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P R O B L E M S

Algebra

Let a, b, c be positive real numbers such that abc = 2
3
. Prove thatA1.

ab

a+ b
+

bc

b+ c
+

ca

c + a
>

a+ b+ c

a3 + b3 + c3
.

(Dimitar Trenevski, FYR Macedonia)

Two ants start at the same point in the plane. Each minute they choose whether toA2.

walk due north, east, south or west. They each walk 1 meter in the first minute. In each
subsequent minute the distance they walk is multiplied by a rational number q > 0.
They meet after a whole number of minutes, but have not taken exactly the same route
within that time. Determine all possible values of q. (Jeremy King, United Kingdom)

Show that for every positive integer n we have:A3.

n
∑

k=0

(

2n+ 1− k

k + 1

)k

=

(

2n+ 1

1

)0

+

(

2n

2

)1

+ · · ·+
(

n+ 1

n+ 1

)n

6 2n.

(Dorlir Ahmeti, Albania)

Let a, b, c be positive real numbers such that abc = 1. Prove that the following inequalityA4.

holds:

2(a2 + b2 + c2)

(

1

a2
+

1

b2
+

1

c2

)

> 3(a+ b+ c + ab+ bc + ca).

(Florin Rotaru, Romania)

Let f : R → R be a concave function and let g : R → R be continuous. Given thatA5.

f(x+ y) + f(x− y)− 2f(x) = g(x)y2

for all x, y ∈ R, prove that f is a quadratic function. (Peter Gaydarov, Bulgaria)

Let n be a positive integer and let x1, . . . , xn be real numbers. Show thatA6.

n
∑

i=1

x2
i >

1

n + 1

(

n
∑

i=1

xi

)2

+
12 (
∑n

i=1 ixi)
2

n(n + 1)(n+ 2)(3n+ 1)
.

(Marios Voskou, Cyprus)
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Combinatorics

Let N > 3 be an odd integer. N tennis players take part in a league. Before the leagueC1.

starts, a committee ranks the players in some order based on perceived skill. During the
league, each pair of players plays exactly one match, and each match has one winner.
A match is considered an upset if the winner had a lower initial ranking than the loser.
At the end of the league, the players are ranked according to number of wins, with the
initial ranking used to rank players with the same number of wins. It turns out that
the final ranking is the same as the initial ranking. What is the largest possible number
of upsets? (Dominic Yeo, United Kingdom)

Alice and Bob play the following game: They start with two non-empty piles of coins.C2.

Taking turns, with Alice playing first, they choose a pile with an even number of coins
and move half of the coins of this pile to the other pile. The game ends if a player
cannot move, or if we reach a previously reached position. In the first case, the player
who cannot move loses. In the second case, the game is declared a draw.

Determine all pairs (a, b) of positive integers such that if initially the two piles have a
and b coins respectively, then Bob has a winning strategy.

(Demetres Christofides, Cyprus)

An open necklace can contain rubies, emeralds and sapphires. At every step we canC3.

perform any of the following operations:

(1◦) We can replace two consecutive rubies with an emerald and a sapphire, where the
emerald is on the left of the sapphire.

(2◦) We can replace three consecutive emeralds with a sapphire and a ruby, where the
sapphire is on the left of the ruby.

(3◦) If we find two consecutive sapphires then we can remove them.

(4◦) If we find consecutively and in this order a ruby, an emerald, and a sapphire, then
we can remove them.

Furthermore we can also reverse all of the above operations. For example, by reversing
(3◦) we can put two consecutive sapphires on any position we wish.

Initially the necklace has one sapphire (and no other precious stones). Decide, with
proof, whether there is a finite sequence of steps such that at the end of this sequence
the necklace contains one emerald (and no other precious stones).

Remark. A necklace is open if its precious stones are on a line from left to right. We
are not allowed to move a precious stone from the rightmost position to the leftmost as
we would be able to do if the necklace was closed. (Demetres Christofides, Cyprus)
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Geometry

In an acute triangle ABC, the midpoint of the side BC is M and the centers of theG1.

excircles relative to M of the triangles AMB and AMC are D and E respectively. The
circumcircle of the triangle ABD meets line BC at B and F . The circumcircle of the
triangle ACE meets line BC at C and G. Prove that BF = CG.

(Petru Braica, Romania)

Let ABC be a triangle inscribed in circle Γ with center O and let H its orthocenterG2.

and K be the midpoint of OH . The tangent of Γ at B meets the perpendicular bisector
of AC meets at L and the tangent of Γ at C meets the perpendicular bisector of AB
at M . Prove that AK ⊥ LM . (Michalis Sarantis, Greece)

Let P be a point inside a triangle ABC and let a, b, c be the side lengths and p theG3.

semi-perimeter of the triangle. Find the maximum value of

min

(

PA

p− a
,
PB

p− b
,
PC

p− c

)

over all possible choices of triangle ABC and point P . (Elton Bojaxhiu, Albania)

A quadrilateral ABCD is inscribed in a circle k, where AB > CD and AB is notG4.

parallel to CD. Point M is the intersection of the diagonals AC and BD and point H
is the foot of the perpendicular from M to AB. Given that ∢MHC = ∢MHD, prove
that AB is a diameter of k. (Emil Stoyanov, Bulgaria)

Let ABC be an acute-angled triangle with AB < AC < BC and let D be an arbitraryG5.

point on the extension of BC beyond C. The circle c1(A,AD) intersects the rays AC,
AB, CB at points E, F,G, respectively. The circumcircle c2 of triangle AFG intersects
the lines FE,BC,GE,DF again at points J,H,H ′, J ′. The circumcircle c3 of triangle
ADE intersects the lines FE,BC,GE,DF again at points I,K,K ′, I ′. Prove that the
quadrilaterals HIJK and H ′I ′J ′K ′ are cyclic and that their circumcenters coincide.

