
The 7th Romanian Master of Mathematics Competition

Solutions for the Day 1

Problem 1. Does there exist an infinite sequence of positive integers a1, a2, a3, . . . such that
am and an are coprime if and only if |m− n| = 1?

(Peru) Jorge Tipe

Solution. The answer is in the affirmative.
The idea is to consider a sequence of pairwise distinct primes p1, p2, p3, . . ., cover the

positive integers by a sequence of finite non-empty sets In such that Im and In are disjoint if and
only if m and n are one unit apart, and set an =

∏
i∈In pi, n = 1, 2, 3, . . ..

One possible way of finding such sets is the following. For all positive integers n, let

2n ∈ Ik for all k = n, n + 3, n + 5, n + 7, . . . ; and

2n− 1 ∈ Ik for all k = n, n + 2, n + 4, n + 6, . . . .

Clearly, each Ik is finite, since it contains none of the numbers greater than 2k. Next, the
number p2n ensures that In has a common element with each In+2i, while the number p2n−1
ensures that In has a common element with each In+2i+1 for i = 1, 2, . . . . Finally, none of the
indices appears in two consecutive sets.

Remark. The sets In from the solution above can explicitly be written as

In = {2n− 4k − 1: k = 0, 1, . . . , b(n− 1)/2c} ∪ {2n− 4k − 2: k = 1, 2, . . . , bn/2c − 1} ∪ {2n},

The above construction can alternatively be described as follows: Let p1, p
′
1, p2, p

′
2, . . .,

pn, p′n, . . . be a sequence of pairwise distinct primes. With the standard convention that empty
products are 1, let

Pn =

{
p1p
′
2p3p

′
4 · · · pn−4p′n−3pn−2, if n is odd,

p′1p2p
′
3p4 · · · p′n−3pn−2, if n is even,

and define an = Pnpnp
′
n.
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Problem 2. For an integer n ≥ 5, two players play the following game on a regular n-gon.
Initially, three consecutive vertices are chosen, and one counter is placed on each. A move
consists of one player sliding one counter along any number of edges to another vertex of the
n-gon without jumping over another counter. A move is legal if the area of the triangle formed
by the counters is strictly greater after the move than before. The players take turns to make
legal moves, and if a player cannot make a legal move, that player loses. For which values of n
does the player making the first move have a winning strategy?

(United Kingdom) Jeremy King

Solution. We shall prove that the first player wins if and only the exponent of 2 in the prime
decomposition of n− 3 is odd.

Since the game is identical for both players, has finitely many possible states and always
terminates, we can label the possible states Wins od Losses according as whether a player faced
with that position has a winning strategy or not. A state is a Win if and only if there is some
legal move taking the state to a Loss, and a state is a Loss if and only if all moves take that state
to a Win (including the case where there are no legal moves).

Lemma. Any configuration in which the triangle formed by the three counters is not isosceles is
necessarily a Win.

Proof. Label the positions of the counters X, Y , Z so that the arc Y Z of the circumcircle is
shortest and the arc ZX is longest. Begin by moving the counter at Z around the polygon on
the arc Y ZX until it forms an isosceles triangle XY Z ′ with apex at Y (note that the arc XY is
less than half the circle, so that Z does not jump over the counter at X). If this configuration is
a Loss, we are done.

If instead this configuration is a Win, then the counters can be moved legally from triangle
XY Z ′ to reach a losing state. This cannot involve the counter at Y , so by symmetry a Loss
state can be reached by moving the counter at Z ′ to a new location Z ′′. But then the counter
at Z could have been moved to Z ′′ in the first place, so the original configuration was a Win as
well. �

For every nonzero integer x, denote by v2(x) the exponent of 2 in the prime decomposition
of x. Now, given a configuration in which the triangle formed by the three counters is isosceles,
the arcs between the vertices having lengths a, a, b respectively (in appropriate units so that
2a + b = n), we show that the configuration is a Win if and only if a 6= b and v2(a− b) is odd.

Write b = a± |a− b| and notice that the only other isosceles triangle that can be reached
from the original configuration is one with arc lengths a, a±|a−b|/2, a±|a−b|/2. If |a−b| is odd,
this is of course impossible, so the configuration is a Loss, since all non-isosceles configurations
are Wins, by the lemma.

If instead |a− b| is even, then all states that can be reached from the original configuration
are Wins, except possibly the state with arc lengths a, a± |a− b|/2, a± |a− b|/2. Consequently,
(a, a, b) is a Win if and only if (a, a± |a− b|/2, a± |a− b|/2) is a Loss. Since the side lengths of
this new triangle differ by |a− b|/2, the conclusion follows inductively once the exceptional and
trivial case a = b is dealt with.

