Let ABC be an equilateral triangle. Let P be a point on the side AC and Q be a point on the side AB so that both triangles ABP and ACQ are acute. Let R be the orthocentre of triangle ABP and S be the orthocentre of triangle ACQ. Let T be the point common to the segments BP and CQ. Find all possible values of $\angle CBP$ and $\angle BCQ$ such that triangle TRSis equilateral.

Solution.

We are going to show that this can only happen when

$$\angle CBP = \angle BCQ = 15^{\circ}.$$

Lemma. If $\angle CBP > \angle BCQ$, then RT > ST.

Proof. Let AD, BE and CF be the altitudes of triangle ABC concurrent at its centre G. Then P lies on CE, Q lies on BF, and thus T lies in triangle BDG.

Note that

$$\angle FAS = \angle FCQ = 30^\circ - \angle BCQ > 30^\circ - \angle CBP = \angle EBP = \angle EAR.$$

Since AF = AE, we have FS > ER so that

$$GS = GF - FS < GE - ER = GR.$$

Let T_x be the projection of T onto BC and T_y be the projection of T onto AD, and similarly for R and S. We have

$$R_x T_x = DR_x + DT_x > |DS_x - DT_x| = S_x T_x$$

and

$$R_y T_y = GR_y + GT_y > GS_y + GT_y = S_y T_y.$$

It follows that RT > ST. \Box

[1 mark for stating the Lemma, 3 marks for proving it.]

Thus, if $\triangle TRS$ is equilateral, we must have $\angle CBP = \angle BCQ$.

It is clear from the symmetry of the figure that TR = TS, so $\triangle TRS$ is equilateral if and only if $\angle RTA = 30^\circ$. Now, as *BR* is an altitude of the triangle *ABC*, $\angle RBA = 30^\circ$. So $\triangle TRS$ is equilateral if and only if *RTBA* is a cyclic quadrilateral. Therefore, $\triangle TRS$ is equilateral if and only if $\angle TBR = \angle TAR$. But

$$90^{\circ} = \angle TBA + \angle BAR$$

= $(\angle TBR + \angle RBA) + (\angle BAT + \angle TAR)$
= $(\angle TBR + 30^{\circ}) + (30^{\circ} + \angle TAR)$

and so

$$30^{\circ} = \angle TAR + \angle TBR.$$

But these angles must be equal, so $\angle TAR = \angle TBR = 15^{\circ}$. Therefore $\angle CBP = \angle BCQ = 15^{\circ}$. [3 marks for finishing the proof with the assumption that $\angle CBP = \angle BCQ$.]

4. Let x, y, z be positive numbers such that

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1.$$

Show that

$$\sqrt{x+yz} + \sqrt{y+zx} + \sqrt{z+xy} \ge \sqrt{xyz} + \sqrt{x} + \sqrt{y} + \sqrt{z}.$$

Solution 1.

$$\sum_{\text{cyclic}} \sqrt{x + yz} = \sqrt{xyz} \sum_{\text{cyclic}} \sqrt{\frac{1}{x} + \frac{1}{yz}}$$
$$= \sqrt{xyz} \sum_{\text{cyclic}} \sqrt{\frac{1}{x} \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) + \frac{1}{yz}} \quad [1 \text{ mark.}]$$
$$= \sqrt{xyz} \sum_{\text{cyclic}} \sqrt{\left(\frac{1}{x} + \frac{1}{y}\right) \left(\frac{1}{x} + \frac{1}{z}\right)} \quad [1 \text{ mark.}]$$

4

$$= \sqrt{xyz} \sum_{\text{cyclic}} \sqrt{\left(\frac{1}{x} \div \frac{1}{\sqrt{yz}}\right)^2 \div \frac{(\sqrt{y} - \sqrt{z})^2}{xyz}} \qquad [2 \text{ marks.}]$$

$$\geq \sqrt{xyz} \sum_{\text{cyclic}} \left(\frac{1}{x} \div \frac{1}{\sqrt{yz}}\right) \qquad [1 \text{ mark.}]$$

$$= \sqrt{xyz} \left(1 \div \sum_{\text{cyclic}} \frac{1}{\sqrt{yz}}\right) \qquad [1 \text{ mark.}]$$

$$= \sqrt{xyz} \div \sum_{\text{cyclic}} \sqrt{x}. \qquad [1 \text{ mark.}]$$

Note. It is easy to check that equality holds if and only if x = y = z = 3.

Solution 2.

Squaring both sides of the given inequality, we obtain

$$\sum_{\text{cyclic}} x + \sum_{\text{cyclic}} yz + 2 \sum_{\text{cyclic}} \sqrt{x + yz} \sqrt{y + zx}$$

$$\geq xyz + 2\sqrt{xyz} \sum_{\text{cyclic}} \sqrt{x} + \sum_{\text{cyclic}} x + 2 \sum_{\text{cyclic}} \sqrt{xy}.$$
 [1 mark.]