(Vangelis Psychas, Greece)

In a triangle ABC with AB = AC, ω is the circumcircle and O its center. Let DG6.

be a point on the extension of BA beyond A. The circumcircle ω1 of triangle OAD
intersects the line AC and the circle ω again at points E and G, respectively. Point H
is such that DAEH is a parallelogram. Line EH meets circle ω1 again at point J . The
line through G perpendicular to GB meets ω1 again at point N and the line through
G perpendicular to GJ meets ω again at point L. Prove that the points L,N,H,G lie
on a circle. (Theoklitos Paragyiou, Cyprus)
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Number Theory

For positive integers m and n, let d(m,n) be the number of distinct primes that divideN1.

both m and n. For instance, d(60, 126) = d(22× 3× 5, 2× 32× 7) = 2. Does there exist
a sequence (an) of positive integers such that:

(i) a1 > 20182018;

(ii) am 6 an whenever m 6 n;

(iii) d(m,n) = d(am, an) for all positive integers m 6= n?
(Dominic Yeo, United Kingdom)

Find all functions f : N → N such thatN2.

n! + f(m)! | f(n)! + f(m!)

for all m,n ∈ N. (Dorlir Ahmeti and Valmir Krasniqi, Albania)

Find all primes p and q such that 3pq−1 + 1 divides 11p + 17p.N3.

(Stanislav Dimitrov, Bulgaria)

Let P (x) = adx
d+ · · ·+a1x+a0 be a non-constant polynomial with nonnegative integerN4.

coefficients having d rational roots. Prove that

lcm (P (m), P (m+ 1), . . . , P (n)) > m

(

n

m

)

for all positive integers n > m. (Navid Safaei, Iran)

Let x and y be positive integers. If for each positive integer n we have thatN5.

(ny)2 + 1 | xϕ(n) − 1,

prove that x = 1. (Silouanos Brazitikos, Greece)
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S O L U T I O N S

Algebra

Let a, b, c be positive real numbers such that abc = 2
3
. Prove thatA1.

ab

a+ b
+

bc

b+ c
+

ca

c + a
>

a+ b+ c

a3 + b3 + c3
.

(FYR Macedonia)

Solution.

By the AH mean inequality, we have

ab

a+ b
+

bc

b+ c
+

ca

c+ a
=

2

3(ac+ bc)
+

2

3(ab+ ac)
+

2

3(ab+ ac)
>

3

ab+ ac + bc
,

so it only remains to prove that
3

ab+ ac + bc
>

a+ b+ c

a3 + b3 + c3
, or equivalently

3(a3 + b3 + c3) > (a+ b+ c)(ab+ ac+ bc).

The last inequality easily follows by summing a3 + b3 > ab(a + b), a3 + c3 > ac(a + c),
b3 + c3 > bc(b+ c) and a3 + b3 + c3 > 3abc.
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Two ants start at the same point in the plane. Each minute they choose whether toA2.

walk due north, east, south or west. They each walk 1 meter in the first minute. In each
subsequent minute the distance they walk is multiplied by a rational number q > 0.
They meet after a whole number of minutes, but have not taken exactly the same route
within that time. Determine all possible values of q. (United Kingdom)

Solution.

Answer: q = 1.

Let x
(n)
A (resp. x

(n)
B ) be the x-coordinates of the first (resp. second) ant’s position after

n minutes. Then x
(n)
A −x

(n−1)
A ∈ {qn,−qn, 0}, and so x

(n)
A , x

(n)
B are given by polynomials

in q with coefficients in {−1, 0, 1}. So if the ants meet after n minutes, then

0 = x
(n)
A − x

(n)
B = P (q),

where P is a polynomial with degree at most n and coefficients in {−2,−, 1, 0, 1, 2}.
Thus if q = a

b
(a, b ∈ N), we have a | 2 and b | 2, i.e. q ∈ {1

2
, 1, 2}.

It is clearly possible when q = 1.

We argue that q = 1
2
is not possible. Assume that the ants diverge for the first time

after the kth minute, for k > 0. Then
∣

∣

∣
x
(k+1)
B − x

(k+1)
A

∣

∣

∣
+
∣

∣

∣
y
(k+1)
B − y

(k+1)
A

∣

∣

∣
= 2qk. (1)

But also
∣

∣

∣
x
(ℓ+1)
A − x

(ℓ)
A

∣

∣

∣
+
∣

∣

∣
y
(ℓ+1)
A − y

(ℓ)
A

∣

∣

∣
= qℓ for each l > k + 1, and so

∣

∣

∣
x
(n)
A − x

(k+1)
A

∣

∣

∣
+
∣

∣

∣
y
(n)
A − y

(k+1)
A

∣

∣

∣
6 qk+1 + qk+2 + . . .+ qn−1. (2)

and similarly for the second ant. Combining (1) and (2) with the triangle inequality,
we obtain for any n > k + 1

∣

∣

∣
x
(n)
B − x

(n)
A

∣

∣

∣
+
∣

∣

∣
y
(n)
B − y

(n)
A

∣

∣

∣
> 2qk − 2

(

qk+1 + qk+2 + . . .+ qn−1
)

,

which is strictly positive for q = 1
2
. So for any n > k + 1, the ants cannot meet after n

minutes. Thus q 6= 1
2
.

Finally, we show that q = 2 is also not possible. Suppose to the contrary that there is
a pair of routes for q = 2, meeting after n minutes. Now consider rescaling the plane
by a factor 2−n, and looking at the routes in the opposite direction. This would then
be an example for q = 1/2 and we have just shown that this is not possible.

Solution 2.

Consider the ants’ positions αk and βk after k steps in the complex plane, assuming
that their initial positions are at the origin and that all steps are parallel to one of the
axes. We have αk+1 − αk = akq

k and βk+1 − βk = bkq
k with ak, bk ∈ {1,−1, i,−i}.

If αn = βn for some n > 0, then

n−1
∑

k=0

(ak − bk)q
k = 0, where ak − bk ∈ {0,±1± i,±2,±2i}.
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Note that the coefficient ak−bk is always divisible by 1+ i in Gaussian integers: indeed,

ck =
ak − bk
1 + i

∈ {0,±1,±i,±1± i}.

