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Abstract. The paper considers the proofs of two interesting geometric

inequalities for acute triangles.
Keywords: acute triangle; inequality; orthocentre of a triangle

In this paper we will prove two interesting inequalities for acute triangles, namely:
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where the point H is the orthocentre of the 44BC with sides a, b and c. For the
purpose we will make use of the following two inequalities:
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where «,  and y are the interior angles of the A4BC and F is the area of the
triangle.

Remark 1. The proofs of the inequalities (3) and (4) can be found in (Bottema
et al., 1969), (Bulajich Manfrino et al., 2009), (Grozdev, 2007) and (Cvetkovski,
2012). We will propose new proofs of the which are not included in the above ref-
erences.

We start with the inequality (3).

Firstly, we will prove the inequality:

sinxsin y<sin’ x+y’_ (x,ye[O,ﬂ]) . ®)]
We have 2

. . .2 X+
smxsmySst Ty


PC
Typewritten text
Објавено на 28.5.2023                             https://matematickitalent.mk


2
<:>2sin£cos£~2sinzco Y« sin— cosy-i-cosxsan
2 2 2 2 2 2 2 2

X X 2 X 2 X 2X .2
<4 sin—cos— smycosz<sm —cos y+2sm —cos— smycosl+cos —sin 2
2 2 2
.2 X 2 . X X . 2X .2
& sin” —cos Z—25m—coslcos—sml+cos —sin ZZO

2
p= sinfcosl—cosfsinZ >0
2 2 2 2

< sin’ Xy >0.
2 2

The last inequality is obvious, which proves the inequality (5). Note, that equal-
ity holds if and only if x=y .

The next two inequalities follow from the inequality (5):
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and from here after multiplying them:
0
sina sin fsiny sin60° <| sin a—;ﬂ }/+260 ] . (6)
It follows from the inequality (5), that:
in a+ﬁ ;/+600 sin? a+pf+y+60"
2 2 4

b

and from here:
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Inequalities (6) and (7) follow from here:
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and further:
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Note, that equality holds if and only if a=8=y=60" (equilateral trinagle).

Now, we will prove the inequality (4).

We deduce from the Heron‘s formula F? =s(s—a)(s—b)(s—c),where s= a+§+c ,
a new formula for the area of the A4BC:
I6F2:2(a2b2+b202+02a2)—a4—b4—c4. ()

After squaring, the inequality (4) turns to be equivalent to the inequality:
(a2+b2+c2)223~16F2 )
g(az +b7 +¢? )2 26(a2b2 +b°c? +cza2)—3(a4 +b? +c4)
od(a’+b"+c')-4(ab +b7 +c*a’)20/:2
2(a’+b"+c’)-2(a’b b +7a’ )20
@(az -b° )2 +(b2 —c? )2 +(02 —a2)2 >0.

The last is obvious. Thus, the inequality (9) is true and consequently the ine-
quality (4) is also true. The equality in (4) holds if and only if a=b=c (equilateral
triangle).

Now, we will give a new proof of the inequality (4).
From the well known inequality:
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using the well known formulae of the area of the triangle:

F=a—bsin7=b—csina=£sinﬂ ,
we get: 2 2 2
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We use the inequality between the arithmetic and the geometric means of three

positive numbers:
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and from here we get the inequality (3):
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Now, the inequality (4) follows from (10) and (11).

Finally, we will prove the inequalities (1) and (2).

Proof (of the inequality (1)):

Since AH L BC and ACLBE (Fig.l), it follows that {HAE=AEBC and conse-
quently £AEH =4BEC=90" . Thus, AAHE ~ ABEC . From here we have:
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At the same time the right-angle AABE gives, that:
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Because #, :ZTF , we get from (12) and (13), that:
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Analogously
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Applying (14), (15) and (16), we deduce that:
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Finally, from (17) and (4) we have:
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The equality holds if and only if a=b=c (equilateral triangle).

Proof (of the inequlity (2)): Feom (12) we have:

AH AE
—=—=ctga ,i.c.
a b

(14)

(15)

(16)

(17



AL _ 1 (18)

Analogously: a iga
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and from here after multiplying (18), (19) and (20), we obtain:
AHBHCH 1 a1
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Note the well known equality
tga+tg f+igy =tgatg figy .

It follows by the inequality between the arithmetic and the geometric means for
three positive numbers (tga,tgB,tgy >0 , because the trinagle is acute), that:

1gatg Prgy =tga+1g f+1gy > 33tgatg fgy /°
otg’atg’ prg’y > 271gatg rgy
@(tgatgﬂtg;/)z >27
otgatgftgy > 33
1 1
S—<—. 22
igaigfigy 33 (22)
Finally, from (21) and (22) we obtain the inequality (2), q.e.d. The equality
holds if and only if a=8=y :% (equilateral triangle).
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