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Problem 1. Let f :[0,1] — R be a continuous strictly increasing function such that

lim M =1.
z—0t T

(a) Prove that the sequence (z,),>1 defined by
1 1 1 " 1
SOMIORSON SO
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(b) Find the limit of the sequence (y,)n>1 defined by

1 1 1
y":f(n+1)+f<n+2>+”'+f<2021n>‘

is convergent.

Problem 2. Let n > 2 be a positive integer and let A € M,,(R) be a matrix such that A% = —1I,,.
If B e M,(R) and AB = BA, prove that det B > 0.

Problem 3. Let A € M,,(C) be a matrix such that (44*)? = A*A, where A* = (Z)t denotes the
Hermitian transpose (i.e., the conjugate transpose) of A.

(a) Prove that AA* = A*A.

(b) Show that the non-zero eigenvalues of A have modulus one.

Problem 4. For p € R, let (ay),>1 be the sequence defined by

ap = nlp/on | sin(wx)‘xda:.

oo
Determine all possible values of p for which the series Z a, converges.
n=1
Language: English Time: 5 hours

Each problem is worth 10 points



Solution - Problem 1a:

= (1) [T (2) )+ (2):

Because f is increasing, for all £ > 1 and z € [k, k + 1] we have

1 1 1
f(zm) <f<x> <f<k>
1 k+1 1 1
f<k+1></k f<x)dx<f<k> W

Summing up for £ =1 up to n — 1 we obtain

We write

and therefore

/ (1) <o < F1).

Since f is increasing then z,, is bounded below by f(0).

It is easy to see that z,, is decreasing since using (1) we have:

1 n+1 1 4
= _ - <0.
Tpgl — Tn f(n+1> [; f<x> r<0

We conclude that () is convergent to some ¢ € R.

Solution 1 - Problem 1b:
; o @) fx)
Since mli%l+ - -

In particular, for every n > % and every k > 1 we have 0 < %M <1 <6 and therefore

=1, given € > 0, thereisa > 0 such that 1 —¢ < < 1+eforevery 0 < x <.

(1—¢)

1 <f b <(1+¢) !
n+k n+k 8n+l<:’

Summing up the above inequalities from k£ =1 to 2020n we get

1 1 1
(1—5)Sn<f(n+1>+f<n+2>++f(2021n> <(1+€)Sn,

where
1 1 1

il Tnt2 T T o000

It is well-known that lim S, = In(2021) so since ¢ is arbitrary, we get that lim y, = In2021.
n—oo n—oo

Sp =




Solution 2 - Problem 1b:

Since

202In /1
Yn = T2021n — Tn +/ f <> dz,
n x

from part (a), it is enough to find

2021n 1
lim f <) dz.

n—oo /. X

1
With the change of variable x = S we obtain

/:omnf (;) do — /i ft(;)dt-

2021n

Since lim+ @ =1, given ¢ > 0, thereisa § > O such that 1 —¢ < @ < 1+eforevery 0 < x < 4.
r—0

In particular, for every n > %, we have 0 < 202% < % < ¢ and therefore

"ol {0 "ol
_ Zdt < S il
(1—¢) X tdt\/1 2 dt < (1+4¢) ) tdt.
2021n 2021n 2021n

Since ¢ is arbitrary, and since

S=

1
J dt =1n(2021n) — Inn = In 2021,

2021n

we conclude that
lim y, =1In2021.

n—o0



Solution - Problem 2:

Since A% = —1I,,, the only possible eigenvalues of A are +i. Since also A € M, (R) then n = 2k
and A has k eigenvalues equal to i and k eigenvalues equal to —i. Its minimal polynomial is
22 + 1 which has distinct roots, therefore A is diagonalizable and is therefore similar to

il O
X = [Ok —ifk] '

Ok Ik
—I O
to X. Therefore A and P are similar and so there is an invertible matrix U € M, (R) such that
P=U"1AU. For C =U'BU € M,(R) we get

Similarly, if P = [ } then P is also a real matrix with P2 = —1I,, and so P is also similar

CP=U'BAU and PC =U'ABU. 1)

Since AB = BA, by (1) it follows that CP = PC.

X Y], where XY, Z, T € My(R) and using CP = PC, it

Writing C' into block form C = [ 7 7

X Y

follows that X =T and Z = —Y. Hence C = [—Y Y

]. We now see that
X Y| (X4 Y—iX| | X+iY (Y —iX)—-i(X+3Y)| | X+ 0
-Y X| | =Y X I - X —iY I X —iY|’

Therefore

det B = det € — ‘_)if §’ — det(X — iY) det(X + 1Y) = | det(X +iY)|* > 0.

Alternative Solution - Problem 2

Let A be a real eigenvalue of B and let GG) be its generalized eigenspace considered as a real
vector space. L.e.

Gr={veR":(B—-\,)"v=0}.
We have AB? = (AB)B = (BA)B = B(AB) = B(BA) = B?A. Inductively we get AB* = B¥A
for every natural number k£ and from this we deduce that Ap(B) = p(B)A for every polynomial
p(z). In particular, A(B — A\I,)" = (B — Al,)"A.

