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ALGEBRA and LINEAR ALGEBRA

Problem 1. Let A/B and X be nxn matrices over the same field, with X
being nonsingular. Prove that AB = AX + X !B if and only if BA= XA+ BX -1
Solution. It is enough to prove that AB=AX+ X 'B implies
BA= XA+ BX L. For the sake of this, consider the product
(A-XH(B-X)=AB-AX - X 1B+1
where | is the identity nxn matrix. Thus (A—X_l)(B—X) =1, which means
that
(A-xH=B-x)".
Therefore, we have
(A-XHB-X)=B-X)(A-XDH=1.
It follows now that
| =(B—X)(A— X 1) =BA-XA-BX 1+1,
and finally
BA= XA+BX



Problem 2. Prove that given two matrices Ae M () and BeMj(¢)
have a common eigenvalue if and only if there exists a non-zero matrix
C e Mpun () suchthat AC=CB.

Solution. Let A€~ be a common eigenvalue of A and B . Since

det(B—Al,)=0, it follows that det(B'—Al,)=0 (where B' denotes the

transpose of B ), hence A is an eigenvalue of B'. Next, let X e ~™ and
Y e ~" be eigenvectors associated to the eigenvalue A and the matrices Aand
B!, respectively, i.e.
AX =X, X #0,
BY =AY, Y =0.
SettingC = XY ' € Mypun () , it follows that
AC = AXY'=axY'=x(aY)t = x(BY)'=xY'B=CB.
Conversely, let C € My, (¢) be a non-zero matrix such that AC=CB. It
is easily deducible (e.g., by induction) that Akc =cBX holds for all non-
negative integers k, hence P(A)C =CP(B) for any polynomial P over .
Choose P to be the characteristic polynomial of A and 4,4;,..., Ay, € ¢ to be
its eigenvalues (repeated according to their algebraic multiplicities). Then
P(x) =det(xly, — A) =(X—=4)(X—=A)...(Xx = Ay)
and P(A)=0, hence CP(B)=0. This leads to
0 =C(B=241,)(B=2p1,)..(B=Agly).
Suppose that none of 44, 4,,..., 4, is an eigenvalue of B.. Thus, for every i, the
matrix B— 41, is invertible, which implies that C=0. This contradiction
concludes the proof.



Problem 3. Let f;(x) =3x—4x° and
fn () = f1(fr1(x)) .
Solve the equation f,(x)=0.
Solution. First, we prove that | x[>1=]| f,(x) [>1 holds for every positive

integer n. It suffices to demonstrate the validity of this implication for n = 1.
But, by assuming | x |>1, it readily follows that

| () = X |- |3-4x% 2| 3-4x? |> 1,
which completes the demonstration. We conclude that every solution of the
equation f,(x)=0 lies in the closed interval [-1,1]. For an arbitrary such x,

set x =sint where t=arcsinXe[—%,%]. We clearly have f;(sint)=sin3t,
which gives

f,(x) =sin3"t =sin(3" arcsin x).
Thus, f,(x)=0 if and only if sin(3"arcsinx)=0 , i.e. only when

3"arcsinx =kz for some k eZ . Therefore, the solutions of the equation
fr(x) =0 are given by

x=sin';—f,

where k acquires every integer value from 3t up to L



Problem 4. For an integer n>2 let AB,C,De M, () be matrices
satisfying:
AC-BD=1,,
AD +BC =0,,.
Prove that:
a) CA-DB=1I,and DA+CB =0,
b) det(AC)>0and (-I)"det(BD)>0.
Solution. a) We have
AC-BD+i(AD+BC) =1, < (A+iB)(C+iD)=1,,
which implies that the matrices A+iBand C+iD are inverses to one another.
Thus,
(C+iD)(A+iB)=1,, < CA-DB+i(DA+CB) =1,
< CA-DB=1,,DA+CB=0,.