As an immediate corollary, the configuration with arc lengths 1, 1, n − 2 (the starting
configuration of the question) is a Win if and only if v2(n− 3) is odd.

Remark. Relying on the solution presented above, one may also derive an explicit winning
strategy. Denote the position in the game by the multiset {a, b, c} of thr lengths of the three arcs
between the tokens (again in appropriate units so that a + b + c = n). A move now consists in
choosing two of the three numbers a, b, c, and replacing them by two numbers with the same
sum so as to strictly increase the minimum of the pair.
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The winning strategy for a player is to obtain at the end of each of his moves the positions
of the form {a, a, b}, where a = b or v2(a− b) is even; we say that such position is good. At the
beginning of the game, the position is good exactly if v2(n− 3) is even.

Now, there is at most one position of the form {a′, a′, b′} which may be obtained by a move
from a good position {a, a, b} — that is, with b′ = a. This position is not good, thus it suffices
to show that it is possible to obtain a good position from any non-good one by a move.

Let now {a, b, c} be a non-good position, with a ≤ b ≤ c. If a+c = 2b then one may get the
good position (b, b, b). Assume now that a + c 6= 2b. If v2(c + a− 2b) is even, then it is possible
to achieve the good position {b, b, c + a − b}; otherwise, c + a is necessarily even, and one may
get the good position {(c + a)/2, (c + a)/2, b}.

3



Problem 3. A finite list of rational numbers is written on a blackboard. In an operation, we
choose any two numbers a, b, erase them, and write down one of the numbers

a + b, a− b, b− a, a× b, a/b (if b 6= 0), b/a (if a 6= 0).

Prove that, for every integer n > 100, there are only finitely many integers k ≥ 0, such that,
starting from the list

k + 1, k + 2, . . . , k + n,

it is possible to obtain, after n− 1 operations, the value n!.

(United Kingdom) Alexander Betts

Solution. We prove the problem statement even for all positive integer n.
There are only finitely many ways of constructing a number from n pairwise distinct num-

bers x1, . . ., xn only using the four elementary arithmetic operations, and each xk exactly once.
Each such formula for k > 1 is obtained by an elementary operation from two such formulas on
two disjoint sets of the xi.

A straightforward induction on n shows that the outcome of each such construction is a
number of the form ∑

α1,...,αn∈{0,1}

aα1,...,αnx
α1
1 · · ·x

αn
n∑

α1,...,αn∈{0,1}

bα1,...,αnx
α1
1 · · ·x

αn
n

, (∗)

where the aα1,...,αn and bα1,...,αn are all in the set {0,±1}, not all zero of course, a0,...,0 = b1,...,1 = 0,
and also aα1,...,αn · bα1,...,αn = 0 for every set of indices.

Since |aα1,...,αn | ≤ 1, and a0,0,...,0 = 0, the absolute value of the numerator does not exceed
(1+ |x1|) · · · (1+ |xn|)−1; in particular, if c is an integer in the range −n, . . ., −1, and xk = c+k,
k = 1, . . . , n, then the absolute value of the numerator is at most (−c)!(n+c+1)!−1 ≤ n!−1 < n! .

Consider now the integral polynomials,

P =
∑

α1,...,αn∈{0,1}

aα1,...,αn(X + 1)α1 · · · (X + n)αn ,

and
Q =

∑
α1,...,αn∈{0,1}

bα1,...,αn(X + 1)α1 · · · (X + n)αn ,

where the aα1,...,αn and bα1,...,αn are all in the set {0,±1}, not all zero, aα1,...,αnbα1,...,αn = 0 for
every set of indices, and a0,...,0 = b1,...,1 = 0. By the preceding, |P (c)| < n! for every integer c in
the range −n, . . ., −1; and since b1,...,1 = 0, the degree of Q is less than n.

Since every non-zero polynomial has only finitely many roots, and the number of roots does
not exceed the degree, to complete the proof it is sufficient to show that the polynomial P −n!Q
does not vanish identically, provided that Q does not (which is the case in the problem).

Suppose, if possible, that P = n!Q, where Q 6= 0. Since degQ < n, it follows that
degP < n as well, and since P 6= 0, the number of roots of P does not exceed degP < n, so
P (c) 6= 0 for some integer c in the range −n, . . ., −1. By the preceding, |P (c)| is consequently a
positive integer less than n! . On the other hand, |P (c)| = n!|Q(c)| is an integral multiple of n!.
A contradiction.

