THE 1996 ASIAN PACIFIC MATHEMATICAL OLYMPIAD

Time allowed: 4 hours
NO calculators are to be used.
Each question is worth seven points.

Question 1

Let $A B C D$ be a quadrilateral $A B=B C=C D=D A$. Let $M N$ and $P Q$ be two segments perpendicular to the diagonal $B D$ and such that the distance between them is $d>B D / 2$, with $M \in A D, N \in D C, P \in A B$, and $Q \in B C$. Show that the perimeter of hexagon $A M N C Q P$ does not depend on the position of $M N$ and $P Q$ so long as the distance between them remains constant.

Question 2

Let m and n be positive integers such that $n \leq m$. Prove that

$$
2^{n} n!\leq \frac{(m+n)!}{(m-n)!} \leq\left(m^{2}+m\right)^{n}
$$

Question 3

Let $P_{1}, P_{2}, P_{3}, P_{4}$ be four points on a circle, and let I_{1} be the incentre of the triangle $P_{2} P_{3} P_{4}$; I_{2} be the incentre of the triangle $P_{1} P_{3} P_{4} ; I_{3}$ be the incentre of the triangle $P_{1} P_{2} P_{4} ; I_{4}$ be the incentre of the triangle $P_{1} P_{2} P_{3}$. Prove that $I_{1}, I_{2}, I_{3}, I_{4}$ are the vertices of a rectangle.

Question 4

The National Marriage Council wishes to invite n couples to form 17 discussion groups under the following conditions:

1. All members of a group must be of the same sex; i.e. they are either all male or all female.
2. The difference in the size of any two groups is 0 or 1 .
3. All groups have at least 1 member.
4. Each person must belong to one and only one group.

Find all values of $n, n \leq 1996$, for which this is possible. Justify your answer.

Question 5

Let a, b, c be the lengths of the sides of a triangle. Prove that

$$
\sqrt{a+b-c}+\sqrt{b+c-a}+\sqrt{c+a-b} \leq \sqrt{a}+\sqrt{b}+\sqrt{c}
$$

and determine when equality occurs.

Solutions

Problem 1. Let $\mathrm{M}^{\prime} \mathrm{N}^{\prime}$ and $\mathrm{P}^{\prime} \mathrm{Q}^{\prime}$ be two segments perpendicular to BD at a distance d . We need to prove that the perimeters $A M N C Q P$ and $A M^{\prime} N^{\prime} C Q ' P$ ' are equal. Denote by S^{\prime} the projection of N into $\mathrm{M}^{\prime} \mathrm{N}^{\prime}$ and by S the projection of P^{\prime} into PQ . The triangles $\mathrm{NS}^{\prime} \mathrm{N}^{\prime}$ and $\mathrm{P}^{\prime} \mathrm{SP}$ are equal. (right triangles such that NS' = P'S and equal angles $\angle \mathrm{P}^{\prime} \mathrm{PS}=\angle \mathrm{NN}^{\prime} \mathrm{S}^{\prime}$.) $\mathrm{So} \mathrm{PP}^{\prime}=\mathrm{NN}^{\prime}$. Since it is clear that $\mathrm{MM}^{\prime}=\mathrm{NN}^{\prime}$, we have $\mathrm{MM}^{\prime}=\mathrm{NN}^{\prime}=\mathrm{PP}^{\prime}=\mathrm{QQ} \mathrm{Q}^{\prime}$. On the other hand, since $\mathrm{SP}=\mathrm{S}^{\prime} \mathrm{N}^{\prime}$, using T^{\prime} and T the projections of M and Q^{\prime} into $M^{\prime} N^{\prime}$ and $P Q$, respectively, we have

$$
\mathrm{T}^{\prime} \mathrm{M}^{\prime}=\mathrm{S}^{\prime} \mathrm{N}^{\prime}=\mathrm{PS}=\mathrm{TQ}
$$

$$
\text { So } \quad \begin{aligned}
\mathrm{P}^{\prime} \mathrm{Q}^{\prime}+\mathrm{M}^{\prime} \mathrm{N}^{\prime}= & \mathrm{ST}+\mathrm{M}^{\prime} \mathrm{T}^{\prime}+\mathrm{T}^{\prime} \mathrm{S}^{\prime}+\mathrm{S}^{\prime} \mathrm{N}^{\prime} \\
& =\mathrm{ST}+\mathrm{PS}+\mathrm{TQ}+\mathrm{MN} \\
& =\mathrm{PQ}+\mathrm{MN} .
\end{aligned}
$$