b) We have
det((A+iB)C) = det(AC +iBC)
AD+BC=0,
= det(AC —iAD)
= det(A(C —iD).
On the other hand,
(C+iD)(A+iB)=I,
detC = det((C +iD)(A+iB)C) = det((C +iD)A(C —iD))
= det(A) |det(C +iD) ]* .
Thus,
det(AC) = (detA)?|det(C +iD) [?>0.
Similarly

det((A+iB)D) = det(AD +iBD)
AD+BC=0,
= det(-BC +iBD)

= (-1)"det(B(C —iD)).
This implies that

(C+iD)(A+iB)=I,
detD - det((C +iD)(A+iB)D) = (—I)"det((C +iD)B(C —iD))

= (-1)"det(B) | det(C +iD) [* .
Thus, (—1)"det(BD) = (detB)? |det(C +iD) [*>0.



Remark. Since (C +iD)(A+iB) = I,,, we have that
det(C +iD) #0and |det(C+iD) 0.
It follows that detA=0 < detC=0and detB=0 <> detD =0.
The two matrix formulae, given in the statement of the problem, can also be

written as
A -B|[C -D |
B AllD c| ™



ANALYSIS

Problem 1. For an integern >1, denote by
k—1 2k-1
To(X) = z( D A
the (2n—1) -th Taylor polynomial of the sine function at 0, and let

|, < [TC0-sinx

2n+1
X
0

a) Prove that I, = n>1.

-1
2n(2n-1) n-L
b) Calculate I,,.
Solution. a) Integration by parts twice gives

0

_OJ?Tn(X)—SinX dx = _Tn (x)—=sinx

Iy = ATMdX
n 0 X2n+1 an 2n : »
:LOJ? (X) COSX x = — Ty (X)—cosx | N J-T (x)+5|nxd
2n 0 2n(2n-1)x>"1 |0 2n(2n—1) 21

Th(X)=sinx | 1
2n(2n ) I w201 dx = “2n(2n-1) In-1,

since T, () =—T,_4(x) . It follows that

lp=—s—t—1. sand| (9" I
n = " Zngng n-18nd1n = 2n@2n-1)- -4-3 4

)" *x
2(2n)!

)

b) The integral equals

. To calculate I, we integrate by parts twice

w -
I :Ix—smxdx X— smx
—2x2

171
COSX
+§(j) dx

0
:;ofl COSX dy — 1=COsX +;Tsinxdx
2 —
2 0 X 2X 2 0 X @)
1oo i
=3[
0
-z
=Z.
.. _ (_1)n—17[
Combining (1) and (2) we deduce that I, =50



Problem 2. Prove that for every x €(0,1) holds the inequality

1
M1+ (cos y)?dy > «fxz +(sinx)? .
0

Solution. Clearly

1 X
Ml+ (cos y)?dy > Ml+ (cos y)?dy .
0 0

Define a function F :[0,1] — » by setting:

F(x) = }(\f1+(cos y)2dy—\j’x2 + (sin x)2 .
0

Since F(0) =0, it suffices to show that F'(x) >0. By the fundamental theorem
of Calculus, holds

F(x) = f1+(cos X)2 _ X4siNXCOSX
«fx2+(sin x)2
Thus, it is enough to prove that

L+ (cos X)?) (X + (sin x)?) = (X +sin xcos X)?.
But this is a straightforward application of the Cauchy-Schwarz inequality.



Problem 3. Find all differentiable functions f :p — p such that
f'(x)—2xf(—x)=x, forall xepp.

Solution. By replacing x with —x, we obtain the following two equalities:
f'(x)—2xf (—x)=x, forall xep
f'(=x)+2xf (x) =—x, forall xepp
After adding these two, we obtain
f'OX)+ f'(—=x)+2x(f(x)— f(—x)) =0, forall xep. (1)
Let g:p — p be the function g(x) = f(x)— f(-x) . Based on (1), we have
g9'(x)+2xg(x)=0, forall xep.
Multiply the preceding equality by e"2 to deduce that
(g(x)exz)‘ =0, forall xepp.
Hence
g(x) = ce ,forallxepp,
where C is an arbitrary constant. This implies

F(x)= F(-x)=Ce™ ,forall xepp. @

Replacing x by —x in (2) gives
F(=x)— f)=Ce™ ,forall xerp. 3)

Add (2) and (3) to conclude that C =0, thus f(—x)= f(x), forall xep.
Therefore, f isan even function, and the initial differential equation implies
f'(x)—2xf (x)=x, forall xep.