Canceling 1 + i, we obtain c0 + c1q + · · ·+ cn−1q
n−1 = 0. Therefore if q = a

b
(a, b ∈ N),

we have a | c0 and b | cn−1 in Gaussian integers, which is only possible if a = b = 1.
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Show that for every positive integer n we have:A3.

n
∑

k=0

(

2n+ 1− k

k + 1

)k

=

(

2n+ 1

1

)0

+

(

2n

2

)1

+ · · ·+
(

n+ 1

n+ 1

)n

6 2n.
(Albania)

Solution.

We shall prove that
(

n

k

)

>

(

2n+ 1− k

k + 1

)k

for all k = 0, 1, . . . , n. (∗)

The result will follow immediately, as
∑n

k=0

(

n

k

)

= 2n.

Note that (∗) is trivial for k = 0 and k = n. For 0 < k < n, by Hölder’s inequality we
have

(

n

k

)

=

(

1 +
n− k

k

)

·
(

1 +
n− k

k − 1

)

· · ·
(

1 +
n− k

1

)

>

(

1 +
n− k

k
√
k!

)k

.

Hence, it is enough to prove that

1 +
n− k

k
√
k!

>
2n+ 1− k

k + 1
.

This is equivalent to k
√
k! 6

k + 1

2
, which follows from k

√
k! 6

1 + 2 + · · ·+ k

k
=

k + 1

2
.

Solution 2.

As in the previous solution, it is enough to prove (∗).
First, we prove that

(n− i+ 1)(n− k + i)(k + 1)2 > i(k − i+ 1)(2n+ 1− k)2 for all i = 1, 2, . . . , k. (♯)

Let us denote the left hand side of the previous inequality with L and the left hand
side with R. Then

L = (n + 1)2(k + 1)2 − (n+ 1)(k + 1)3 + i(k − i+ 1)(k + 1)2,

R = 4i(k − i+ 1)(n+ 1)2 − 4i(k − i+ 1)(n+ 1)(k + 1) + i(k − i+ 1)(k + 1)2.

So, it is enough to prove that

(n− k)(k + 1)2 > 4i(k − i+ 1)(n− k),

which follows from

(k + 1)2 − 4i(k − i+ 1) = (k + 1− 2i)2 > 0.

Now, by (♯) we have

(

n

k

)2

=

k
∏

i=1

(n− i+ 1)(n− k + i)

i(k − i+ 1)
>

k
∏

i=1

(

2n+ 1− k

k + 1

)2

=

(

2n+ 1− k

k + 1

)2k

,

which completes our proof.
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Let a, b, c be positive real numbers such that abc = 1. Prove that the following inequalityA4.

holds:

2(a2 + b2 + c2)

(

1

a2
+

1

b2
+

1

c2

)

> 3(a+ b+ c + ab+ bc + ca). (Romania)

Solution.

First, we show that

a

b
+

b

c
+

c

a
> ab+ bc + ca and

a

b
+

b

c
+

c

a
> a+ b+ c. (†)

By AG inequality, we have

a

b
+

b

c
+

c

a
=

1

3

(a

b
+

a

b
+

c

a

)

+
1

3

(

b

c
+

b

c
+

a

b

)

+
1

3

(

c

a
+

c

a
+

b

c

)

>

3
√
ac

3
√
b2

+
3
√
ba

3
√
c2

+
3
√
cb

3
√
a2

=
3
√
abc

b
+

3
√
abc

c
+

3
√
abc

a

= ab+ bc + ca.

Similarly, we have

a

b
+

b

c
+

c

a
=

1

3

(

a

b
+

a

b
+

b

c

)

+
1

3

(

b

c
+

b

c
+

c

a

)

+
1

3

( c

a
+

c

a
+

a

b

)

>

3
√
a2

3
√
bc

+
3
√
b2

3
√
ca

+
3
√
c2

3
√
ab

=
a

3
√
abc

+
b

3
√
abc

+
c

3
√
abc

= a + b+ c,

which completes our proof of (†).
By Cauchy-Schwarz inequality we have

(

a2 + b2 + c2
)

(

1

b2
+

1

c2
+

1

a2

)

>

(

a

b
+

b

c
+

c

a

)2

,

which together with (a2 + b2 + c2)(1/a2 + 1/b2 + 1/c2) > 9 leads to

2
(

a2 + b2 + c2
)

(

1

a2
+

1

b2
+

1

c2

)

>

(

a

b
+

b

c
+

c

a

)2

+ 9 > 6

(

a

b
+

b

c
+

c

a

)

.

Now, the desired inequality follows from (†).

Solution 2.

Set a = x3, b = y3, c = z3 and denote Tp,q,r =
∑

sym xpyqzr = xpyqzr + ypxqzr + · · · .
The given inequality is expanded into

4T12,6,0 + 2T6,6,6 > 3T8,5,5 + 3T7,7,4.

Applying the Schur inequality on triples (x4y2, y4z2, z4x2) and (x2y4, y2z4, z2x4) and
summing them up yields

T12,6,0 + T6,6,6 > T10,4,4 + T8,8,2. (1)

On the other hand, by the Muirhead inequality we have

T12,6,0 > T6,6,6, T10,4,4 > T8,5,5, T8,8,2 > T7,7,4. (2)

The four inequalities in (1) and (2) imply the desired inequality.
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Let f : R → R be a concave function and let g : R → R be continuous. Given thatA5.

f(x+ y) + f(x− y)− 2f(x) = g(x)y2

for all x, y ∈ R, prove that f is a quadratic function. (Bulgaria)

Solution.

We plug in the pairs (a, x), (a, 2x), (a+ x, x) and (a− x, x) to get

f(a+ x) + f(a− x)− 2f(a) = g(a)x2; (E1)

f(a+ 2x) + f(a− 2x)− 2f(a) = 4g(a)x2; (E2)

f(a+ 2x) + f(a)− 2f(a+ x) = g(a+ x)x2; (E3)

f(a− 2x) + f(a)− 2f(a− x) = g(a− x)x2, (E4)

respectively. Combining these equations in the form 2E1 −E2 +E3 +E4 the left hand
side vanishes, yielding an equation in g: (g(a+ x) + g(a− x)− 2g(a))x2 = 0, i.e.

g(a) =
g(a+ x) + g(a− x)

2
.

