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Wednesday, July 21, 2021

Problem 1. Let f : [0, 1] −→ R be a continuous strictly increasing function such that

lim
x→0+

f(x)

x
= 1 .

(a) Prove that the sequence (xn)n⩾1 defined by

xn = f

(
1

1

)
+ f

(
1

2

)
+ · · ·+ f

(
1

n

)
−
∫ n

1
f

(
1

x

)
dx

is convergent.

(b) Find the limit of the sequence (yn)n⩾1 defined by

yn = f

(
1

n+ 1

)
+ f

(
1

n+ 2

)
+ · · ·+ f

(
1

2021n

)
.

Problem 2. Let n ⩾ 2 be a positive integer and let A ∈ Mn(R) be a matrix such that A2 = −In.
If B ∈ Mn(R) and AB = BA, prove that detB ⩾ 0.

Problem 3. Let A ∈ Mn(C) be a matrix such that (AA∗)2 = A∗A, where A∗ =
(
A
)t denotes the

Hermitian transpose (i.e., the conjugate transpose) of A.

(a) Prove that AA∗ = A∗A.

(b) Show that the non-zero eigenvalues of A have modulus one.

Problem 4. For p ∈ R, let (an)n⩾1 be the sequence defined by

an =
1

np

∫ n

0

∣∣ sin(πx)∣∣x dx .
Determine all possible values of p for which the series

∞∑
n=1

an converges.
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Solution ‐ Problem 1a:

We write

xn =
n−1∑
k=1

(
f

(
1

k

)
−
∫ k+1

k
f

(
1

x

)
dx

)
+ f

(
1

n

)
.

Because f is increasing, for all k ⩾ 1 and x ∈ [k, k + 1] we have

f

(
1

k + 1

)
⩽ f

(
1

x

)
⩽ f

(
1

k

)
and therefore

f

(
1

k + 1

)
⩽

∫ k+1

k
f

(
1

x

)
dx ⩽ f

(
1

k

)
(1)

Summing up for k = 1 up to n− 1 we obtain

f

(
1

n

)
⩽ xn ⩽ f(1) .

Since f is increasing then xn is bounded below by f(0).

It is easy to see that xn is decreasing since using (1) we have:

xn+1 − xn = f

(
1

n+ 1

)
−
∫ n+1

n
f

(
1

x

)
dx ⩽ 0 .

We conclude that (xn) is convergent to some ℓ ∈ R.

Solution 1 ‐ Problem 1b:

Since lim
x→0+

f(x)
x = 1, given ε > 0, there is a δ > 0 such that 1−ε < f(x)

x < 1+ε for every 0 < x < δ.

In particular, for every n > 1
δ and every k ⩾ 1 we have 0 < 1

n+k < 1
n < δ and therefore

(1− ε)
1

n+ k
< f

(
1

n+ k

)
< (1 + ε)

1

n+ k
.

Summing up the above inequalities from k = 1 to 2020n we get

(1− ε)Sn < f

(
1

n+ 1

)
+ f

(
1

n+ 2

)
+ · · ·+ f

(
1

2021n

)
< (1 + ε)Sn ,

where
Sn =

1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2021n
.

It is well-known that lim
n→∞

Sn = ln(2021) so since ε is arbitrary, we get that lim
n→∞

yn = ln 2021.



Solution 2 ‐ Problem 1b:

Since
yn = x2021n − xn +

∫ 2021n

n
f

(
1

x

)
dx ,

from part (a), it is enough to find

lim
n→∞

∫ 2021n

n
f

(
1

x

)
dx.

With the change of variable x =
1

t
we obtain

∫ 2021n

n
f

(
1

x

)
dx =

∫ 1
n

1
2021n

f(t)

t2
dt .

Since lim
x→0+

f(x)
x = 1, given ε > 0, there is a δ > 0 such that 1−ε < f(x)

x < 1+ε for every 0 < x < δ.

In particular, for every n > 1
δ , we have 0 < 1

2021n < 1
n < δ and therefore

(1− ε)

∫ 1
n

1
2021n

1

t
dt ⩽

∫ 1
n

1
2021n

f(t)

t2
dt ⩽ (1 + ε)

∫ 1
n

1
2021n

1

t
dt .

Since ε is arbitrary, and since∫ 1
n

1
2021n

1

t
dt = ln (2021n)− lnn = ln 2021 ,

we conclude that
lim
n→∞

yn = ln 2021 .