X

We multiply the preceding equality by e~ ’ and obtain

(f(x)e_xz)' —xe X = (—%e_xz)' forall xep,

2
which in turn yields that f(x):—%+ceX ,forall Xepp.
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Problem 4. Find the limit:
2015

. _ n(n 1)
lim n? | —————Ji—d
n—00 1 un+1
Solution 1. One has
2015 nm+n 1
j ———————d u=(n+1)- 2015n+l n-2015" -1
un+1
2 2
—(n+1)(1+In2015 | In®2015 | 5 1yy_p(14 102015  In®2015 o 1yy_1q
= (D 2B+ I 20 4o —n(1+ ZMS+ IS 1 o L)
_ In®2015 , /1
=~ 2ntnip) TO62):
Thus,
2015
. n(n 1) 2
lim n2 f Dgu=_In 3015_
n—oo 1 un+l
Solution 2. One has
1 < Inku . o
1-u"H) S (n(ne) InK u
o n_ =-2 n_ '
un+1 un+l k:lun+l(n(n+1))k
The last series is uniformly convergent. Thus,
2015 w 2015
. n(n+1) k
lim n? [ H——du=limn 2(- }: | — U qu)
I I T v N—0 k=1 1 LW+1UKH+D)k
2015 )
_ J‘ Inudu:_ln 2015
1 u 2 7
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Problem 5. Find all functions f:po— o which satisfy the functional
equation
f(f(x)-2x)=3x, VXepy,
where p denotes the set of nonnegative real numbers.

Solution. In order for the LHS to be defined, the inequality f(x)>2x,

VX € g Must hold. So,
f(F(x)—2x)>2(f(x)—-2x)=2f(x)—4x < f(x)<35x.

Therefore 2x < f(x) <3,5x, VX e .

Consider a double inequality of type a,x < f(x) <b,X. Then

an(F(x)—2x) < F(f(x)—2x) <b,(f(x)—2x)
and so
(2+%)xs f(x)s(2+%)x.

Define the sequences {a,}, and {b, } by

a=2,b =358, =2+ by =2+,
n

n

The above calculations imply that for each n, a,x < f(x) <b,x, VXxepg. One
can directly verify the inequalities a <a, and b; >b, . Using induction we
show that the sequence {a, } is non-decreasing, while {by,} is non-increasing.
As these sequences are clearly bounded, they must be convergent. Now it is
easy to prove that they both converge to 3. Thus f(x)=3x, VXepq. It is
readily checked that this is indeed a solution of the considered functional equation.

12



Problem 6. Let f be a continuous real function defined on [0,2] such that

2 2
[t (t)dt =2 f (t)dt.
0 0

Prove that there exists an a € (0,2) such that

?tf (1)dt=0.
0

X
Solution. LetH (x) = jtf (t)dt. For &> 0, integration by parts gives
0
2 2 2
-t ft)dt=[2LH (t)dt = 2LH (1) 2 +[ZH(b)dt.
& & gt
Taking limits we obtain:

2 2
lim [ 2 H(t)dt = [(2-t) f (t)dt =0.
Eﬂogt 0

Consider the function

2
Jt%H(t)dt, if xe(0,2]

G(x) =1
0, if x=0.
This is a differentiable function, since L’Hospital's rule gives
lim 8% = _ jim 2700 — ¢ (g).
x—0 x—0 X

Finally, as G(2) =G(0), Rolle’s theorem implies the desired result.