(Without loss of generality M^{\prime} lies between M and A)
So the perimeter of AMNCQP is:

$$
\begin{gathered}
\mathrm{AM}+\mathrm{MN}+\mathrm{NC}+\mathrm{CQ}+\mathrm{QP}+\mathrm{PA}= \\
\mathrm{AM}^{\prime}+\mathrm{M}^{\prime} \mathrm{M}+\mathrm{MN}+\mathrm{NN}+\mathrm{N} \cdot \mathrm{C}+\mathrm{CQ}+\mathrm{QP}+\mathrm{PA}= \\
\mathrm{AM}^{\prime}+\mathrm{PP}^{\prime}+\mathrm{MN}+\mathrm{QQ}^{\prime}+\mathrm{N}^{\prime} \mathrm{C}+\mathrm{CQ}+\mathrm{QP}+\mathrm{PA}= \\
\mathrm{AM}^{\prime}+\mathrm{MN}+\mathrm{QP}+\mathrm{PP}^{\prime}+\mathrm{PA}+\mathrm{QQ}^{\prime}+\mathrm{CQ}+\mathrm{N}^{\prime} \mathrm{C}= \\
\mathrm{AM}^{\prime}+\mathrm{MN}+\mathrm{QT}+\mathrm{TS}+\mathrm{SP}+\mathrm{PP}^{\prime}+\mathrm{PA}+\mathrm{QQ}^{\prime}+\mathrm{CQ}+\mathrm{N}^{\prime} \mathrm{C}= \\
\mathrm{AM}^{\prime}+\mathrm{M}^{\prime} \mathrm{T} \text { ' }+\mathrm{T}^{\prime} \mathrm{S}^{\prime}+\mathrm{S}^{\prime} \mathrm{N}^{\prime}+\mathrm{N}^{\prime} \mathrm{C}+\mathrm{CQ}+\mathrm{QQ}^{\prime}+\mathrm{Q}^{\prime} \mathrm{P}^{\prime}+\mathrm{P}^{\prime} \mathrm{P}+\mathrm{PA}= \\
\mathrm{AM}^{\prime}+\mathrm{M}^{\prime} \mathrm{N}^{\prime}+\mathrm{N}^{\prime} \mathrm{C}+\mathrm{CQ} \mathrm{Q}^{\prime}+\mathrm{Q}^{\prime} \mathrm{P}^{\prime}+\mathrm{P}^{\prime} \mathrm{A},
\end{gathered}
$$

which is the perimeter of $\mathrm{AM}^{\prime} \mathrm{N}^{\prime} \mathrm{CQ}^{\prime} \mathrm{P}$ '.

Points to be given for showing that:
$\begin{array}{lc}\mathrm{MM}^{\prime}=\mathrm{NN}^{\prime}=\mathrm{PP}{ }^{\prime}=\mathrm{QQ}^{\prime} & 1 \text { point } \\ \mathrm{T}^{\prime} \mathrm{M}^{\prime}=\mathrm{S}^{\prime} \mathrm{N}^{\prime}=\mathrm{PS}=\mathrm{TQ} . & 1 \text { point } \\ \mathrm{P}^{\prime} \mathrm{Q}^{\prime}+\mathrm{M}^{\prime} \mathrm{N}^{\prime}=\mathrm{PQ}+\mathrm{MN} . & 2 \text { points }\end{array}$
The perimeter of AMNCQP isthe same as the perimeter of $A^{\prime} N^{\prime} C^{\prime} P^{\prime}$

Problem 2. We first prove by induction on n that:

$$
\frac{(m+n)!}{(m-n)!}=\prod_{i=1}^{n}\left(m^{2}+m-i^{2}+i\right)
$$

1. $\frac{(m+1)!}{(m-1)!}=m(m+1)=m^{2}+m$.
2. $\frac{(m+n+1)!}{(m-n-1)!}=\left(\prod_{i=1}^{n}\left(m^{2}+m-i^{2}+i\right)\right)(m+n+1)(m-n)$ (by induction)

$$
\begin{gathered}
=\left(\prod_{i=1}^{n}\left(m^{2}+m-i^{2}+i\right)\right)\left(m^{2}+m-n^{2}-n\right) \\
=\prod_{i=1}^{n+1}\left(m^{2}+m-i^{2}+i\right)
\end{gathered}
$$