Remark. Alternatively, it can be shown by induction on n that

max(|P (c)|, 2|Q(c)|) ≤
n∏
k=1

max(|c + k|, 2),

for all integers c. In case n > 8, this provides a solution along the same lines.
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The 7th Romanian Master of Mathematics Competition

Solutions for the Day 2

Problem 4. Let ABC be a triangle, let D be the touchpoint of the side BC and the incircle of
the triangle ABC, and let Jb and Jc be the incentres of the triangles ABD and ACD, respectively.
Prove that the circumcentre of the triangle AJbJc lies on the bisectrix of the angle BAC.

(Russia) Fedor Ivlev

Solution. Let the incircle of the triangle ABC meet CA and AB at points E and F , respectively.
Let the incircles of the triangles ABD and ACD meet AD at points X and Y , respectively. Then
2DX = DA+DB−AB = DA+DB−BF−AF = DA−AF ; similarly, 2DY = DA−AE = 2DX.
Hence the points X and Y coincide, so JbJc ⊥ AD.

Now let O be the circumcentre of the triangle AJbJc. Then ∠JbAO = π/2 − ∠AOJb/2 =
π/2 − ∠AJcJb = ∠XAJc = 1

2∠DAC. Therefore, ∠BAO = ∠BAJb + ∠JbAO = 1
2∠BAD +

1
2∠DAC = 1

2∠BAC, and the conclusion follows.

A

B CD

E

F

I

Jb

JcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJcJc

X = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = YX = Y

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Fig. 1
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Problem 5. Let p ≥ 5 be a prime number. For a positive integer k we denote by R(k) the
remainder of k when divided by p. Determine all positive integers a < p such that

m+R(ma) > a

for every m = 1, 2, . . . , p− 1.

(Bulgaria) Alexander Ivanov

Solution. The required integers are p − 1 along with all the numbers of the form bp/qc, q =
2, . . . , p− 1. In other words, these are p− 1, along with the numbers 1, 2, . . . , b√pc, and also the
(distinct) numbers bp/qc, q = 2, . . . ,

⌊√
p− 1

2

⌋
.

We begin by showing that these numbers satisfy the conditions in the statement. It is
readily checked that p−1 satisfies the required inequalities, since m+R(m(p−1)) = m+(p−m) =
p > p− 1 for all m = 1, . . . , p− 1.

Now, consider any number a of the form a = bp/qc, where q is an integer greater than 1 but
less than p; then p = aq+ r with 0 < r < q. Choose any integer m ∈ (0, p) and write m = xq+ y
with x, y ∈ Z, 0 < y ≤ q (notice that x is nonnegative). Then

R(ma) = R(ay + xaq) = R(ay + xp− xr) = R(ay − xr).

Since ay − xr ≤ ay ≤ aq < p, we obtain R(ay − xr) ≥ ay − xr and hence

m+R(ma) ≥ (xq + y) + (ay − xr) = x(q − r) + y(a+ 1) ≥ a+ 1

by q > r and y ≥ 1. Thus a satisfies the required condition.

Finally, we show that if an integer a ∈ (0, p − 1) satisfies the required condition then a is
indeed of the form a = bp/qc for some integer q ∈ (0, p). This is clear for a = 1, so we may (and
will) assume that a ≥ 2.

Write p = aq + r with q, r ∈ Z and 0 < r < a; since a ≥ 2 we have q < p/2. Choose
m = q + 1 < p; we have R(ma) = R(aq + a) = R(p+ (a− r)) = a− r, so

a < m+R(ma) = q + 1 + a− r,

which yields r < q+1. Moreover, if r = q, then p = q(a+1) which is impossible by 1 < a+1 < p.
Thus r < q, and we have

0 ≤ p

q
− a =

r

q
< 1,

which proves a = bp/qc.
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Problem 6. Given a positive integer n, determine the largest real number µ satisfying the
following condition: for every 4n-point configuration C in an open unit square U , there exists an
open rectangle in U , whose sides are parallel to those of U , which contains exactly one point of
C, and has an area greater than or equal to µ.

(Bulgaria) Nikolai Beluhov

Solution. The required maximum is 1
2n+2 . To show that the condition in the statement is

not met if µ > 1
2n+2 , let U = (0, 1) × (0, 1), choose a small enough positive ε, and consider the

configuration C consisting of the n four-element clusters of points
(

i
n+1±ε

)
×
(
1
2 ± ε

)
, i = 1, . . . , n,

the four possible sign combinations being considered for each i. Clearly, every open rectangle
in U , whose sides are parallel to those of U , which contains exactly one point of C, has area at
most

(
1

n+1 + ε
)
·
(
1
2 + ε

)
< µ if ε is small enough.