13



Problem 7. Prove that:
i) there exists only one function f : p — p which satisfies:

f3(x)+3f (x)sin2 X=6sinx+8, Vxep

i) f is periodic, bounded, and of class @"O;

iii) there exists & >0 such that
O<xke = F(=3x)+3f(—x)+2f(3x) <12.

Solution. i) Consider the equation
g(y) = y>+3m?y—6m-8, me[-11].

Observe that fory #0, g'(y) = 3y2 +3m? >0, g(0) <0, g(3) > 0. Hence, for
any me[-1,1], this equation admits a unique solution y(m) <(0,3). Since the
equation involving the function f contains sinx, the function we are looking
for must depend onsin x, thus it must be of the form y(sin x).

ii) It follows immediately that f is periodic and bounded, and moreover, by
the implicit function theorem, f is differentiable. We calculate

, 2cosx(1- f (x)sinx)
f = :
(x) 1‘2(x)+sin2 X

Inductively, one obtains that f is of class ¢, in particular

fF7(X) = ———2— (£ (x) f2(X) +5sin 2xF '(X) + Cos 2xf (X) +Sin X).
fz(x)+sm2x

iii) We calculate f(0)=2, f'(0)=1, f"(0)=-2. By denoting
h(x) = f (=3x) +3f (=x) + 2 f (3x),
one gets h(0)=12, h'(0)=0, h"(0)=—§<0, hence h has a strict local

maximum at the origin.

14



Problem 8. Given is the functional equation
f(x+1)+ f(x—1)=2015f(x).

)

a) Prove that there is no non-constant continuous periodic solution f of the
equation (1).

b) Does there exist a periodic function f which satisfies (1). In addition, is
it possible to point out a periodic solution with a period J2015 2

Solution. a) Because f is not a constant, it follows that one can find
0% xg e for which f(xy) #0. Consider now the restriction of f on the set
Xp +7 and put a, = f(xg+n). Thus, we obtain the sequence {a,} defined by
the recurrent equation a4 +a,_1 =2015a,, . Using standard techniques, one

obtains that a, =c. 4" +c 4}, where ¢; and ¢, are constants with ¢Z +c5 =0
(since f =const)and 4, are the roots of the characteristic equation

1220154 +1=0.

Note that lim a, =+ or lim a, =+ because 11=% and 4 + 1, =2015
nN—o0 nN——o0

(the roots are real numbers). It follows that f is not bounded, a contradiction (
f is continuous and periodic, thus surely is bounded).
b) Choose a root of the characteristic equation, say we have chosen /; .

Denote by M the subset M ={m+n+/2015|m,n ez} of p, and define the
function f as follows:

f(x)=0 ifxgM and f(m+ny2015)=A4" otherwise.

It is easy to prove that f is periodic with period J2015 (note that
2015=5-13-31, so it is easily seen that J2015 is irrational).

Remark. Note that one can point out an example of a periodic solution of (1)
with an arbitrary chosen irrational period. In addition, the unbounded periodic
functions as above usually have some exotic properties (for example, the closure
of the graph of such a function has a nonempty interior and every such function
is unbounded at each point).

15



Problem 9. Let the sequences{p,}, {a,}be defined recursively by
P-1=0pp=0p=9,=1 and

P =2pPn_1+(2n ~1)? Pn_2, On =20,_1+(2n —1)2qn_2, foreach n>1.

Calculate: lim o
n— oo In

Solution. By using induction, one easily verifies that

On = lD[ (2k+1), pp=(2n+1) pp_g +(—1)nri:[1(2k+1) :
k=0

k=0
Therefore,
(2n+1) ( l)"nl'[_l(Zk 1) ( 1)"nH_1(2k 1)
n+1) pp_1+(— + - +
Pn _ i k=0 _@n+l)pny k=0
n n n
O IT (2k+1) IT (2k+1) IT (2k+1)
k=0 k=0 k=0
P (D" P (D" S (D
n-1 2n+l  g,1 2n+l 2k+1"
[T(2k+1) k=0
k=0
So,

and the last series is convergent by the alternating series test. Since

0 k
arctanx = . %XZ"”, vxe(-11),

Abel's theorem assures that

0 k
lim 2o = > (2k1)1 =arctanl=7.
R
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Problem 10. For an integer n>1, let