Solution ‐ Problem 2:

Since A2 = −In, the only possible eigenvalues of A are ±i. Since also A ∈ Mn(R) then n = 2k
and A has k eigenvalues equal to i and k eigenvalues equal to −i. Its minimal polynomial is
x2 + 1 which has distinct roots, therefore A is diagonalizable and is therefore similar to

X =

[
iIk 0k
0k −iIk

]
.

Similarly, if P =

[
0k Ik
−Ik 0k

]
, then P is also a real matrix with P 2 = −In and so P is also similar

to X. Therefore A and P are similar and so there is an invertible matrix U ∈ Mn(R) such that
P = U−1AU . For C = U−1BU ∈ Mn(R) we get

CP = U−1BAU and PC = U−1ABU . (1)

Since AB = BA, by (1) it follows that CP = PC.

Writing C into block form C =

[
X Y
Z T

]
, where X,Y, Z, T ∈ Mk(R) and using CP = PC , it

follows that X = T and Z = −Y . Hence C =

[
X Y
−Y X

]
. We now see that

∣∣∣∣ X Y
−Y X

∣∣∣∣ = ∣∣∣∣X + iY Y − iX
−Y X

∣∣∣∣ = ∣∣∣∣X + iY (Y − iX)− i(X + iY )
−Y X − iY

∣∣∣∣ = ∣∣∣∣X + iY 0
−Y X − iY

∣∣∣∣ .
Therefore

detB = detC =

∣∣∣∣ X Y
−Y X

∣∣∣∣ = det(X − iY )det(X + iY ) = |det(X + iY )|2 ⩾ 0.

Alternative Solution ‐ Problem 2

Let λ be a real eigenvalue of B and let Gλ be its generalized eigenspace considered as a real
vector space. I.e.

Gλ = {v ∈ Rn : (B − λIn)
nv = 0} .

We have AB2 = (AB)B = (BA)B = B(AB) = B(BA) = B2A. Inductively we get ABk = BkA
for every natural number k and from this we deduce that Ap(B) = p(B)A for every polynomial
p(x). In particular, A(B − λIn)

n = (B − λIn)
nA.

Now if v ∈ Gλ, then (B − λIn)
n(Av) = A(B − λIn)

nv = 0, so Av ∈ Gλ. Therefore we can define
the linear map α : Gλ → Gλ by α(v) = Av.

Pick a basis of Gλ and let A′ be the matrix of α with respect to this basis. Then A′ ∈ Mn(R)
and (A′)2 = −In′ , where n′ = dim(Gλ). As in the previous solution, we get that n′ is even.

Since dim(Gλ) is even for every real eigenvalue of B and since its complex eigenvalues come in
conjugate pairs, then det(B) ⩾ 0.



Solution ‐ Problem 3:

(a) The matrix AA∗ is Hermitian and all its eigenvalues are non-negative real numbers.

If λ ∈ σ(AA∗), then λ2 ∈ σ
(
(AA∗)2

)
= σ (A∗A) = σ(AA∗), hence λ2 ∈ σ(AA∗). It follows

by induction that λ2k ∈ σ(AA∗), for all k ∈ N. Since λ ⩾ 0, the last relation assures us that
λ ∈ {0, 1}, so AA∗ will have eigenvalues 0 or 1. On the other hand, since AA∗ is Hermitian,
it is also diagonalizable, thus

AA∗ = U−1

[
Ik Ok,n−k

On−k,k On−k

]
U .

Using the above statement, we conclude that

A∗A = (AA∗)2 = AA∗ .

(b) Using (a), the equality of our hypothesis can be transformed into A∗A · (AA∗ − In) = On.
Letting B = A · (AA∗ − In) we obtain

B∗B = (AA∗ − In)A
∗A(AA∗ − In) = On

which gives B = On. Thus
A2A∗ = A . (1)

Since A∗A = AA∗, it follows that the matrix A is normal, hence it is a unitary diagonalizable
matrix. It follows that there is an unitary matrix U ∈ Mn(C) such that A = U∗DU, where
D = diag(λ1, . . . , λn). Then A2A∗ = U∗D2UU∗DU = U∗D2DU and using (1) we get

A2A∗ = A ⇐⇒ D2D = D ⇐⇒ λ2
i · λi = λi for all i ∈ {1, 2, . . . , n}

⇐⇒ λi(|λi|2 − 1) = 0 for all i ∈ {1, 2, . . . , n} .