We now show that, given a finite configuration C of points in an open unit square U , there
always exists an open rectangle in U , whose sides are parallel to those of U , which contains

exactly one point of C, and has an area greater than or equal to µ0 =
2

|C|+ 4
.

To prove this, usage will be made of the following two lemmas whose proofs are left at the
end of the solution.

Lemma 1. Let k be a positive integer, and let λ <
1

bk/2c+ 1
be a positive real number. If

t1, . . ., tk are pairwise distinct points in the open unit interval (0, 1), then some ti is isolated
from the other tj by an open subinterval of (0, 1) whose length is greater than or equal to λ.

Lemma 2. Given an integer k ≥ 2 and positive integers m1, . . ., mk,

⌊m1

2

⌋
+

k∑
i=1

⌊mi

2

⌋
+
⌊mk

2

⌋
≤

k∑
i=1

mi − k + 2.

Back to the problem, let U = (0, 1)× (0, 1), project C orthogonally on the x-axis to obtain
the points x1 < · · · < xk in the open unit interval (0, 1), let `i be the vertical through xi, and let
mi = |C ∩ `i|, i = 1, . . . , k.

Setting x0 = 0 and xk+1 = 1, assume that xi+1 − xi−1 > (bmi/2c+ 1)µ0 for some index i,
and apply Lemma 1 to isolate one of the points in C∩`i from the other ones by an open subinterval
xi × J of xi × (0, 1) whose length is greater than or equal to µ0/(xi+1 − xi−1). Consequently,
(xi−1, xi+1)× J is an open rectangle in U , whose sides are parallel to those of U , which contains
exactly one point of C and has an area greater than or equal to µ0.

Next, we rule out the case xi+1 − xi−1 ≤ (bmi/2c + 1)µ0 for all indices i. If this were the
case, notice that necessarily k > 1; also, x1 − x0 < x2 − x0 ≤ (bm1/2c + 1)µ0 and xk+1 − xk <
xk+1 − xk−1 ≤ (bmk/2c+ 1)µ0. With reference to Lemma 2, write

2 = 2(xk+1 − x0) = (x1 − x0) +

k∑
i=1

(xi+1 − xi−1) + (xk+1 − xk)

<

((⌊m1

2

⌋
+ 1
)

+

k∑
i=1

(⌊mi

2

⌋
+ 1
)

+
(⌊mk

2

⌋
+ 1
))
· µ0

≤

(
k∑

i=1

mi + 4

)
µ0 = (|C|+ 4)µ0 = 2,

and thereby reach a contradiction.
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Finally, we prove the two lemmas.

Proof of Lemma 1. Suppose, if possible, that no ti is isolated from the other tj by an open
subinterval of (0, 1) whose length is greater than or equal to λ. Without loss of generality, we
may (and will) assume that 0 = t0 < t1 < · · · < tk < tk+1 = 1. Since the open interval (ti−1, ti+1)
isolates ti from the other tj , its length, ti+1 − ti−1, is less than λ. Consequently, if k is odd we

have 1 =
∑(k−1)/2

i=0 (t2i+2 − t2i) < λ
(
1 + k−1

2

)
< 1; if k is even, we have 1 < 1 + tk − tk−1 =∑k/2−1

i=0 (t2i+2 − t2i) + (tk+1 − tk−1) < λ
(
1 + k

2

)
< 1. A contradiction in either case.

Proof of Lemma 2. Let I0, respectively I1, be the set of all indices i in the range 2, . . ., k − 1
such that mi is even, respectively odd. Clearly, I0 and I1 form a partition of that range. Since
mi ≥ 2 if i is in I0, and mi ≥ 1 if i is in I1 (recall that the mi are positive integers),

k−1∑
i=2

mi =
∑
i∈I0

mi +
∑
i∈I1

mi ≥ 2|I0|+ |I1| = 2(k − 2)− |I1|, or |I1| ≥ 2(k − 2)−
k−1∑
i=2

mi.

Therefore,

⌊m1

2

⌋
+

k∑
i=1

⌊mi

2

⌋
+
⌊mk

2

⌋
≤ m1 +

(
k−1∑
i=2

mi

2
− |I1|

2

)
+mk

≤ m1 +

(
1

2

k−1∑
i=2

mi − (k − 2) +
1

2

k−1∑
i=2

mi

)
+mk

=
k∑

i=1

mi − k + 2. �

Remark. In case 4n is replaced by a positive integer k not divisible by 4, we do not yet know
the maximal µ satisfying the corresponding condition.
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