0

— [arctanx g
o @)
a) Prove that > F“ =((2),where £(2)= > % :”_62 )
n=1 n=1"
o0
b) Calculate j arctanxIn(1+ Xlz)dx .
0

Solution. a) First, we prove that the following recurrence relation holds
In=—2=+2n(lp = Ipy), n>1,
We calculate the integral I, by parts, with

£(x )_ arctanx f1(x) = — 2 __arctanx, g'(x) =1, g(x) =X

Z)H ’ (1 X )n+1 (1+X2)n+l
and obtam
t © © 2
_ xarctanx | _ X -2n arctan x)dx
@) |0 é(mxz)”+1 (L+x 2)”+1 :
o0 o0

=—[—2%X _dx+2n[ —2—arctan xdx
.[(1+X2)n+l J.(1+X2)ﬂ+1

0 0

0
J’ ( arctan x arctan x )

(1+x2)" (1+x2)"+1

_ 1
2n(1+x2)" |0

=_%+2n(|n - n+1)-
This implies that '7“ = —ZLZ +2(1, - I,,1) . Moreover, dominated convergence
n

implies I, — 0. Hence

0] [ee]
1 1
Z#Z_EZ_ZJFZ lim (|1_|n+1)
n:]_ : Nn—o0
=-1z0+21
2
=z,
since
_ arctanx _ arctan X _ 72'_2
Iy f 2 dx = X, =
0
b) We have,

17



o0 o0

[ arctan xIn(1+-L-)dx = — [ arctan x In(1 - ﬁ)dx
X +X

0 0
o0 o0 lz)n
= Jarctanx (3 =—)dx
0 n=1
o0 I,
:nZ:: o
=4(2),

where the last equality follows from part a) of the problem. Note that we were
allowed to interchange the integral and the sum in the previous calculations in
view of Tonelli’s theorem, since the terms involved are positive. The problem is
solved.

18



Problem 11. Consider a C!- function f ‘g = R such that

(f'(y)— ') (y—-x)=0,¥x,y e (1)
The following statements are equivalent:

a) Xg is alocal extremum point of f ;

b) xq is a global minimum point of f ;

c) f isnotopenat Xg.

(One says that f is open at x if f maps any neighborhood of x to a

neighborhood of f(x)).

Solution. Since the relation (1) shows that f' is an increasing function, it
means that the function f is convex. Indeed, take x<y and denote
z=(1-a)x+ay, where a <(0,1). Then, by Lagrange's Theorem, there exist
te(x,z) and se(z,y) such that

f'{t)(x—2)=f(x)-f(2), and f'(s)(y—-2)=f(y)-f(2).
Then
A-a) () +af(y)-f(2) =A-a)(f(X) - f(2))+a(f(y)-f(2)
=(1-a)f't)(x-2)+af'(s)(y-2)
=a(l-a)(x=y)[f'(t) - f'(s)].

Since f' is increasing and te(X,2), se(z,y), from above it follows that
f is convex.

Let us prove first the equivalence a)<>b). The implication b) = a) is
obvious.

Suppose that xg is a local extremum point of f. If x; is a local minimum

point, there is r>0 such that f(xg)< f(x), for any xe(Xg—r,Xg+r). Take
an arbitrary number z e p \{Xp}, and find t < (0,1) sufficiently small such that
(A-t)xg+tze(Xg—r,Xg +1). Hence,
f(Xg) < F(A-t)xg +1z) < (A—t) f (xg) +tf (2),
i.e. f(xg) < f(2).
If Xy is a local maximum, then there is r >0 such that f(xg)> f(x), for
any xe(Xg—r,%g+r). Then, for every 6 €(0,r) one has

f(xg) = f(%(x0+5)+%(xo—5))s%f(x0+5)+%f(xo—d) < f(Xp),

hence f isconstanton (Xg—r,Xg+Tr). It means that X, is a local minimum for

19



f, and by the proof above it is a global minimum point.

