THE 1996 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours NO calculators are to be used. Each question is worth seven points.

Question 1

Let ABCD be a quadrilateral AB = BC = CD = DA. Let MN and PQ be two segments perpendicular to the diagonal BD and such that the distance between them is d > BD/2, with $M \in AD$, $N \in DC$, $P \in AB$, and $Q \in BC$. Show that the perimeter of hexagon AMNCQP does not depend on the position of MN and PQ so long as the distance between them remains constant.

Question 2

Let m and n be positive integers such that $n \leq m$. Prove that

$$2^n n! \le \frac{(m+n)!}{(m-n)!} \le (m^2 + m)^n$$
.

Question 3

Let P_1 , P_2 , P_3 , P_4 be four points on a circle, and let I_1 be the incentre of the triangle $P_2P_3P_4$; I_2 be the incentre of the triangle $P_1P_3P_4$; I_3 be the incentre of the triangle $P_1P_2P_4$; I_4 be the incentre of the triangle $P_1P_2P_3$. Prove that I_1 , I_2 , I_3 , I_4 are the vertices of a rectangle.

Question 4

The National Marriage Council wishes to invite n couples to form 17 discussion groups under the following conditions:

- 1. All members of a group must be of the same sex; i.e. they are either all male or all female.
- 2. The difference in the size of any two groups is 0 or 1.
- 3. All groups have at least 1 member.
- 4. Each person must belong to one and only one group.

Find all values of $n, n \leq 1996$, for which this is possible. Justify your answer.

Question 5

Let a, b, c be the lengths of the sides of a triangle. Prove that

$$\sqrt{a+b-c} + \sqrt{b+c-a} + \sqrt{c+a-b} \le \sqrt{a} + \sqrt{b} + \sqrt{c} ,$$

and determine when equality occurs.

Solutions

Problem 1. Let M'N' and P'Q' be two segments perpendicular to BD at a distance d. We need to prove that the perimeters AMNCQP and AM'N'CQ'P' are equal. Denote by S' the projection of N into M'N' and by S the projection of P' into PQ. The triangles NS'N' and P'SP are equal. (right triangles such that NS' = P'S and equal angles $\angle P'PS = \angle NN'S'$.) So PP' = NN'. Since it is clear that MM' = NN', we have MM' = NN' = PP' = QQ'. On the other hand, since SP = S'N', using T' and T the projections of M and Q' into M'N' and PQ, respectively, we have

$$T'M' = S'N' = PS = TQ.$$

So P'Q' + M'N' = ST + M'T' + T'S' + S'N'= ST + PS + TQ + MN= PQ + MN.

(Without loss of generality M' lies between M and A) So the perimeter of AMNCQP is:

AM + MN + NC + CQ + QP + PA = AM' + M'M + MN + NN' + N'C + CQ + QP + PA = AM' + PP' + MN + QQ' + N'C + CQ + QP + PA = AM' + MN + QP + PP' + PA + QQ' + CQ + N'C = AM' + MN + QT + TS + SP + PP' + PA + QQ' + CQ + N'C = AM' + M'T '+ T'S' + S'N' + N'C + CQ + QQ' + Q'P' + P'P + PA = AM' + M'N' + N'C + CQ' + Q'P' + P'A,

which is the perimeter of AM'N'CQ'P'.

Points to be given for showing that: MM' = NN' = PP' = QQ'	1 point
T'M' = S'N' = PS = TQ.	1 point
P'Q' + M'N' = PQ + MN.	2 points
The perimeter of AMNCQP is the same as the perimeter of AM'N'CQ'P'	3 points

Problem 2. We first prove by induction on n that:

$$\frac{(m+n)!}{(m-n)!} = \prod_{i=1}^{n} (m^2 + m - i^2 + i).$$

$$1. \frac{(m+1)!}{(m-1)!} = m(m+1) = m^2 + m.$$

$$2. \frac{(m+n+1)!}{(m-n-1)!} = \left(\prod_{i=1}^{n} (m^2 + m - i^2 + i)\right)(m+n+1)(m-n) \text{ (by induction)}$$

$$= \left(\prod_{i=1}^{n} (m^{2} + m - i^{2} + i)\right)(m^{2} + m - n^{2} - n)$$
$$= \prod_{i=1}^{n+1} (m^{2} + m - i^{2} + i)$$

