19th SEEMOUS 2025

Korgé, Albania, March 4th - 9th

Problems

Problem 1: Let A be an n x n matrix with strictly positive elements and two vectors
u,v € R™, also with strictly positive elements, such that

Au =wvand Av = u.

Prove that u = v.

Problem 2: Calculate
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Problem 3: Let A € M,,(C) such that A*A? = AA*. Prove that A2 = A. (Here
we denote by A* the conjugate transpose of A.)

Problem 4: Let (a,,),>1 be a monotone decreasing sequence of real numbers that con-
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verges to 0. Prove that E — is convergent if and only if the sequence (a,, Inn),>1
n >
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is bounded and Z(an — ap+1) Inn is convergent.

n=1



Solutions

Problem 1

Solution 1 (due to Emmanouil Petrakis): A? has positive elements (as a simple calcu-
lation shows), so let A? = (@ij)1<s,j<n With a;; > 0 for all 4, 5.

Note that A%u = A(Au) = Av = u and A?v = v. Hence A%(u — tv) = u — tv, (1)

ﬁ, i€{1,2, ...,n}}, denoting by u;, v; the re-
I
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for all t € R. We choose t = min{

spective elements of u, v.

Hence, u; —tv; > 0foralli € {1,2,...,n}, and moreover we can finda j € {1,2,...n}
such that u; — tv; = 0. Atrelation (1), by looking the j—th row, we obtain:

n
Z ajk(uk - t’l)k) = Uj — t’Uj =0.
k=1

However, in this relation the left hand side is a sum of non-negative numbers, hence
ajk(uk —tog) = 0 = up = tug,
forallk € {1,2,....,n}.
We conclude that u = tv. Now,
Au=v= Altv) =v=t(Av) =v = tu = v = t?v = v,

and so we conclude that t? = 1, thatis t € {—1,1}. However, if t = —1 we obtain a
clear contradiction since u, v have positive elements, hence ¢ = 1, as desired.

Solution 2 (due to Orestis Lignos. In fact, the two solutions are more or less iso-

morphic to each other): Let us denote A = (a;j)1<i j<n, ¥ = (U1,U2,...,U,) and
v = (v1,v9,...,v,). Note that all variables are positive from the problem statement.
We know that

a1 U1 + aoUs + ...+ Ginly = V;
and

;101 + G2V2 + ...+ QiU = Uy

forall 1 <7 <n. Letus denote £ = min (ul>, and WLOG let k = ﬂ. Note that
1<i<n \ v; U1

Z aj1(uwiu; — v;v;) = uv; —wv; =0, (1)
1<j<n

for all 1 <7 < n. Moreover,

E aij (ujvl — ulvj) = V;V1 — U;Uy
1<j<n



and so
Z Qij (ujvl - ulvj) = VjV1 — UsUy, (2)
2<j<n
forall 1 < ¢ < n. Now, notice that u;v; — ujv; > 0 forall 1 < j < n, and so by
relation (2) we obtain that v;v; > u;uy for all 1 < ¢ < n. Therefore, putting i = 1
in relation (1) we obtain that the left hand side is < 0, and so equality must hold, i.e.
v; 01 = w;ug forall 1 < i < n.

Putting ¢ = 1 this readily implies that k = 1, that is u; = v1, and subsequently u; = v;
forall 1 <4 < n, as desired.



Problem 2

Solution (due to Panagiotis-Nikolaos Glyptis): From Taylor’s theorem (we use the La-
grange remainder form), there exists a ¢ € (0, ) such that:
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and since we easily infer (for example, using Stirling’s formula or the Cesaro-Stolz
theorem) that

J 1
en Tpltw

falz) =

. n
lim — =e,
we (o o+ D)

we obtain that

pointwise, and moreover

en ™ < e2 % forall n > 2

and ) )
64e* > 't w forall n > 2,
and since the sequence W converges, it is bounded and so there exists a M >
n+1)H)n

0 such that ﬁ < M foralln > 1 Allin all, f,,(x) is bounded by a function
n—+1)H)»

with a finite integral in the integration interval, and so by the dominated convergence
theorem we finally may write
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lim fn(z)dx = / e Fadr = e,
0
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and so the given limit equals e.