Let us prove now that b) < c).

If xq is a point of (global) minimum of f, it follows that f ((xg—1 xg+1))
cannot contain points which are smaller than f(xp), hence f((xg—1%y+1)) is
not a neighborhood of f(xg). This means that f is not openat xg.

Next we prove that if Xy is not a global minimum of f, then f is open at
Xp. There exists an x; e such that f(xg)< f(xg). Without loss of
generality, assume that X5 =0 and x; =1. Since f(0)> f(1) and f is convex,
it follows that for the points in the interval [0,1], the graph of f lies bellow the
line passing through (O, f (0)) and (1, f (1)), and for the points from [-1,0], it
lies above this line. Denote c¢= f(0)— f(1)>0. It means that for every
y €[0,1], the convexity implies that

fY)<@A-fO)+yf @) =10)-yc< f(0)+yc<f(-y).

Since f is continuous, it has the Darboux property. Hence, for any point
Ae(f(0)-r, f(0)+r), with re(0,c), there is a point £e(-F,) such that
f (&) = A. This means that

(fO)-r, f(0)+r) = F((-Z.0)
thus f maps neighborhoods of O into neighborhoods of f (0). This means that
f isopenat 0, which completes the solution.

20



Problem 12. Let | < be an open interval which contains 0, and

f . I - beafunction of class C2°16(I) such that

f(0)=0, f'(0)=1, f"(0) = f"(0) =...= f 299 (0) =0,  (?026) (0) < 0.
i) Prove that there is 6 >0 such that
0< f(xX)<x, ¥xe(0,9). (1.1)
if) With ¢ as in i), define the sequence (a,) by
alzg, any = f(ap), vn=1. (1.2)

o0
Study convergence of the series Y a;, when rep is an arbitrary

n=1

parameter.

Solution. i) We claim that there exists « >0 such that f(x)>0 for any
x €(0,a). For this, observe that, since f is of class ct and f'(0)=1>0,
there exists « >0 such that f'(x)>0 on (0,«). Since f(0)=0 and f is

strictly increasing on (0, «), the claim follows.
Next, we prove that there exists S>0 such that f(x)<x for any

x (0, ). Since f(2016)(0)<0 and f is of class C?%® there is £>0 such

that f(2016)(t)<0, for any te(0,8). By the Taylor's formula, for any
x €(0, ), there is 8 €[0,1] such that

00 £(2015) £(2016)
f(x)= f(0)+%x+...+ 2015!( )X2015+W(!X)XZ016’ (1.3)
hence
£(2016) (9
g(x) = W(!X) x2016 -0, wxe 0, B).

Taking & =min{a, 8} >0, the item i) is completely proven.
i) We will prove first that the sequence (a,) given by (1.2) converges to 0.

Indeed, by relation (1.1) it follows that
O<an,1<ap, Vnx1,

hence the sequence (a,) is strictly decreasing and lower bounded by 0. It
follows that (a,) converges to some ge[O,é) . Passing to the limit in (1.2),

one gets ,= f (). Taking into account (1.1), we deduce that ,=0.
In what follows, we calculate
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2015

lim nap
n—o
From a, 10, using the Stolz-Cesaro Theorem, we conclude that
lim na2%% = lim —— = lim —™D= _ iy L
N—o0 N— 2015 N—% 2015~ 2015 N—>® 2015 2015
an 41 an f(an) an
lim L= im0
- 11— 2015_ ¢ (412015 °
Xx—0 £ 2015 2015 X—0 X (X)
(x) X
Observe that, by (1.3)
2, £(2018) (94) 2017,2015
OF ) _ 08+ g x*)
x 2015 _ £ (x)2015 —f(ZOlG)(gx)X2016(X2014+X2013f(X)+ +](()()2014)'

2016!