But $m^2 + m \ge m^2 + m - i^2 + i \ge i^2 + i - i^2 + i = 2i$, for $i \ge m$. Therefore

$$2^{n} n! \leq \frac{(m+n)!}{(m-n)!} \leq (m^{2} + m)^{n}.$$

Points to be given for showing that:

the innequlities hold for special values

up to 1 point

4 points

2 points

$$\frac{(m+n)!}{(m-n)!} = \prod_{i=1}^{n} (m^2 + m - i^2 + i) \text{ for all } n$$

 $m^2 + m \ge m^2 + m - i^2 + i \ge i^2 + i - i^2 + i = 2i$, for $i \ge m$, and therefore the innequalities hold

Problem 3. Let C be the given circle. Draw four circles C_{12} , C_{23} , C_{34} , C_{41} with centers O_{12} , O_{23} , O_{34} , O_{41} , respectively, on the circle C such that C_{12} passes through P_1 and P_2 , C_{23} passes through P_2 and P_3 , C_{34} passes through P_3 and P_4 , C_{41} passes through P_4 and P_1 . Let the other point of intersection of C_{12} and C_{23} be Q_4 , the other point of intersection of C_{23} and C_{34} be Q_1 , the other point of intersection of C_{41} and C_{12} be Q_2 , and the other point of intersection of C_{41} and C_{12} be Q_3 . Then

$$\angle Q_4 P_1 P_2 = \frac{1}{2} \angle Q_4 O_{12} P_2$$
 and $\angle O_{23} P_1 P_2 = \frac{1}{2} \angle P_3 O_{12} P_2$.

Clearly, O_{23} , Q_4 and P_1 are collinear.

It follows that $\angle Q_4 Q_3 P_2 = \angle Q_4 P_1 P_2 = \angle O_{23} P_1 P_2 \angle O_{23} O_{41} P_2$. Since also O_{41} , Q_3 and P_2 are collinear, it follows that $Q_3 Q_4$ and $O_{41} O_{23}$ are parallel.

Since O_{ij} bisects The arcs P_iP_j , for (i, j) = (1, 2), (2, 3), (3, 4), (4, 1) we conclude that $O_{41} O_{23}$ and $O_{12} O_{34}$ are perpendicular, and hence $Q_3 Q_4$ and $O_{12} O_{34}$ are perpendicular.

Since both (O_{12}, Q_3, P_4) and (O_{12}, Q_4, P_3) are collinear triples of points, we have $\angle P_4 O_{12} P_3 = \angle Q_3 O_{12} Q_4$, and this angle is bisected by $O_{12} O_{34}$.

Thus Q_3 and Q_4 are reflections through the axis $O_{12}O_{34}$, and so are, by a similar argument Q_1 and Q_2 .

We have thus shown: Q_1 , Q_2 , Q_3 , Q_4 form a rectangle. But as Q_4 lies on both the angle bisector $O_{12}P_3$ and the angle bisector $O_{23}P_1$ of the triangle $P_1P_2P_3$, the point Q_4 must coincide with the incenter I_4 of the triangle $P_1P_2P_3$, and by a similar argument, $Q_1 = I_1$, $Q_2 = I_2$ and $Q_3 = I_3$.

Points to be given for showing that

3

Q_3Q_4 and $O_{41}O_{23}$ are parallel	2 points
$Q_3 Q_4$ and $O_{12} O_{34}$ are perpendicular	1 points
Q_1 , Q_2 , Q_3 , Q_4 form a rectangle	2 points
$Q_4 = I_4$, $Q_1 = I_1$, $Q_2 = I_2$ and $Q_3 = I_3$	1 point

Problem 4. We may assume that the n couples will form x male groups and y female groups. Without loss of generality, let $x \ge y$, and

(*)
$$x + y = 17$$

Then, by the pigeonhole theorem, there exists a male group of size $\leq \left[\frac{n}{x}\right]$ and a female group of size $\geq \left[\frac{n}{y}\right]$. By condition (2), we have (**) $\left[\frac{n}{y}\right] - \left[\frac{n}{x}\right] \leq 1$

From the conditions x + y = 17 and $x \ge y$ follows that $x \ge 9$, and $y \le 8$, which in turn implies

$$\left[\frac{n}{y}\right] - \left[\frac{n}{x}\right] > \left[\frac{n}{8}\right] - \left[\frac{n}{9}\right] \qquad .$$

Therefore, we only need to exclude those n such that $\left[\frac{n}{8}\right] - \left[\frac{n}{9}\right] > 1$. Let n = 9u + s, $0 \le s < 9$. Then

$$\left[\frac{n}{8}\right] - \left[\frac{n}{9}\right] > 1 \iff \left[\frac{u+s}{8}\right] > 1.$$

By analyzing this condition it is clear that the only values of n that are allowed are

n = 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30,

31, 32, 36, 37, 38, 39, 40, 45, 46, 46, 47, 48, 54, 55, 56, 63, 63, 72.