Problem 3

Solution 1 (due to Anastasios Pastos): We know that A*A2 = AA*, (1). Our first
claim is the following:

Claim 1: ker A = ker A*, (2).
Proof: Let u € ker A. From relation (1) we obtain that

AA*u = A*A%u = 0= (AA*u,u) = 0 = (A*u, A*u) =0 = A*u =0 = u € ker A*
Hence ker A C ker A*. However,
—T _
rank (A") = rank (A ) =rank A = rank A,

hence we obtain dim Im A* = dim Im A = dimker A* = dimker A, by virtue of the
rank-nullity theorem. To sum up, we have that ker A C ker A* and their dimensions
are equal, hence the claim follows B

Moving on, we may write

that is A*(A*A — A%?) = O,,, and so by the above Claim (relation (2)) we obtain
A(A*A — A?%) = O, thatis AA*A = A3, (3).

Multiplying relation (1) with A from the right, we obtain A* A3 = AA*A = A*A3 =
A3 (4). Now, we move on to our next Claim:

Claim 2: ker A | Im A.

Proof: 1t is well-known that ker A* | Im A (indeed, if w € ker A* and Av € Im A,
then (w, Av) = (A*w,v) = (0,v) = 0), hence using relation (2) we conclude that
kerAlImAN

Using Claim 2, we infer that ker A 4+ Im A is a direct sum of two subspaces. How-
ever,
dim(ker A & Im A) = dimker A + dimIm A = n,

which implies that ker A & Im A = C™.

Our next step is to chose orthonormal bases @t = (u1, ug, . .., ux) and 0 = (v1,va, ..., Um),
corresponding to the subspaces Im A and ker A, respectively. Note that if A = O,
then A2 = A trivially holds. Else, Im A # {0}. From the above results we know
that w = (uy,u2, ..., U, v1,V2,. .., Uy) is an orthonormal base of C™. We perform a
change of basis from the ordinary base of C™ to base w.

Thus, we write

A=p? ( B | Okx(n—n) > U,
On—t)xk | Otn—k)x(n—k)



with B being a k x k invertible matrix (this follows as rank B = dimIm A = k.
Moreover, we know that U is a unitary matrix, since its columns are elements of w0,
which themselves constitute an orthonormal basis of C™.

. . BlO w _ s B0
Hence, we obtain A = U <ﬁ‘7) U,and A* = U ( o To )U. Return-

ing back, relation (4) easily turns into B*B? = B® = B*B3B~3 = B3B~3, that is
B* = I, which means B = [j. Thus, to sum up, we obtain A = U* < ‘g 8 > U,
and now it is trivial to conclude that A2 = A, as desired.

Solution 2 (due to Orestis Lignos): Let B = AA* and C = A*A. Then, A*A% = AA*
is rewritten as B = C'A, and taking * in the previous relation we obtain (A*)?A4 =
AA*, thatis B = A*C.

Claim 1: (CB)? = B3.
Proof: Note that
(CB*=CB-CB=A"A-AA" - A*A- AA* = (A*A?) - ((A*)2A%) . A* =
= (AA*)((A*)?A-A)- A* = (AA*)(A-A*A) - A* = B3
[ |
Claim 2: Matrices B and C' commute.
Proof: We begin with a preliminary result: we prove that AA* A is Hermitian. Indeed,
AA*A = ((A*)2A)) - A= (A%)2A% = A* . (A*A%) = A AA*,
hence AA*A = A* AA*. Now, note that
BC = A(A*)?A = (AA* - A")A = (((A*)?A) - A)A = A* - (A*AA*) - A =
= A" (AA*A)- A= (A*A)- (A*A?) = (A*A) - (AA*) = CB,

as desired (note that we used the first result in the end of the first linc) H

Since B and C are Hermitian and commute, they are simultaneously orthogonally di-
agonizable. So, we may write

B = PAgP* and C = PAcP¥,

with P being a unitary matrix. Since B = AA* and C' = A* A, a well-known lemma
(XY and Y X have the same characteristic polynomial) implies that B and C, i.e. Ap
and A¢, have the same characteristic polynomial, that is the same eigenvalues.