Since f is of class C2016 | lim f(2016)(gx) = £ (2016)(Q) and
x—0

lim _CFO)™® 20161
X0 X2 (52085 2015 (2916) )

0 o]
It means, by the comparison criterion, that the series Y a; and Y —L

n=1 n=1 n 2015

o0

converge and/or diverge simultaneously, hence the series Y a/, converges for
n=1

r > 2015, and diverges for r <2015.
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COMBINATORICS

Problem 1. In ]RZOlS, a ball By centered at Py(1,1, ,1) touches all the axis

(of R2015 ). For how many points P from R?9'® does there exist a ball
centered at P which touches all the axis, and moreover touches the ball By ?

Solution. (We consider the general case R", n>3) A ball B (in R")
centered at P(cy,cy, ,C,) and of radius r, touches all the axis of R" iff
le =l ey = =y [=t>0 and r=tyn—1.Namely, the equation

clz+c§+,,,+(xp—c|0)2+_,,+cr%=r2
needs to have a unique solution x,, for every p=1,2, ,n. Consequently, P
is a point satisfying the conditions of the problem iff P=t(cy,c;, ,C,),
Cp ==1, t>0 and |PPy|=(1+t)yn—1. If O is the origin then |OP|=ty/n and
[OFy|=+/n.
Case 1. all ¢, =+1. One has (1+t)\n—1=|PRy|=||OP|—|ORy| =|t-1]|n.

This equation in t has two positive solutions.
Case 2. For some k ,1<k<n-1, precisely k among the c,'s are equal to

—1.Then cos ,POR, = ”‘nz" and from the cosine theorem we obtain

(n-1)+1)? = |PRy|* =|OP[* +|ORy [* - 2|OP|-|ORy|cos .POP,
=nt®+n- 2(n—2K)t,

t2-2(2n—2k + Dt +1=0.
This equation in t has two positive solutions for 1<k <n-—2, and one positive
solution (namely t=1) for k =n-1.
Case 3. all ¢, =—1. One has (1+t)Jn—1=|PRy| =OP|+|ORy | = (t +1)v/n .

This equation clearly has no solution in terms of t.
Consequently, the desired number of points P is

25T ot o
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Problem 2. Let
N ki kp  kng

S()=2 > > X1

kl=1k2=1k3=1 “kN =1
Find the limit lim N/S(N).

N —
Solution. Note that S(N) is the number of N -tuples (ky,ky, ,ky) of

integers satisfying

1<ky <kyg <.k £N.
We define a map F from the set of such N -tuples to the set of N -tuples
(p1, P2, PN ) of integers satisfying

O<pN<PN_1<...<P1<2N
by "setting” F(ky) =k, +N—m (with a slight abuse of notation). It is easily
seen that F is a bijection, thus the two sets are of the same cardinality.

Therefore, S(N) = % On the other hand, observe that
Lo S(N+D) o 2NN+
N S N, v

This yields lim N/S(N) =4.
N —o0
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Problem 3. Consider the following set of sequences of complex numbers
I={(an)h>0:89 =0, =L a1 e{(1+1)a, —ia,_q,(1-i)a, +ia,_}for all n>1}.

a) Show that every complex number z = x+iy, with X,y eZ, isan
element of some sequence in 3.
b) Find all the positive integers N such that ay =0 for some sequence

(@Bn)n=0 €3
c) For afixed positive integer N, find the cardinality of the set
{(ag,a1,an) e " (@n)nso € T and ay =0}

Solution. For a sequence (a,),>0 €3 and arbitrary n>0, denote by A,
the point in the Gaussian plane corresponding to the complex number a,. By
definition, we have that any1 —an ==i(ap —an_1), hence
lan1—an Hlan —an_ | for  all n>1 , which leads  to
|AvAa| =lan—an Hag—agl=1, for all n>0 . Moreover, the segment
A, A1 1s perpendicular to the segment A,_;A,. From here, we conclude that
any sequence (a,)n>g €3 is represented in the plane by a path AgA...A,...
going through the points of Z[i], starting at Ay(0,0), then passing through
A (1,0), and so on, always making steps of length 1 in a direction perpendicular

to the previous one.
Alternatively, any sequence (a,)n,>p €3 can be encoded as a sequence