Hence the conclusion.

Alternative Solution ‐ Problem 3

(a) Let X = AA∗ and Y = A∗A. Since X is Hermitian, it is diagonalizable so P−1XP = D for
some matrices P,D with D diagonal. Let Z = P−1Y P . The initial condition gives Z = D2.
Since X and Y have the same characteristic polynomial, so do Z = D2 and D. As in the
original proof we deduce that every entry of D must be 0 or 1. Then Z = D and so X = Y
as required.

(b) Writing A = U∗DU as in the original proof and using (AA∗)2 = A∗A (rather than A2A∗ =
A) we get (DD)2 = DD. From this we get that |λ|4 = |λ|2 for each eigenvalue λ of A and
the conclusion follows.



Solution ‐ Problem 4:

For every positive integer n, let

In =

∫ n

0

∣∣ sin(πx)∣∣x dx =

n−1∑
k=0

∫ k+1

k

∣∣ sin(πx)∣∣x dx .
Then we have

n−1∑
k=0

∫ k+1

k

∣∣ sin(πx)∣∣k+1 dx < In <

n−1∑
k=0

∫ k+1

k

∣∣ sin(πx)∣∣k dx .
Substituting t = πx− kπ, we deduce that∫ k+1

k

∣∣ sin(πx)∣∣m dx =
1

π

∫ π

0
sinm tdt

for every nonnegative integer m. Therefore

1

π

n∑
k=1

Jk < In <
1

π

n−1∑
k=0

Jk , (1)

where Jk =

∫ π

0
sink tdt. For k ⩾ 2, integration by parts yields

Jk =

∫ π

0
(− cos t)′ sink−1 tdt

=
[
− cos t sink−1 t

]π
0
+ (k − 1)

∫ π

0
sink−2 t cos2 tdt

= 0 + (k − 1)

∫ π

0
sink−2 t(1− sin2 t)dt

= (k − 1)Jk−2 − (k − 1)Jk ,

whence
Jk =

k − 1

k
Jk−2 .

Since J0 = π and J1 = 2, we obtain

J2k = π
(2k − 1)!!

(2k)!!
and J2k+1 = 2

(2k)!!

(2k + 1)!!
.

We observe that
J2k−1J2k =

2π

2k
and J2kJ2k+1 =

2π

2k + 1
.

Since (Jn) is a decreasing sequence, we deduce that

2π

2k + 1
= J2kJ2k+1 ⩽ J2

2k ⩽ J2k−1J2k =
2π

2k

It follows that
√
2π
»

2k
2k+1 =

√
2kJ2k ⩽

√
2π and therefore

lim
k→∞

√
2kJ2k =

√
2π . (2)



Similarly
√
2π
»

2k+1
2k+2 ⩽

√
2k + 1J2k+1 ⩽

√
2π and therefore

lim
k→∞

√
2k + 1J2k+1 =

√
2π . (3)

By (2) and (3) it follows that
lim
n→∞

√
nJn =

√
2π . (4)

By virtue of (4) and the Cesàro-Stolz theorem we have

lim
n→∞

J1 + · · ·+ Jn√
n

= lim
n→∞

Jn+1√
n+ 1−

√
n

= lim
n→∞

(√
n+ 1 +

√
n
)
Jn+1

= 2
√
2π .

(5)

Now relations (1) and (5) ensure that

lim
n→∞

In√
n
=

1

π
· 2
√
2π = 2

…
2

π
.

Taking into consideration that
an =

In
np

=
In√
n
· 1

np− 1
2

,

we deduce that the series
∞∑
n=1

an has the same nature as
∞∑
n=1

1

np− 1
2

. In conclusion, the series
∞∑
n=1

an

converges if and only if p >
3

2
.

Comments.

(1) One could use Wallis’ formula or Stirling’s Approximation in order to deduce (4).

(2) One could avoid the use of Cesàro-Stolz as follows: By (4) we have Jn = Θ( 1√
n
). Since also

(e.g. by considering Riemann sums) 1√
1
+ 1√

2
+ · · · + 1√

n
= Θ(

√
n) then an = Θ

(
1

np−1/2

)
and the conclusion follows as before.