Since g is continuous, it must be linear, i.e. g(x) = c1x + c0. However, the original
equation for x = y together with the concavity condition now gives us

0 > f(2x) + f(0)− 2f(x) = (xc1 + c0)x
2

for all x, which is only possible if c1 = 0. Thus g(x) ≡ c0 = 2A is constant and

f(x+ y) + f(x− y)− 2f(x) = 2Ay2. (∗)

This suggests that f is a quadratic function, so we can set f(x) = Ax2 + f1(x). Then
(∗) becomes f1(x+ y) + f1(x− y)− 2f1(x) = 0, so an easy induction gives us

f1(nx)− f1(0) = n(f1(x)− f1(0)) for all n ∈ Z.

By setting f1(0) = C and f1(1) = B + C we obtain f1(x) = Bx + C and f(x) =
Ax2 +Bx+C for all x ∈ Q. By concavity of f we conclude that f(x) = Ax2 +Bx+C
for all real x.

Remark.

In fact, (∗) implies that the second derivative of f is constant by taking y → 0 and the
problem is solved. The solution presented here avoids use of derivatives.
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Let n be a positive integer and let x1, . . . , xn be real numbers. Show thatA6.

n
∑

i=1

x2
i >

1

n + 1

(

n
∑

i=1

xi

)2

+
12 (
∑n

i=1 ixi)
2

n(n + 1)(n+ 2)(3n+ 1)
.

(Cyprus)

Solution.

Let S =
1

n+ 1

n
∑

i=1

xi, and yi = xi − S for 1 6 i 6 n. Then we have

n
∑

i=1

ixi =

n
∑

i=1

iyi +
n(n + 1)

2
S

and
n
∑

i=1

y2i =

n
∑

i=1

x2
i − 2S

n
∑

i=1

xi + nS2 =

n
∑

i=1

x2
i −

1

n + 1

(

n
∑

i=1

xi

)2

− S2.

Now, by the Cauchy-Schwarz inequality

(

n
∑

i=1

ixi

)2

=

(

n
∑

i=1

iyi +
n(n+ 1)

2
S

)2

6

(

n
∑

i=1

i2 +
n2(n+ 1)2

4

)(

n
∑

i=1

y2i + S2

)

=
n(n + 1)(n+ 2)(3n+ 1)

12
·





n
∑

i=1

x2
i −

1

n+ 1

(

n
∑

i=1

xi

)2


 ,

which completes our proof.

Remark.

It can be checked that equality holds if and only if xi = c(n(n+ 1) + 2i) for 1 6 i 6 n
and some c ∈ R.

15



Combinatorics

Let N > 3 be an odd integer. N tennis players take part in a league. Before the leagueC1.

starts, a committee ranks the players in some order based on perceived skill. During the
league, each pair of players plays exactly one match, and each match has one winner.
A match is considered an upset if the winner had a lower initial ranking than the loser.
At the end of the league, the players are ranked according to number of wins, with the
initial ranking used to rank players with the same number of wins. It turns out that
the final ranking is the same as the initial ranking. What is the largest possible number
of upsets? (United Kingdom)

Solution.

Answer:
(N − 1)(3N − 1)

8
.

Suppose the players are ranked 1, 2, . . . , N = 2n+ 1, where 1 is the highest ranking.

For k 6 n, the player ranked k could have beaten at most k − 1 players with a higher
ranking. Thus the top n players could have made at most

∑n

k=1(k−1) = n(n−1)
2

upsets.
On the other hand, the average score of all 2n + 1 players is n, so the average score of
the bottom n + 1 players is not more than n, which implies that these n + 1 players
have at most n(n + 1) wins in total. Hence the total number of upsets is at most

n(n− 1)

2
+ n(n + 1) =

n(3n+ 1)

2
=

(N − 1)(3N − 1)

8
.

An example can be constructed as follows. Suppose that, for 1 6 i 6 2n+1, the player
ranked i beats the players ranked i−1, i−2, . . . , i−n (the rankings are counted modulo
N) and loses to the rest of the players. Thus each player has exactly n wins. The player
ranked i for i 6 n made i − 1 upsets, whereas the player ranked i for i > n made n
upsets, so the total number of upsets is exactly

∑n

i=1(i− 1) + (n+ 1)n = n(3n+1)
2

.

Solution 2.

Write N = 2n+ 1. We only prove the upper bound.

Consider a tournament T with correct final ranking, but where not everyone won n
matches. Let A be the worst-ranked player with the maximal number of wins, and let
B be the best-ranked player with minimal wins. Clearly, A was ranked above B.

Assume A beat B. Consider the tournament T′ obtained from T by reversing this result,
and keeping all others the same. So B beat A, which is an upset. A is now the best-
ranked player with the second-most number of wins; B is now the worst-ranked player
with the second-least number of wins, and so the final ranking of T′ is still correct, but
with one more upset than in T.

Alternatively, assume B beat A. Then there must have been a player C such that A
beat C and C beat B. These are upsets if, respectively, C was ranked above A, or

16



below B. It therefore cannot be the case that both of the matches involving C and
{A,B} were upsets. Consider the tournament T′ obtained from T by reversing these
two matches. C’s number of wins stays fixed, while as before A is now the best-ranked
player with the second-most wins, and similar for B. Thus in T′ the final ranking is
still correct, with either the same number of upsets as T, or two more upsets than T.

If we iterate this procedure, we eventually obtain a tournament T̄ where everyone won
exactly n matches, and with at least as many upsets as in the original tournament T.
We now bound the number of upsets in such a tournament T̄. Suppose the player
ranked i 6 N+1

2
beat K higher ranked players. Obviously K 6 i− 1. Then the number

of upsets involving i is

2K +
N + 1

2
− i 6 2(i− 1) +

N + 1

2
− i =

N − 1

2
+ i− 1.

Similarly, for i >
N+1
2

one proves that the number of upsets involving i is at most
N−1
2

+ i− 1.

Finally, summing over all values of i and dividing by 2 we obtain the desired result.

Remark.

We demand N odd to avoid candidates providing a case distinction, rather than because
the construction or the bounding argument is significantly different.
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Alice and Bob play the following game: They start with two non-empty piles of coins.C2.