It follows from the given condition $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$ that $xyz = \sum_{\text{cyclic}} xy$. Therefore, the given inequality is equivalent to

$$\sum_{\text{cyclic}} \sqrt{x + yz} \sqrt{y + zx} \ge \sqrt{xyz} \sum_{\text{cyclic}} \sqrt{x} + \sum_{\text{cyclic}} \sqrt{xy}. \quad [2 \text{ marks.}]$$

Using the Cauchy-Schwarz inequality [or just $x^2 + y^2 \ge 2xy$], we see that

$$(x+yz)(y+zx) \ge (\sqrt{xy}+\sqrt{xyz^2})^2,$$
 [1 mark.]

or

$$\sqrt{x+yz}\sqrt{y+zx} \ge \sqrt{xy} + \sqrt{z}\sqrt{xyz}.$$
 [1 mark.]

Taking the cyclic sum of this inequality over x, y and z, we get the desired inequality. [2 marks.]

Solution 3.

This is another way of presenting the idea in the first solution. Using the condition $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$ and the AM-GM inequality, we have

$$x + yz - \left(\sqrt{\frac{yz}{x}} + \sqrt{x}\right)^2 = yz\left(1 - \frac{1}{x}\right) - 2\sqrt{yz}$$
$$= yz\left(\frac{1}{y} + \frac{1}{z}\right) - 2\sqrt{yz} = y + z - 2\sqrt{yz} \ge 0,$$

which gives

$$\sqrt{x+yz} \ge \sqrt{\frac{yz}{x}} + \sqrt{x}.$$
 [3 marks.]

Similarly, we have

$$\sqrt{y+zx} \ge \sqrt{\frac{zx}{y}} + \sqrt{y}$$
 and $\sqrt{z+xy} \ge \sqrt{\frac{xy}{z}} + \sqrt{z}.$

Addition yields

$$\sqrt{x+yz} + \sqrt{y+zx} + \sqrt{z+xy} \ge \sqrt{\frac{yz}{x}} + \sqrt{\frac{zx}{y}} + \sqrt{\frac{xy}{z}} + \sqrt{x} + \sqrt{y} + \sqrt{z}.$$

[2 marks.] Using the condition $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$ again, we have

$$\sqrt{\frac{yz}{x}} + \sqrt{\frac{zx}{y}} + \sqrt{\frac{xy}{z}} = \sqrt{xyz} \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = \sqrt{xyz}, \qquad [1 \text{ mark.}]$$

and thus

$$\sqrt{x+yz} + \sqrt{y+zx} + \sqrt{z+xy} \ge \sqrt{xyz} + \sqrt{x} + \sqrt{y} + \sqrt{z}.$$
 [1 mark.]

Solution 4.

This is also another way of presenting the idea in the first solution.

We make the substitution $a = \frac{1}{x}$, $b = \frac{1}{y}$, $c = \frac{1}{z}$. Then it is enough to show that

$$\sqrt{\frac{1}{a} + \frac{1}{bc}} + \sqrt{\frac{1}{b} + \frac{1}{ca}} + \sqrt{\frac{1}{c} + \frac{1}{ab}} \ge \sqrt{\frac{1}{abc}} + \sqrt{\frac{1}{a}} + \sqrt{\frac{1}{b}} + \sqrt{\frac{1}{c}} ,$$

where a + b + c = 1. Multiplying this inequality by \sqrt{abc} , we find that it can be written

$$\sqrt{a+bc} + \sqrt{b+ca} + \sqrt{c+ab} \ge 1 + \sqrt{bc} + \sqrt{ca} + \sqrt{ab}.$$
 [1 mark.]

This is equivalent to

$$\sqrt{a(a+b+c)+bc} + \sqrt{b(a+b+c)+ca} + \sqrt{c(a+b+c)+ab}$$

$$\geq a+b+c+\sqrt{bc} + \sqrt{ca} + \sqrt{ab}, \qquad [1 \text{ mark.}]$$

which in turn is equivalent to

$$\sqrt{(a+b)(a+c)} + \sqrt{(b+c)(b+a)} + \sqrt{(c+a)(c+b)} \ge a+b+c + \sqrt{bc} + \sqrt{ca} + \sqrt{ab}.$$

[1 mark.] (This is a homogeneous version of the original inequality.) By the Cauchy-Schwarz inequality (or since $b + c \ge 2\sqrt{bc}$), we have

$$[(\sqrt{a})^2 + (\sqrt{b})^2][(\sqrt{a})^2 + (\sqrt{c})^2] \ge (\sqrt{a}\sqrt{a} + \sqrt{b}\sqrt{c})^2$$

or

$$\sqrt{(a+b)(a+c)} \ge a + \sqrt{bc}.$$
 [2 marks.]

Taking the cyclic sum of this inequality over a, b, c, we get the desired inequality. [2 marks.]

5. Let R denote the set of all real numbers. Find all functions f from R to R satisfying: (i) there are only finitely many s in R such that f(s) = 0, and

(ii) $f(x^4 + y) = x^3 f(x) + f(f(y))$ for all x, y in R.

