XIV APMO: Solutions and Marking Schemes

1. Let aj,a2,as,...,a, be a sequence of non-negative integers, where n is a positive integer.

Let
ay + ag +rer Fag

n

Ap =

Prove that
ajlasl...an! = ([An))",

where | A, ] is the greatest integer less than or equal to A,, and a! =1x2x---xaforaz= 1
(and 0! = 1). When does equality hold?

Solution 1.

Assume without loss of generality that a; > a2 2 -+ 2 an 2 0, and let s = | 4,]. Let k be
any (fixed) index for which ax > s = ak+1-

Our inequality is equivalent to proving that

a! aso! ag! s! s! s!
L S T . e (1)

sl sl s! ag+1!  ako! ol
Now fori = 1,2,...,k, a;!/s! is the product of a; —s factors. For example, 9!/5! =9-8-7-6.
The left side of inequality (1) therefore is the product of A =a; +ap+---+ax—ks factors,

all of which are greater than s. Similarly, the right side of (1) is the product of B = (n—k)s —
(dpiy +Opan+=oo a,) factors, all of which are at most s. Since Y% ; a; =nd, >ns, A> B.
This proves the inequality. [5 marks to here.]

Equality in (1) holds if and only if either:

(i) A= B =0, that is, both sides of (1) are the empty product, which occurs if and only if
ay = agz = ---:”an; or

(ii) a; = 1 and s = 0, that is, the only factors on either side of (1) are 1's, which occurs if
and only if a; € {0,1} for all ¢. [2 marks for both (i) and (ii), no marks for (i) only.]

Solution 2.

Assume without loss of generality that 0 < a1 < ap < --- < an. Let d = ap —a; and
m = |{i : a; = a1}|. Our proof is by induction on d.

We first do the case d = ap —a3 =0or 1 separately. Then a; = a2 = =am =0 and
Am4il = -+ = an = a + 1 for some 1< m<nanda>0. In this case we have |An] = a, so
the inequality to be proven is just ailas!... an! > (a!)™, which is obvious. Equality holds if and
only if either m = n, that is, ag = az =+ = Gn = 4; OF ifa=0,thatis,ay =---=am =0
and amer = - =an =1. [2 marks to here.]

So assume that d = an — a1 > 2 and that the inequality holds for all sequences with smaller
values of d, or with the same value of d and smaller values of m. Then the sequence

a’1+11 az; ag, ..., An-1, a‘n—'ly

though not necessarily in non-decreasing order any more, does have either a smaller value of
d, or the same value of d and a smaller value of m, but in any case has the same value of A,.
Thus, by induction and since an > a1 + 1,



aplas!...an! = (a1 +1)lagl...an1l(an — -

2 (A 22
ay -
> (LA

which completes the proof. Equality cannot hold in this case.

2. Find all positive integers a and b such that

> LB ond BP4+a
b2 —a a?—b

are both integers.

Solution.
By the symmetry of the problem, we may suppose that a < b. Notice that b* —a > 0,

so that 1f = is a positive integer, then a2 + b > b? — a. Rearranging this inequality and

factorizing, we e find that (a +b)(a—b-+1) > 0. Since a,b > 0, we must have a > b—1. [3
marks to here.] We therefore have two cases:

Case 1: a = b. Substituting, we have

a?+a a+1 2
=1+ ,
a—1

—

a2—a a-—

which is an integer if and only if (a —1)|2. As a >0, the only possible values are a —1 =1 or
9. Hence, (a,b) = (2,2) or (3,3). [1 mark.]

Case 2: a = b — 1. Substituting, we have

b°+a_(a-:~12+a_a2+3a—‘r1__1_l_ da +
a2-b a?—(a+1 a?—a-1 " a?-a-1
. . da+2 :
Once again, notice that 4a +2 > 0, and hence, for ———— t0 be an integer, we must have
a?—a-—

4q + 2 > a®? —a — 1, that is, a2 — 5a — 3 < 0. Hence, since a is an integer, we can bound e
by 1 < a < 5. Checking all the ordered pairs (a,b) = (1,2),(2,3),..-,(5,6), we find that only
{1,2) and (2,3) satisfy the given conditions. [3 marks.]

Thus, the ordered pairs that work are

(2’ 2)7 (31 3)7 (172)’ (27 3)’ (2’ 1)’ (37 2)7

where the last two pairs follow by symmetry. [2 marks if these solutions are found without
proof that there are no others.]



3. Let ABC be an equilateral triangle. Let P be a point on the side AC and @) be a point
on the side AB so that both triangles ABP and ACQ are acute. Let R be the orthocentre of
triangle ABP and S be the orthocentre of triangle ACQ. Let T be the point common to the

segments BP and CQ. Find all possible values of ZCBP and /BCQ such that triangle TRS
is equilateral.