But $m^{2}+m \geq m^{2}+m-i^{2}+i \geq i^{2}+i-i^{2}+i=2 i$, for $i \geq m$.
Therefore

$$
2^{n} n!\leq \frac{(m+n)!}{(m-n)!} \leq\left(m^{2}+m\right)^{n}
$$

Points to be given for showing that:
the innequlities hold for special values
$\frac{(m+n)!}{(m-n)!}=\prod_{i=1}^{n}\left(m^{2}+m-i^{2}+i\right)$ for all n
$m^{2}+m \geq m^{2}+m-i^{2}+i \geq i^{2}+i-i^{2}+i=2 i$, for $i \geq m$, and therefore the innequalities hold
up to 1 point

4 points

2 points

Problem 3. Let C be the given circle. Draw four circles $\mathrm{C}_{12}, \mathrm{C}_{23}, \mathrm{C}_{34}, \mathrm{C}_{41}$ with centers $\mathrm{O}_{12}, \mathrm{O}_{23}$, $\mathrm{O}_{34}, \mathrm{O}_{41}$, respectively, on the circle C such that C_{12} passes through P_{1} and $\mathrm{P}_{2}, \mathrm{C}_{23}$ passes through P_{2} and P_{3}, C_{34} passes through P_{3} and P_{4}, C_{41} passes through P_{4} and P_{1}. Let the other point of intersection of C_{12} and C_{23} be Q_{4}, the other point of intersection of C_{23} and C_{34} be Q_{1}, the other point of intersection of C_{34} and C_{41} be Q_{2}, and the other point of intersection of C_{41} and C_{12} be Q_{3}. Then

$$
\angle \mathrm{Q}_{4} \mathrm{P}_{1} \mathrm{P}_{2}=\frac{1}{2} \angle \mathrm{Q}_{4} \mathrm{O}_{12} \mathrm{P}_{2} \text { and } \angle \mathrm{O}_{23} \mathrm{P}_{1} \mathrm{P}_{2}=\frac{1}{2} \angle \mathrm{P}_{3} \mathrm{O}_{12} \mathrm{P}_{2}
$$

Clearly, $\mathrm{O}_{23}, \mathrm{Q}_{4}$ and P_{1} are collinear.
It follows that $\angle \mathrm{Q}_{4} \mathrm{Q}_{3} \mathrm{P}_{2}=\angle \mathrm{Q}_{4} \mathrm{P}_{1} \mathrm{P}_{2}=\angle \mathrm{O}_{23} \mathrm{P}_{1} \mathrm{P}_{2} \angle \mathrm{O}_{23} \mathrm{O}_{41} \mathrm{P}_{2}$. Since also $\mathrm{O}_{41}, \mathrm{Q}_{3}$ and P_{2} are collinear, it follows that $\mathrm{Q}_{3} \mathrm{Q}_{4}$ and $\mathrm{O}_{41} \mathrm{O}_{23}$ are parallel.
Since O_{ij} bisects The arcs $\mathrm{P}_{\mathrm{i}} \mathrm{P}_{\mathrm{j}}$, for $(\mathrm{i}, \mathrm{j})=(1,2),(2,3),(3,4),(4,1)$ we conclude that $\mathrm{O}_{41} \mathrm{O}_{23}$ and $\mathrm{O}_{12} \mathrm{O}_{34}$ are perpendicular, and hence $\mathrm{Q}_{3} \mathrm{Q}_{4}$ and $\mathrm{O}_{12} \mathrm{O}_{34}$ are perpendicular.
Since both $\left(\mathrm{O}_{12}, \mathrm{Q}_{3}, \mathrm{P}_{4}\right)$ and $\left(\mathrm{O}_{12}, \mathrm{Q}_{4}, \mathrm{P}_{3}\right)$ are collinear triples of points, we have $\angle \mathrm{P}_{4} \mathrm{O}_{12} \mathrm{P}_{3}=\angle$ $\mathrm{Q}_{3} \mathrm{O}_{12} \mathrm{Q}_{4}$, and this angle is bisected by $\mathrm{O}_{12} \mathrm{O}_{34}$.
Thus Q_{3} and Q_{4} are reflections through the axis $\mathrm{O}_{12} \mathrm{O}_{34}$, and so are, by a similar argument Q_{1} and Q_{2}.
We have thus shown: $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ form a rectangle. But as Q_{4} lies on both the angle bisector $\mathrm{O}_{12} \mathrm{P}_{3}$ and the angle bisector $\mathrm{O}_{23} \mathrm{P}_{1}$ of the triangle $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}$, the point Q_{4} must coincide with the incenter I_{4} of the triangle $P_{1} P_{2} P_{3}$, and by a similar argument, $Q_{1}=I_{1}, Q_{2}=I_{2}$ and $Q_{3}=I_{3}$.