Taking turns, with Alice playing first, they choose a pile with an even number of coins
and move half of the coins of this pile to the other pile. The game ends if a player
cannot move, or if we reach a previously reached position. In the first case, the player
who cannot move loses. In the second case, the game is declared a draw.

Determine all pairs (a, b) of positive integers such that if initially the two piles have a
and b coins respectively, then Bob has a winning strategy. (Cyprus)

Solution.

By v2(n) we denote the largest nonnegative integer r such that 2r | n.
A position (a, b) (i.e. two piles of sizes a and b) is said to be k-happy if v2(a) = v2(b) = k
for some integer k > 0, and k-unhappy if min{v2(a), v2(b)} = k < max{v2(a), v2(b)}.
We shall prove that Bob has a winning strategy if and only if the initial position is
k-happy for some even k.

• Given a 0-happy position, the player in turn is unable to play and loses.

• Given a k-happy position (a, b) with k > 1, the player in turn will transform it into
one of the positions (a+ 1

2
b, 1

2
b) and (b+ 1

2
a, 1

2
a), both of which are (k− 1)-happy

because v2(a +
1
2
b) = v2(

1
2
b) = v2(b+

1
2
a) = v2(

1
2
a) = k − 1.

Therefore, if the starting position is k-happy, after k moves they will get stuck at a
0-happy position, so Bob will win if and only if k is even.

• Given a k-unhappy position (a, b) with k odd and v2(a) = k < v2(b) = ℓ, Alice
can move to position (1

2
a, b+ 1

2
a). Since v2(

1
2
a) = v2(b+

1
2
a) = k−1, this position

is (k − 1)-happy with 2 | k − 1, so Alice will win.

• Given a k-unhappy position (a, b) with k even and v2(a) = k < v2(b) = ℓ, Alice
must not play to position (1

2
a, b+ 1

2
a), because the new position is (k− 1)-happy

and will lead to Bob’s victory. Thus she must play to position (a + 1
2
b, 1

2
b). We

claim that this position is also k-unhappy. Indeed, if ℓ > k+1, then v2(a+
1
2
b) =

k < v2(
1
2
b) = ℓ− 1, whereas if ℓ = k + 1, then v2(a+

1
2
b) > v2(

1
2
b) = k.

Hence a k-unhappy position is winning for Alice if k is odd, and drawing if k is even.
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An open necklace can contain rubies, emeralds and sapphires. At every step we canC3.

perform any of the following operations:

(1◦) We can replace two consecutive rubies with an emerald and a sapphire, where the
emerald is on the left of the sapphire.

(2◦) We can replace three consecutive emeralds with a sapphire and a ruby, where the
sapphire is on the left of the ruby.

(3◦) If we find two consecutive sapphires then we can remove them.

(4◦) If we find consecutively and in this order a ruby, an emerald, and a sapphire, then
we can remove them.

Furthermore we can also reverse all of the above operations. For example, by reversing
(3◦) we can put two consecutive sapphires on any position we wish.

Initially the necklace has one sapphire (and no other precious stones). Decide, with
proof, whether there is a finite sequence of steps such that at the end of this sequence
the necklace contains one emerald (and no other precious stones).

Remark. A necklace is open if its precious stones are on a line from left to right. We
are not allowed to move a precious stone from the rightmost position to the leftmost as
we would be able to do if the necklace was closed. (Cyprus)

Solution.

For each precious stone on the necklace, we define its value as (−1)r ·s, where r denotes
the number of emeralds and sapphires preceding it, and s equals −2, 1 or −1 for a ruby,
emerald or sapphire, respectively.

The value of the necklace is equal to the sum of the values of its precious stones. We
claim that the value of the necklace is invariant modulo 6.

Suppose for example that we remove two consecutive rubies, and suppose there is an
even number of emeralds and sapphires preceding them. The value of each ruby is −2
so by removing them we increase the value of the necklace by 4. The emerald that
we add had an even number of emeralds and sapphires preceding it, so its value is 1.
The sapphire that we add has an odd number of emeralds and sapphires preceding it
(accounting for the added emerald), so its value is 1. No other precious stone changes
value, so the total increase of the value of the necklace is 6.

Similarly we can check that all of the other operations and their inverses also leave the
value of the necklace invariant modulo 6.

Since the necklace containing just one sapphire has value −1, whereas the necklace
containing just one emerald has value 1, there is no desired sequence of steps.

Solution 2.

Write a, b and c respectively for a ruby, emerald and sapphire. Each necklace cor-
responds to an element of a group G containing elements a, b, c. If we impose the
conditions a2 = bc, b3 = ca, c2 = 1 and abc = 1, the allowed operations will preserve
this element. In this group we have c = ab (since c2 = abc), i.e. b = a−1c and using
this relation we obtain a3 = c2 = (a−1c)4 = 1. Thus we can take G = S4, a = (1, 2, 3),
c = (1, 4) and b = a−1c = (1, 4, 3, 2). The initial and final necklaces should correspond
to elements c and b, respectively, so the desired sequence of operations does not exist.
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Geometry

In an acute triangle ABC, the midpoint of the side BC is M and the centers of theG1.

excircles relative to M of the triangles AMB and AMC are D and E respectively. The
circumcircle of the triangle ABD meets line BC at B and F . The circumcircle of the
triangle ACE meets line BC at C and G. Prove that BF = CG. (Romania)

Solution.

We have ∢ADB = 90◦ − 1
2
∢AMB and ∢AEC = 90◦ − 1

2
∢AMC.

Let the circles ADB and AEC respectively meet the line AM again at points P and P ′.
Note that M lies outside the circles ABD and ACE because ∢ADB +∢AMB < 180◦

and ∢AEC + ∢AMC < 180◦, so P and P ′ lie on the ray MA. Moreover, ∢BPM =
∢BDA = 90◦ − 1

2
∢PMB, implying that △BPM is isosceles with MP = MB. Simi-

larly, MP ′ = MC = MB, so P ′ ≡ P .

Now it follows from the power of point P that MB · MF = MP ·MA = MC ·MG,
i.e. MF = MG = MA and hence BF = CG.