Conversely, conditions (*) and (**) give rise to a set of discussing groups according to the following description:

Let
$$\left[\frac{n}{x}\right] = p$$
 and $\left[\frac{n}{y}\right] = q$, then $p \le q \le p + 1$

We have

$$n = px + \alpha, 0 \le \alpha < x$$
 and $n = qy - \beta$ $0 \le \beta < y$.

So we can arrange the males in α discussing groups of size p + 1 and $x - \alpha$ groups of p elements. The females are distributed in β discussing groups of size q - 1, and $(y - \beta)$ discussing groups of size q.

Points to be given for showing that

$x \geq 9$, and $y \leq 8$	1 points	
one only needs to exclude those n such that $\left[\frac{n}{8}\right] - \left[\frac{n}{9}\right] > 1$	2 points	
analyzing the condition ian giving the values of n that are allowed	2 points	
given p and q as described in the solution one can arrange the males in α discussion groups of size p + 1 and x - α groups of p elements and the females in β discussion		, * +
groups of size $q = 1$, and $(y = \beta)$ groups of size q .	2 points	

Problem 5. Without loss of generality we can assume that $a \ge b \ge c$. Note that if $x \ge y > 0$, then $\sqrt{y} \le 1/2(\sqrt{x} + \sqrt{y})$, i.e.,

$$\frac{1}{2\sqrt{y}}(\sqrt{x} + \sqrt{y}) \ge 1$$

Similarly, if $y \ge x > 0$, then

$$\frac{1}{2\sqrt{y}}(\sqrt{x} + \sqrt{y}) \le 1$$

Multiplying both inequalities by $\sqrt{x} - \sqrt{y}$ we obtain

$$\sqrt{x} - \sqrt{y} \leq \frac{1}{2\sqrt{y}}(x - y),$$

for every x, y > 0. Moreover, it is easily seen that equality occurs if and only if x = y. By applying this last inequality we obtain

$$\sqrt{a+b-c} - \sqrt{a} \leq \frac{1}{2\sqrt{a}}(b-c)$$

(**)

$$\sqrt{c+a-b} - \sqrt{b} \leq \frac{1}{2\sqrt{b}}(c+a-2b)$$
$$\sqrt{b+c-a} - \sqrt{c} \leq \frac{1}{2\sqrt{c}}(b-a)$$

and by adding up the left hand and the right hand sides of these inequalities we have

$$\begin{aligned} \sqrt{a+b-c} + \sqrt{b+c-a} + \sqrt{c+a-b} - \left(\sqrt{a} + \sqrt{b} + \sqrt{c}\right) \\ & \frac{1}{2} \left(\frac{1}{\sqrt{a}} (b-c) + \frac{1}{\sqrt{b}} (c+a-2b) + \frac{1}{\sqrt{c}} (b-a) \right) \\ & \frac{1}{2} \left((b-c) \left(\frac{1}{\sqrt{a}} - \frac{1}{\sqrt{b}} \right) + (a-b) \left(\frac{1}{\sqrt{b}} - \frac{1}{\sqrt{c}} \right) \right) \le 0, \end{aligned}$$

i.e.,

$$\sqrt{a+b-c} + \sqrt{b+c-a} + \sqrt{c+a-b} \leq \sqrt{a} + \sqrt{b} + \sqrt{c},$$

and equality occurs if and only if the three relations in (**) are equalities, i.e., if and only if a = b = c.

Points to be given for showing that

$$\sqrt{x} - \sqrt{y} \le \frac{1}{2\sqrt{y}}(x - y)$$
 2 points

the relations in (**) hold true

$$\sqrt{a+b-c} + \sqrt{b+c-a} + \sqrt{c+a-b} - \left(\sqrt{a} + \sqrt{b} + \sqrt{c}\right) \leq$$

1 point

1 point each

equality occurs if and only if the three relations in (**) are 1 point equalities, i.e., if and only a = b = c