Assume that Ag = diag{by,bs,...,b,} and Ac = diag{ci,ca,...,c,}. Then,
{bi}1<i<n = {ci}1<i<n, and b;,¢; € R (B and C are Hermitian matrices, so they
have real eigenvalues). Using Claim 1,

(CB)? = B® = (AcAp)* = A% = (¢;ib)> = b2, forall i € {1,2,...,n} =



=b;,=0o0rb; =c foralli € {1,2,...,n}, (¥).
We contend:
Claim 3: b; € {0,1} foralli € {1,2,...,n}.
Proof: Assume otherwise. Assume that b; # 0 and by # 1. Then, using (*), we obtain

c] = bi/Q. Since {b; }1<i<n = {¢i}1<i<n, there is an index j such that ¢; = b;, hence
b; = b}/g # by. Therefore, using () again, we obtain that ¢; = b}/4 ¢ {b1, bi/Q}.

Continuing, we produce infinitely many mutually distinct eigenvalues b}/ o @ > 0),
a contradiction ll

Now, returing back to (), we infer that if b; # 0, then 1 = b; = ¢, hence ¢; = 1.

This implies that the multiplicity of the eigenvalue 1 in A is at least as large as the
multiplicitity of the eigenvalue 1 in Ag. Since these two multiplicities must be equal
(XY and Y X have the same algebraic multiplicitity in non-zero eigenvalues), we must
have equality everywhere: these two matrices must have the zeros and the ones in the
exact same places.

To sum up Ag = A¢, hence AA* = A*A, and so A, A* commute. Therefore, A
is orthogonally diagonizable itself, that is A = QDQ™* for some unitary matrix Q.
Thus, A*A? = AA* implies (assume that A = diag{\; }1<i<n)

TAZ =,
and now this last relation easily implies A; € {0, 1}, hence
A2 =QD*Q" =QDQ" = A,

as desired.



Problem 4

Solution (due to Orestis Lignos). In the following solution, we merely write n > 1 in
all series, meaning that n ranges from 1 to +00. Moreover, we write log(+) instead of
In(-). We split the solution into two parts.

a
Part 1: If the series Z — is convergent, then (a, logn) is bounded and Z(an —

n>1 n>1
an+1) logn is convergent. Note that

2 n
(a1—a2)log1+.. .+ (an—an+1)logn = a1 log 14+as log I+. . .+a, log T —apy1 logn,

n—
and since the sequence ((a,, — a,+1) logn) is positive, we need to prove that
2 n
Sy 1= allogl—i—aglogi —&—...—&—anlogil — apy1logn
n—

is bounded. This follows using the inequality log x < = — 1. Indeed,

1 logn < 2424 40
—pyilogn < — 4+ =+ ...+ —,
n_1 Ont1io8 12 n

1
sn§a1-0+a2-1+...+an~
. . . . an .
and this last sum is obviously bounded, as the series Z — is convergent.
n>1

To prove that (a,, logn) is bounced, note that

logn < -4~ ... 4
ogn - — —
ENS17T35 n

for all n > 1. Hence, it suffices to show that aT" + %L +...+ dn is bounded. However,
n

this is trivially true, as (a,,) is decreasing, and % + % + ...+ an is bounded, as we
n
explained above.

Part 2: If (a, logn) is bounded and Z(an — ant1)logn is convergent, then the
n>1

series Z 9n s bounded. The proof of this direction closely follows the proof in Part
n>1

. . . t—1 .
1. Lett = — T Then, using the inequality log ¢ > — o we obtain
n—
t—1 1
logn — log(n — 1) = log L logt > —— = —.
n—1 t n
Therefore,

an
Z ; <aj+ Z an(logn—log(n—1)) = a1+ Z (an—an+1)logn+ayg log k.

1<n<k 2<n<k 1<n<k—1



To conclude, we observe that aj, log k and Z (an—an+1) log n are bounded when
1<n<k—1
. . a . .
k — +00, hence the partial sums of the series Z — are bounded, and since the series
n>1
has positive terms we conclude it must be convergent, as desired.
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