(b )1 (of steps) of the type 1,+i,£1,+i,+1,... (where b, =a,—a,_1,n=1), in
which case a,, is recovered by adding the first n steps. By denoting with
Pn»An» I, Sy the number of occurrences of the values 1,-1,i,—i, respectively, in
the finite sequence b,,bs,...,b,(n>2), we have
an =+ pp—0n) +i(m —sp)

Ph+0n = [nT_l]

Ih+Sh= [%]
where[x] denotes the integer part of any real number x .

Assuming a,, = X-+1iy, we can express pp,dn, .S, from the above relations
as follows:
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x—1+["1] -(x-D+[254

Pn=—"7%"" n=T—72
_y+3l _ -y+5]
Nt ST

These four numbers are non-negative if and only if [”7‘1] > x—1]and [%] > x|,

while they are integers if and only if x,y € Z and the following parity table is
satisfied:

n X y

4k even | even
4k+1 | odd | even
4k+2 | odd | odd
4k +3 | even | odd

Hence, whenever x,y eZ, and n is sufficiently large (so that [”T‘l] > x—1|
and [%] >| x|), there surely exists a sequence (a,)n>0 €3 such that a, = x+iy

(using the expressions for py,0,, . S, from above). This completes the proof
of the statement a).

Moreover, if a sequence (a,)n>p €3I is to satisfy ay =0 for some N >1,
then that happens only for N =4k, k >1, with py =k—-1, gy =my =5N =k -
On the other hand, this can clearly be used to construct such a sequence
(an)n>o Up to n=N . Hence, the set of positive integers N that satisfy the
requirement of b) is precisely {4k :k e n}-

Furthermore, the arrangement of the values 1 and -1 in the sequence
b,,bs,...,by can be chosen in (2kk_1) ways, while the arrangement of the values

i and —i can be chosen in (Zkk) ways. Therefore, the answer to c) is (Zkk_l)(zkk) :
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Problem 4. a) Let «: g — 1y be a permutation of the set of natural numbers
n=1{12,3,__}. Prove that the limit lim Z (= “(k)) does not exist.
N—oo 1
b) Prove that the set (; of rational numbers can be written as ¢, ={qy, .}
so that the limit
lim (X qk)
nN—o0 kgl
exists for every real x.
Solution. We shall use the double inequality (%)n <nl< (g)n , Which is valid

for every sufficiently large n (this can be shown by straightforward induction).

n n
a) Since, the inequality > a(k)> > k holds for every natural n, for
k=1 k=1

infinitely many such n's one has a(n) >n . Hence, for an arbitrary (fixed) real x
we have that

[x—a(n)[" S (|2x—ia(n)|)n S (%)n(y)n

n!
holds for every n satisfying 2x<Zn<Za(n) . Therefore, the necessary

n
condition lim % =0 is surely not fulfilled, which proves that the series
n—oo .

z (x=a(n) “(”)) converges for no real x.

b) We prove that the set  of rational numbers can be enlisted as
o={0. 9%, .0n, } such that |q, kk\/n. To demonstrate this, assume ¢y is
already written in some way as ¢ ={n,f, .M. }. To begin with, choose
Q="r ., where i =min{i|l5 <L} . Consequently, take q,=f , where

in =min{i ||, |<</n and i {iy,ip, i,_1}}, and continue doing so. Clearly, this
procedure enlists all the rational numbers in a bijective way.

We are only left to observe that for every real x, the series Z (x q")
n=1 )

converges by Cauchy's criterion:

nfIX=Gy " 1x—0y le (9|
—nI” \/=“<3( n)—>O

27



28