Solution 1.

The only such function is the identity function on R.

Setting (x, y) = (1, 0) in the given functional equation (ii), we have f(f(0)) = 0. Setting x = 0 in (ii), we find

$$f(y) = f(f(y)) \tag{1}$$

[1 mark.] and thus f(0) = f(f(0)) = 0 [1 mark.]. It follows from (ii) that $f(x^4 + y) = x^3 f(x) + f(y)$ for all $x, y \in \mathbb{R}$. Set y = 0 to obtain

$$f(x^4) = x^3 f(x) \tag{2}$$

for all $x \in \mathbf{R}$, and so

$$f(x^4 + y) = f(x^4) + f(y)$$
(3)

for all $x, y \in \mathbf{R}$. The functional equation (3) suggests that f is additive, that is, f(a + b) = f(a) + f(b) for all $a, b \in \mathbf{R}$. [1 mark.] We now show this.

First assume that $a \ge 0$ and $b \in \mathbf{R}$. It follows from (3) that

$$f(a+b) = f((a^{1/4})^4 + b) = f((a^{1/4})^4) + f(b) = f(a) + f(b).$$

We next note that f is an *odd* function, since from (2)

$$f(-x) = \frac{f(x^4)}{(-x)^3} = \frac{f(x^4)}{-x^3} = -f(x), \quad x \neq 0.$$

Since f is odd, we have that, for a < 0 and $b \in \mathbf{R}$,

$$f(a+b) = -f((-a) + (-b)) = -(f(-a) + f(-b))$$

= -(-f(a) - f(b)) = f(a) + f(b).

Therefore, we conclude that f(a+b) = f(a) + f(b) for all $a, b \in \mathbb{R}$. [2 marks.]

We now show that $\{s \in \mathbb{R} | f(s) = 0\} = \{0\}$. Recall that f(0) = 0. Assume that there is a nonzero $h \in \mathbb{R}$ such that f(h) = 0. Then, using the fact that f is additive, we inductively have f(nh) = 0 or $nh \in \{s \in \mathbb{R} | f(s) = 0\}$ for all $n \in \mathbb{N}$. However, this is a contradiction to the given condition (i). [1 mark.]

It's now easy to check that f is one-to-one. Assume that f(a) = f(b) for some $a, b \in \mathbb{R}$. Then, we have f(b) = f(a) = f(a-b) + f(b) or f(a-b) = 0. This implies that $a-b \in \{s \in \mathbb{R} | f(s) = 0\} = \{0\}$ or a = b, as desired. From (1) and the fact that f is one-to-one, we deduce that f(x) = x for all $x \in \mathbb{R}$. [1 mark.] This completes the proof.

Solution 2.

Again, the only such function is the identity function on R.

As in Solution 1, we first show that f(f(y)) = f(y), f(0) = 0, and $f(x^4) = x^3 f(x)$. [2 marks.] From the latter follows

$$f(x) = 0 \Longrightarrow f(x^4) = 0,$$

and from condition (i) we get that f(x) = 0 only possibly for $x \in \{0, 1, -1\}$. [1 mark.]

Next we prove

$$f(a) = b \Longrightarrow f\left(\sqrt[4]{|a-b|}\right) = 0.$$

This is clear if a = b. If a > b then

$$f(a) = f((a-b)+b) = (a-b)^{3/4} f(\sqrt[4]{a-b}) + f(f(b))$$

= $(a-b)^{3/4} f(\sqrt[4]{a-b}) + f(b)$
= $(a-b)^{3/4} f(\sqrt[4]{a-b}) + f(f(a))$
= $(a-b)^{3/4} f(\sqrt[4]{a-b}) + f(a),$

so $(a-b)^{3/4}f(\sqrt[4]{a-b}) = 0$ which means $f\left(\sqrt[4]{|a-b|}\right) = 0$. If a < b we get similarly

$$f(b) = f((b-a)+a) = (b-a)^{3/4} f(\sqrt[4]{b-a}) + f(f(a))$$

= $(b-a)^{3/4} f(\sqrt[4]{b-a}) + f(b),$

and again $f\left(\sqrt[4]{|a-b|}\right) = 0$. [2 marks.] Thus $f(a) = b \Longrightarrow |a-b| \in \{0,1\}$. Suppose that f(x) = x + b for some x, where |b| = 1. Then from $f(x^4) = x^3 f(x)$ and $f(x^4) = x^4 + a$ for some $|a| \le 1$ we get $x^3 = a/b$, so $|x| \le 1$. Thus f(x) = x for all x except possibly $x = \pm 1$. [1 mark.] But for example,

$$f(1) = f(2^4 - 15) = 2^3 f(2) + f(f(-15)) = 2^3 \cdot 2 - 15 = 1$$

and

$$f(-1) = f(2^4 - 17) = 2^3 f(2) + f(f(-17)) = 2^3 \cdot 2 - 17 = -1.$$

[1 mark.] This finishes the proof.