A

B C

D

E

F GM

P
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Let ABC be a triangle inscribed in circle Γ with center O and let H its orthocenterG2.

and K be the midpoint of OH . The tangent of Γ at B meets the perpendicular bisector
of AC meets at L and the tangent of Γ at C meets the perpendicular bisector of AB
at M . Prove that AK ⊥ LM . (Greece)

Solution.

The polar of L with respect to Γ is the line ℓB through B parallel to AC, and the polar
of M with respect to Γ is the line ℓC through C parallel to AB. Therefore the pole
of the line LM is the intersection A′ of ℓB and ℓC . It follows that OA′ ⊥ LM , so it
remains to show that OD ‖ AK.

Consider the reflection O′ of O in the midpoint D of BC. Since A′ is the reflection
of A in D, AOA′O′ is a parallelogram. Moreover, AHO′O is a parallelogram because−−→
OO′ = 2

−−→
OD =

−−→
AH . It follows that

−−→
OA′ =

−−→
AO′ = 2

−−→
AK, so OA′ ‖ AK.

A

A′

B CD

H

K

L

M

O

O′

Solution 2.

We introduce the complex plane such that Γ is the unit cycle. Also, let the lower-case
letters denote complex numbers corresponding to the points denoted by capital letters.
First, note that o = 0, a = 1/a, b = 1/b and c = 1/c.
Since BL ⊥ BO, we have

b− l

b− l
= −b− o

b− o
= −b

b
= −b2, and hence l =

2b− l

b2
. (†)

Since LO ⊥ AC, we have

l

l
=

l − o

l − o
= −a− c

a− c
= ac, and hence l =

l

ac
. (‡)
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Combining (†) and (‡) we get l =
2abc

b2 + ac
. By symmetry, m =

2abc

c2 + ab
and hence

l −m =
2abc(c− b)(b+ c− a)

(b2 + ac)(c2 + ab)
and l −m =

2(b− c)(ab+ ac− bc)

(b2 + ac)(c2 + ab)
.

By Hamilton’s formula a+ b+ c = h− o = h, and hence k =
h+ o

2
=

a + b+ c

2
.

So,

a− k =
b+ c− a

2
and a− k =

ab+ ac− bc

2abc
,

and hence
l −m

l −m
= −a− k

a− k
,

which implies LM ⊥ AK.
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Let P be a point inside a triangle ABC and let a, b, c be the side lengths and p theG3.

semi-perimeter of the triangle. Find the maximum value of

min

(

PA

p− a
,
PB

p− b
,
PC

p− c

)

over all possible choices of triangle ABC and point P . (Albania)

Solution.

If ABC is an equilateral triangle and P its center, then
PA

p− a
=

PB

p− b
=

PC

p− c
=

2√
3
.

We shall prove that
2√
3
is the required value. Suppose without loss of generality that

∢APB > 120◦. Then

AB2
> PA2 + PB2 + PA · PB >

3

4
(PA+ PB)2,

i.e. PA + PB 6
2√
3
AB =

2√
3
((p − a) + (p − b)), so at least one of the ratios

PA

p− a

and
PB

p− b
does not exceed

2√
3
.
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A quadrilateral ABCD is inscribed in a circle k, where AB > CD and AB is notG4.

parallel to CD. Point M is the intersection of the diagonals AC and BD and point H
is the foot of the perpendicular from M to AB. Given that ∢MHC = ∢MHD, prove
that AB is a diameter of k. (Bulgaria)

Solution.

Let the line through M parallel to AB meet the segments AD, DH , BC, CH at points
K, P , L, Q, respectively. Triangle HPQ is isosceles, so MP = MQ. Now from

MP

BH
=

DM

DB
=

KM

AB
and

MQ

AH
=

CM

CA
=

ML

AB

we obtain AH/HB = KM/ML.

Let the lines AD and BC meet at point S and let the line SM meet AB at H ′. Then
AH ′/H ′B = KM/ML = AH/HB, so H ′ ≡ H , i.e. S lies on the line MH .

The quadrilateral ABCD is not a trapezoid, so AH 6= BH . Consider the point A′ on
the ray HB such that HA′ = HA. Since ∢SA′M = ∢SAM = ∢SBM , quadrilateral
A′BSM is cyclic and therefore ∢ABC = ∢A′BS = ∢A′MH = ∢AMH = 90◦−∢BAC,
which implies that ∢ACB = 90◦.

A A′ B

C

D

H

K
LMP

Q

S
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Let ABC be an acute-angled triangle with AB < AC < BC and let D be an arbitraryG5.

point on the extension of BC beyond C. The circle γ(A,AD) intersects the rays AC,
AB, CB at points E, F,G, respectively. The circumcircle ω1 of triangle AFG intersects
the lines FE,BC,GE,DF again at points J,H,H ′, J ′. The circumcircle ω2 of triangle
ADE intersects the lines FE,BC,GE,DF again at points I,K,K ′, I ′. Prove that the
quadrilaterals HIJK and H ′I ′J ′K ′ are cyclic and that their circumcenters coincide.

(Greece)

Solution.

From ∢FAH = ∢FGH = ∢FGD = 1
2
∢FAD = 90◦ − ∢AFD we deduce that AH ⊥

DF . Similarly, ∢DAI = 180◦ − ∢DEI = 180◦ − ∢DEF = ∢DGF = 1
2
∢DAF , so we

also have AI ⊥ DF . Therefore, points A,H, I are collinear. Analogously, we find that
the triples of points (A,K, J), (A,H ′, I ′) and (A,K ′, J ′) are collinear.

Quadrilateral HIJK is cyclic because ∢AIK = ∢ADK = ∢AGH = ∢AJH . Analo-
gously, quadrilateral H ′I ′J ′K ′ is cyclic.

Finally, since ∢H ′JH = ∢H ′GH = ∢EGD = ∢EFD = ∢JFJ ′ = ∢JHJ ′, quadrila-
teral HJJ ′H ′ is an isosceles trapezoid with HJ ‖ H ′J ′, so the perpendicular bisectors
of HJ and H ′J ′ coincide. Analogously, the perpendicular bisectors of IK and I ′K ′

coincide. Therefore the circumcenters of HIJK and H ′I ′J ′K ′ coincide.