Now if v € G, then (B — \[,,)"(Av) = A(B — AI,,)"v = 0, so Av € G). Therefore we can define
the linear map o : Gy — G, by a(v) = Av.
Pick a basis of G\ and let A" be the matrix of « with respect to this basis. Then A’ € M,,(R)

and (A")? = —1I,/, where n/ = dim(G)). As in the previous solution, we get that n’ is even.

Since dim(G)) is even for every real eigenvalue of B and since its complex eigenvalues come in
conjugate pairs, then det(B) > 0.



Solution - Problem 3:

(a)

(b)

The matrix AA* is Hermitian and all its eigenvalues are non-negative real numbers.

If X\ € 0(AA*), then A2 € o ((AA*)?) = 0 (A*A) = 0(AA*), hence \? € o(AA*). It follows
by induction that PRANE o(AA¥), for all k € N. Since A > 0, the last relation assures us that
A € {0,1}, so AA* will have eigenvalues 0 or 1. On the other hand, since AA* is Hermitian,
it is also diagonalizable, thus

I, Okn—k

AA*=U""
On—kr  On—k

U.

Using the above statement, we conclude that
A*A = (AA%)? = AA*.
Using (a), the equality of our hypothesis can be transformed into A*A - (AA* — I,) = O,,.
Letting B = A- (AA* — I,,) we obtain
B*B = (AA* — I,)A*A(AA* — I,,) = O,

which gives B = O,,. Thus
A2A* = A. (1)

Since A*A = AA*, it follows that the matrix A is normal, hence it is a unitary diagonalizable
matrix. It follows that there is an unitary matrix U € M,,(C) such that A = U*DU, where
D = diag(\1, ..., \n). Then A2A* = U*D?UU*DU = U*D?DU and using (1) we get

A2A* = A < D’D=D <= X\ .\ =\ forallic{1,2,...,n}
— N(M]P=1)=0forallie{1,2,...,n}.

Hence the conclusion.

Alternative Solution - Problem 3

(a)

(b)

Let X = AA* and Y = A*A. Since X is Hermitian, it is diagonalizable so P~l1XP =D for
some matrices P, D with D diagonal. Let Z = P~'Y P. The initial condition gives Z = D?.
Since X and Y have the same characteristic polynomial, so do Z = D? and D. As in the
original proof we deduce that every entry of D must be O or 1. Then Z = D andso X =Y
as required.

Writing A = U*DU as in the original proof and using (4A4*)? = A*A (rather than A2A* =
A) we get (DD)? = DD. From this we get that |A\|* = |\|? for each eigenvalue A of A and
the conclusion follows.



Solution - Problem 4:

For every positive integer n, let
k+1

n n—1
I, = / | sin(rz)|” dz = Z/ | sin(rz)[" da.
0 ok

Then we have
k+1

n—1 k41 i1 n—1 .
Z/ | sin(mz)| de <1, < Z/ | sin(mz)|" d .
k o /K

k=0
Substituting ¢t = max — km, we deduce that

k+1 m 1 ™
/ | sin(mz)|™ do = — / sin™ t dt
k 0

™

for every nonnegative integer m. Therefore
1 n ln—l
;ZJk<In<;ZJk7 (1)
k=1 k=0

U
where Jj, = / sin® t dt. For k > 2, integration by parts yields
0

Jk:/ (—cost) sin*~1tdt
0

™

s
= [— costsin®~? t]o +(k—-1) / sin® =2t cos® ¢ dt
0

=0+ (k—1) / sin® 2 ¢(1 — sin?t) dt
0

=(k-1)Jy—2—(k=1)Jk,

whence b1
Jp = ? Je_a.
Since Jy = 7 and J; = 2, we obtain
(2k — )N (2k)!!
=g =9
T =T g A e = 25 T
We observe that 5 5
T ™
_ = — d = )
Jok—1Jok 55 JokJok 1 1
Since (.J,,) is a decreasing sequence, we deduce that
2 2T
Ml JorJopr1 < Jap < Jogp—1Jop = o

It follows that +/ 27r\/% = 2k J9, < V27 and therefore
k]im V2kJop = V2. (2)
— 00



Similarly /2m/ gii% V2k + 1J2,11 < V27 and therefore

klim V2k + 1Jopq = V2. (3)
—00
By (2) and (3) it follows that
lim Vnd, =V2r. (4)
By virtue of (4) and the Cesaro-Stolz theorem we have
. J1++Jn . Jn+1
lim ———— = lim
n—00 \/ﬁ n—00 \/m — f
= lim (Vn+1+vn) Jpi (5)
=2V2m.

Now relations (1) and (5) ensure that

Ji = 2 2vEr =
Taking into consideration that
I, I, 1
Qa. = — = —— s — ;
" \n -3

(o)
. 1 . .
we deduce that the series g an has the same nature as E —. In conclusion, the series E an

p—1
n=1 n=11" 2

n=1

converges if and only if p > g .

Comments.
(1) One could use Wallis’ formula or Stirling’s Approximation in order to deduce (4).
(2) One could avoid the use of Cesaro-Stolz as follows: By (4) we have J,, = @(%) Since also

(e.g. by considering Riemann sums) \f f + -+ ﬁ = ©(y/n) then a, = O (W)
and the conclusion follows as before.