Solution.
We are going to show that this can only happen when

LCBP = [BCQ =15°.

Lemma. If ZCBP > (BCQ, then RT > ST.

Proof. Let AD, BE and CF be the altitudes of triangle ABC concurrent at its centre G.
Then P lies on CE, Q lies on BF, and thus T lies in triangle BDG.
A

Note that
/FAS = [FCQ =30°— LBCQ >30° - LCBP = LEBP = LEAR.
Since AF = AE, we have F'S > ER so that
GS=GF -FS<GE—-ER=GR.

Let T, be the projection of T" onto BC and Ty be the projection of T onto AD, and similarly
for R and S. We have

R,T. = DRy + DT > |DS; — DIz| = ST
and

R,T, =GRy + GT, > GSy+GTy = Sylys
Tt follows that RT > ST. |

[1 mark for stating the Lemma, 3 marks for proving it.]

Thus, if AT RS is equilateral, we must have LCBP = (BCQ.



B
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It is clear from the symmetry of the figure that TR = T'S, so ATRS is equilateral if and
only if ZRT A = 30°. Now, as BR is an altitude of the triangle ABC, /RBA = 30°. So ATRS
is equilateral if and only if RT'BA is a cyclic quadrilateral. Therefore, AT RS is equilateral if
and only if /TBR = /TAR. But

90° = (TBA+/BAR
— (/TBR+(RBA)+ (/BAT + [TAR)
(LTBR +30°) + (30° + LT AR)

and so
30° = /TAR+ /TBR.

But these angles must be equal, so /TAR = (/TBR = 15°. Therefore /CBP = (BCQ = 15°.
[3 marks for finishing the proof with the assumption that /CBP = (BCQ.]

4. Let z,y, z be positive numbers such that
1 !
o

Show that

\/5+y2+\/y+2$+\/2+23yZ\/xszr\/EJr\/ij.—\/Z.
Solution 1.

S VETE = VEEY o+

cyclic cyclic

— \/I_yzz %(l-‘— +§>+-1— [1 mark.]

cyclic

L
Y
= JIyz Y, (%fa(%nﬁ) [1 mark.]

cyclic

e



- 2
— Tz Z \’ <-i— -+ \/11/_Z> -+ (V¥ - V) [2 marks.]
1
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ﬁ
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Note. It is easy to check that equality holds if and only fe=y4=2=23.

Solution 2.
Squaring both sides of the given inequality, we obtain

Z T+ 2 yz + 2 Z T+ yzVy + 2z

cyclic cyclic cyclic
> zyz + 2./TYz Z VT + Z T+ 2 Z R [1 mark.]

cyclic cyclic cyclic
It follows from the given condition % =+

inequality is equivalent to

Z\/i—‘ryz\/ﬁ—zxz\/xy—zz\/ft—ﬁ—z\/@. [2 marks.]

cyclic cyclic cyclic

% o % =1 that zyz = ) yaic Y- Therefore, the given

Using the Cauchy—Schwarz inequality [or just z2 + 9% > 2zy], we see that

(z +yz)(y +2z) > (Vzy + Jzyz2)?, [1 mark.]

or

JZ FyzVy T 2z > Ty + V2/Zyz.  [1 mark]

Taking the cyclic sum of this inequality over z,y and z, we get the desired inequality. [2
marks.]

Solution 3.
This is another way of presenting the idea in the first solution.
Using the condition —i; + % —+ % = 1 and the AM-GM inequality, we have

z+yz—<\/zxz+\/5)2 = yz(l—%)—Q\/@E

‘ 1 1
= yz(g—J—-—l-—)—Q\/ﬁ:y-{—z—Q\/yZZO,

z

which gives

a:—'ryzZ,/%-%—\/E. [3 marks.]
g



Similarly, we have

2T /
Vy+zz > ?—\/@_ and z+zy > ?T\/E

Addition yields

=z 2T [zy
\/§+yz+\/y+z:z:+\/z+ry2,/y;+,/?+\/—zq+\/5+\/_+\/§.

! again, we have

[2 marks.] Using the condition i+ % + 2

\/'EZ——— \/, \/» z:yz( i %) — BT [1 mark.
and thus
VIt gz +VyF 2z +Vz Ty > IR VT + Y+ V2 [1 mark.]
Solution 4.

This is also another way of presenting the idea in the first solution.
= % Then it is enough to show that

We make the substitution a = %, b= ke

VxSl as o o3 S8 S 00 0.4

where a + b+ ¢ = 1. Multiplying this inequality by vabc, we find that it can be written

[1 mark.