A

B C
D

E

F

G
H

H ′

I

I ′

J

J ′

K

K ′

γ

ω1

ω2
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In a triangle ABC with AB = AC, ω is the circumcircle and O its center. Let DG6.

be a point on the extension of BA beyond A. The circumcircle ω1 of triangle OAD
intersects the line AC and the circle ω again at points E and G, respectively. Point H
is such that DAEH is a parallelogram. Line EH meets circle ω1 again at point J . The
line through G perpendicular to GB meets ω1 again at point N and the line through
G perpendicular to GJ meets ω again at point L. Prove that the points L,N,H,G lie
on a circle. (Cyprus)

Solution.

We first observe that ∢DOE = ∢DAE = 2∢ABC = ∢BOA and hence ∢DOB =
∢EOA, which together with OB = OA and ∢OBD = ∢BAO = ∢OAE gives us
△OBD ∼= △OAE. Therefore BD = AE.

Next, OG = OA implies ∢ODG = ∢ODA = ∢ODB and hence △OGD ∼= △OBD. It
follows that DG = DB = AE = DH . Moreover, since AD ‖ EJ , we have DJ = AE =
DG. Thus, the points B,G,H, J lie on a circle ω2 with center D.

We deduce that ∢AGH = ∢BGH − ∢BGA = 180◦ − 1
2
∢HDB − ∢BCA = 180◦ −

1
2
∢CAB − ∢BCA = 90◦.

We will now invert the diagram through G. By X̂ we denote the image of any point
X . The points Ĥ , L̂, N̂ then lie on the lines B̂Ĵ , ÂB̂ and ÂĴ , respectively, such that
∢ÂGĤ = B̂GN̂ = ∢ĴGL̂ = 90◦. It remains to prove that Ĥ , L̂ and N̂ are collinear,
which follows from the following statement:

A

B
C

D

EG

H

J

L

N

O

ω

ω1

ω2

P

Q

R
U

X

Y

Z

[Lemma]

Lemma. Let XY Z be a triangle and let U be a point in the plane. If the lines through
U perpendicular to UX , UY , UZ meet the lines Y Z, ZX , XY respectively at
points P , Q, R, then the points P , Q and R are collinear.

Proof. Here we assume that U is inside △XY Z and the angles XUY , Y UZ and ZUX
are all obtuse - the other cases are similar. We have

−→
Y P
−→
PZ

= −PY UP

PPUZ

,

−→
ZQ
−−→
QX

= −PZUQ

PQUX

,

−−→
XR
−→
RY

= −PXUR

PRUY

.

On the other hand, since ∢QUX = ∢Y UP are equal and equally directed, we

have
PY UP

PQUX

=
UP · UY

UQ · UX
. Writing the analogous expressions for

PZUQ

PRUY

and
PXUR

PPUZ
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and multiplying them out we obtain

−→
Y P
−→
PZ

·
−→
ZQ
−−→
QX

·
−−→
XR
−→
RY

= −1, and the result follows

by Menelaus’ theorem. 2

Remark.

The result remains valid if D is any point on the line AB.

Point L does not depend on the choice ofD. Indeed, ∢LCB = ∢LGB = ∢JGB−90◦ =
∢JEA+ ∢AGB − 90◦ = ∢BAC + ∢ACB − 90◦ = 90◦ − ∢ABC, so CL ⊥ AB.

Also, since ∢AON = ∢AGN = 90◦ − ∢BGA = 90◦ − ∢BCA = ∢OAB = ∢OND,
ONDA is an isosceles trapezoid, i.e. ON ‖ AB.

Alternative formulation.

Based on the Remark, the PSC proposes the following modification which hides point
J and defines the points in a more natural way:

A triangle ABC with AB = AC is inscribed in a circle ω with center O. Its altitude
from C meets ω again at point L. Line ℓ through O is parallel to AB. A circle ω1

passes through points A and O and meets the lines AB, AC, ℓ and circle ω again at
points D, E, N and G, respectively. Point H is such that ADHE is a parallelogram.

Prove that H lies on the circumcircle of triangle GLN .

A

B
C

D

EG

H

L

N

O

ω

ω1

ℓ
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Number Theory

For positive integers m and n, let d(m,n) be the number of distinct primes that divideN1.

both m and n. For instance, d(60, 126) = d(22× 3× 5, 2× 32× 7) = 2. Does there exist
a sequence (an) of positive integers such that:

(i) a1 > 20182018;

(ii) am 6 an whenever m 6 n;

(iii) d(m,n) = d(am, an) for all positive integers m 6= n? (United Kingdom)

Solution.

Such a sequence does exist.

Let p1 < p2 < p3 < . . . be the usual list of primes, and q1 < q2 < . . . , r1 < r2 < . . . be
disjoint sequences of primes greater than 20182018. For example, let qi ≡ 1 and ri ≡ 3
modulo 4. Then, if n = pα1

1 pα2

2 . . ., where all but finitely many of the αi will be zero,
set

bn := qα1

1 qα2

2 · · · , for all n > 2.

This sequence satisfies requirement (iii), but not the ordering conditions (i) and (ii).
Iteratively, take a1 = r1, then given a1, . . . , an−1, define an by multiplying bn by as large
a power of rn as necessary in order to ensure an > an−1. Thus d(am, an) = d(bm, bn) =
d(m,n), and so all three requirements are satisfied.
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Find all functions f : N → N such thatN2.

n! + f(m)! | f(n)! + f(m!) (∗)

for all m,n ∈ N. (Albania)

Solution.

Answer: f(n) = n for all n ∈ N.

Taking m = n = 1 in (∗) yields 1 + f(1)! | f(1)! + f(1) and hence 1 + f(1)! | f(1)− 1.
Since |f(1)− 1| < f(1)! + 1, this implies f(1) = 1.

For m = 1 in (∗) we have n! + 1 | f(n)! + 1, which implies n! 6 f(n)!, i.e. f(n) > n.