\/a+bc+\/b7—|—ca+\[c+ab21-i—\/b_+\/c_a+\/—c5.

This is equivaleilt to
vala+b+c)+bc+ b(a+b+c)+ca+\/c(a+b+c)+ab
>a+b+c+vbe++ea++vab, [l mark]

which in turn is equivalent to

\ﬂa——b F—c b+a) +\/ +a)(c+b)>a

[1 mark.] (This is a homogeneous version of the original inequality.) By the Cauchy—Schwarz
inequality (or since b+c¢ > 2v/bc), we have

(Va)? + (VB[(va)® + (Vo)'] = (Vava + vVbve)?

or '
\/(a—k—b)(a—:c)Za—i—\/fE. [2 marks.]

Taking the cyclic sum of this inequality over a, b, c, we get the desired inequality. [2 marks.]

+b+c+ Voc+ ea + Vab.




5 Let R denote the set of all real numbers. Find all functions f from R to R satisfying:
(i) there are only finitely many s in R such that f(s) =0, and
(ii) f(z*+y) =2°f(z) + f(f(y)) for all z,y in R.

Solution 1.
The only such function is the identity function on R.
Setting (z,y) = (1,0) in the given functional equation (ii), we have f(f(0)) = 0. Setting
z = 0 in (ii), we find
fly) =7 ) (1)
[1 mark.] and thus f(0) = #(£(0)) = 0 [1 mark.]. It follows from (ii) that flzt+y) =
z3f(z) + f(y) for all z,y € R. Set y = 0 to obtain

f(z*) = 2°f(z) (2)

for all z € R, and so
fla* +y) = f=*) + f() (3)

for all z,y € R. The functional equation (3) suggests that f is additive, that is, fla+b) =
f(a) + f(b) for all a,b € R. [1 mark.] We now show this.
First assume that a > 0 and b € R. It follows from (3) that

fla+b) = F((@4* +b) = f((a*)*) + F(b) = f(a) + £ (B)-

We next note that f is an odd function, since from (2)

fla+b) = —f((=a)+(=b))=—(f(=a) + f(=D))
= —(=f(a) = £(¥)) = f(a) + f(b).

Ther=fcre, we conclude that f(a+b) = f(a) + F(b) for all a, beR. [2 marks.]

We now show that {s € R|f(s) = 0} = {0}. Recall that f(0) = 0. Assume that there is
a nonzero h € R such that f(h) = 0. Then, using the fact that f is additive, we inductively
have f(nh) = 0 or nh € {s € R|f(s) =0} for all n € N. However, this is a contradiction to
the given condition (i). [1 mark.]

It’s now easy to check that f is one-to-ome. Assume that f(a) = f{(b) for some a,b € R.
Then, we have f(b) = f(a) = f(a—b) + f(b) or f(a—b) = 0. This implies that a —b € {s €
R|f(s) = 0} = {0} or a = b, as desired. From (1) and the fact that f is one-to-one, we deduce
that f(z) = z for all z € R. [1 mark.] This completes the proof.

Solution 2.

Again, the only such function is the identity function on R.

As in Solution 1, we first show that f(f(y)) = f(y), f(0) = 0, and f(z*) = 23 f(z). [2
marks.] From the latter follows :

flz)=0=> f(z*) =0,

7



and from condition (i) we get that f(z) = 0 only possibly for z € {0,1,—1}. [1 mark.]
Next we prove

fo)=v— 1 ({fla=tl) =o.

This is clear if a = b. If @ > b then

fl@) = f(la=b)+b)=(
= (a—b)**f(Va—b)

— b)Y f(Va=b) + F(f()

Va —b) + f(b)
= (a=b**f(Va-b)+ f(f(a))
= (a-b)¥*f(Va=b)+ f(a),

so (a — b)3/*f(¥/a —b) = 0 which means f ( Va — b|) = 0. If a < b we get similarly

ol 8

) = fllb—a)+a)=(b—a)**f(Vb—a)+ f(f(a))
= (b—a)**f(Vb—a)+ F(b),

and again f ({‘/ja - b}) = 0. [2 marks.]

Thus f(a) = b = |a — b € {0,1}. Suppose that f(z) = z + b for some z, where [b] = 1.
Then from f(z?) = z%f(z) and f(z*) = z* + a for some |a| < 1 we get z3 = a/b, so |z] < 1.
Thus f(z) = z for all z except possibly z = 1. [1 mark.] But for example,

F(1)=f(24—15) =23F(2) + f(f(~15)) =2 .2 - 15 =1

and

F(-1) = (2 = 17) = BF(@) + F(F(-17) =282~ 17 = -1,
[1 mark.] This finishes the proof.