On the other hand, taking (m,n) = (1, p−1) for any prime number p and using Wilson’s
theorem we obtain p | (p− 1)! + 1 | f(p− 1)! + 1, implying f(p− 1) < p. Therefore

f(p− 1) = p− 1.

Next, fix a positive integer m. For any prime number p, setting n = p− 1 in (∗) yields
(p− 1)! + f(m)! | (p− 1)! + f(m!), and hence

(p− 1)! + f(m)! | f(m!)− f(m)! for all prime numbers p.

This implies f(m!) = f(m)! for all m ∈ N, so (∗) can be rewritten as n! + f(m)! |
f(n)! + f(m)!. This implies

n! + f(m)! | f(n)!− n! for all n,m ∈ N.

Fixing n ∈ N and taking m ∈ N large enough, we conclude that f(n)! = n!, i.e.
f(n) = n, for all n ∈ N.

One readily checks that the identity function satisfies the conditions of the problem.
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Find all primes p and q such that 3pq−1 + 1 divides 11p + 17p. (Bulgaria)N3.

Solution.

Answer: (p, q) = (3, 3).

For p = 2 it is directly checked that there are no solutions. Assume that p > 2.

Observe that N = 11p + 17p ≡ 4 (mod 8), so 8 ∤ 3pq−1 + 1 > 4. Consider an odd prime
divisor r of 3pq−1 + 1. Obviously, r 6∈ {3, 11, 17}. There exists b such that 17b ≡ 1
(mod r). Then r | bpN ≡ ap+1 (mod r), where a = 11b. Thus r | a2p−1, but r ∤ ap−1,
which means that ordr(a) | 2p and ordr(a) ∤ p, i.e. ordr(a) ∈ {2, 2p}.
Note that if ordr(a) = 2, then r | a2 − 1 ≡ (112 − 172)b2 (mod r), which gives r = 7
as the only possibility. On the other hand, ordr(a) = 2p implies 2p | r − 1. Thus, all
prime divisors of 3pq−1 + 1 other than 2 or 7 are congruent to 1 modulo 2p, i.e.

3pq−1 + 1 = 2α7βpγ11 · · · pγkk , (∗)

where pi 6∈ {2, 7} are prime divisors with pi ≡ 1 (mod 2p).

We already know that α 6 2. Also, note that

11p + 17p

28
= 11p−1 − 11p−217 + 11p−3172 − · · ·+ 17p−1 ≡ p · 4p−1 (mod 7),

so 11p + 17p is not divisible by 72 and hence β 6 1.

If q = 2, then (∗) becomes 3p+1 = 2α7βpγ11 · · · pγkk , but pi > 2p+1, which is only possible
if γi = 0 for all i, i.e. 3p+ 1 = 2α7β ∈ {2, 4, 14, 28}, which gives us no solutions.

Thus q > 2, which implies 4 | 3pq−1 + 1, i.e. α = 2. Now the right hand side of (∗) is
congruent to 4 or 28 modulo p, which gives us p = 3. Consequently 3q+1 | 6244, which
is only possible for q = 3. The pair (p, q) = (3, 3) is indeed a solution.
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Let P (x) = adx
d+ · · ·+a1x+a0 be a non-constant polynomial with nonnegative integerN4.

coefficients having d rational roots. Prove that

lcm (P (m), P (m+ 1), . . . , P (n)) > m

(

n

m

)

for all positive integers n > m. (Iran)

Solution.

Let xi = −pi
qi

(1 6 i 6 d) be the roots of P (x), where pi, qi ∈ N and gcd(pi, qi) = 1. By

Gauss’ lemma, we have P (x) = c(q1x + p1)(q2x + p2) · · · (qdx + pd) for some c ∈ N, so
q1x+ p1 | P (x). Thus it suffices to prove the statement for P (x) = q1x+ p1 = qx+ p.

Let
A = lcm(qm+ p, q(m+ 1) + p, . . . , qn+ p) =

∏s
i=1 p

αi

i ,

B = (qm+ p)(q(m+ 1) + p) · · · (qn + p) =
∏s

i=1 p
βi

i

be the prime factorizations of A and B.

Consider a prime divisor pi. We have pαi

i | qx + p for some m 6 x 6 n. On the other
hand, if pri | qy + p (r 6 αi) for some m 6 y 6 n with y 6= x, then pri | q(x − y), i.e.
pri | x− y. Taking the product over all y 6= x we obtain that

pβi

i divides pαi

i ·
n
∏

y=m
y 6=x

|x− y|, which divides pαi

i (n−m)!.

It follows that B | A · (n − m)!, but B > m(m + 1) · · ·n, so the result immediately
follows.
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Let x and y be positive integers. If for each positive integer n we have thatN5.

(ny)2 + 1 | xϕ(n) − 1,

prove that x = 1. (Greece)

Solution.

Let us take n = 3k and suppose that p is a prime divisor of (3ky)2 + 1 such that p ≡ 2
(mod 3).

Since p divides xϕ(n) − 1 = x2·3k−1 − 1, the order of x modulo p divides both p− 1 and
2 · 3k−1, but gcd(p− 1, 2 · 3k−1) | 2, which implies that p | x2 − 1. The result will follow
if we prove that the prime p can take infinitely many values.

Suppose, to the contrary, that there are only finitely many primes p with p ≡ 2 (mod 3)
that divide a term of the sequence

ak = 32ky2 + 1 (k > 0).

Let p1, p2, . . . , pm be these primes. Clearly, we may assume without loss of generality
that 3 ∤ y. Then a0 = y2 + 1 ≡ 2 (mod 3), so it has a prime divisor of the form 3s+ 2
(s ∈ N0).

For N = (y2+1)p1 · · · pm we have aϕ(N) = 32ϕ(N)y2+1 ≡ y2+1 (mod N), which means
that

aϕ(N) = (y2 + 1)(tp1 · · · pm + 1)

for some positive integer t. Since y2 + 1 ≡ 2 (mod 3) and 32ϕ(N)y2 + 1 ≡ 1 (mod 3),
the number tp1 · · · pm + 1 must have a prime divisor of the form 3s + 2, but it cannot
be any of the primes p1, . . . , pm, so we have a contradiction as desired.
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