Points to be given for showing that
$\mathrm{Q}_{3} \mathrm{Q}_{4}$ and $\mathrm{O}_{41} \mathrm{O}_{23}$ are parallel
2 points
$\mathrm{Q}_{3} \mathrm{Q}_{4}$ and $\mathrm{O}_{12} \mathrm{O}_{34}$ are perpendicular
1 points
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{Q}_{4}$ form a rectangle
2 points
$\mathrm{Q}_{4}=\mathrm{I}_{4}, \mathrm{Q}_{1}=\mathrm{I}_{1}, \mathrm{Q}_{2}=\mathrm{I}_{2}$ and $\mathrm{Q}_{3}=\mathrm{I}_{3}$

1 point

Problem 4. . We may assume that the n couples will form x male groups and y female groups. Without loss of generality, let $x \geq y$, and

$$
\begin{equation*}
x+y=17 \tag{*}
\end{equation*}
$$

Then, by the pigeonhole theorem, there exists a male group of size $\leq\left[\frac{n}{x}\right]$ and a female group of size $\geq\left[\frac{n}{y}\right]$. By condition (2), we have

$$
\begin{equation*}
\left[\frac{n}{y}\right]-\left[\frac{n}{x}\right] \leq 1 \tag{**}
\end{equation*}
$$

From the conditions $x+y=17$ and $x \geq y$ follows that $x \geq 9$, and $y \leq 8$, which in turn implies

$$
\left[\frac{n}{y}\right]-\left[\frac{n}{x}\right]>\left[\frac{n}{8}\right]-\left[\frac{n}{9}\right]
$$

Therefore, we only need to exclude those n such that $\left[\frac{n}{8}\right]-\left[\frac{n}{9}\right]>1$. Let $\mathrm{n}=9 \mathrm{u}+\mathrm{s}, 0 \leq \mathrm{s}<9$. Then

$$
\left[\frac{n}{8}\right]-\left[\frac{n}{9}\right]>1 \Leftrightarrow\left[\frac{u+s}{8}\right]>1
$$

By analyzing this condition it is clear that the only values of n that are allowed are

$$
\begin{gathered}
\mathrm{n}=9,10,11,12,13,14,15,16,18,19,20,21,22,23,24,27,28,29,30, \\
\\
31,32,36,37,38,39,40,45,46,46,47,48,54,55,56,63,63,72 .
\end{gathered}
$$

Conversely, conditions $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ give rise to a set of discussing groups according to the following description:

Let $\left[\frac{n}{x}\right]=p$ and $\left[\frac{n}{y}\right]=q$, then $p \leq q \leq p+1$
We have

$$
\mathrm{n}=\mathrm{px}+\alpha, 0 \leq \alpha<\mathrm{x} \quad \text { and } \mathrm{n}=\mathrm{qy}-\beta \quad 0 \leq \beta<\mathrm{y}
$$

So we can arrange the males in α discussing groups of size $p+1$ and $x-\alpha$ groups of p elements. The females are distributed in β discussing groups of size $q-1$, and ($y-\beta$) discussing groups of size q.

Points to be given for showing that
$x \geq 9$, and $y \leq 8$
1 points
one only needs to exclude those n such that $\left[\frac{n}{8}\right]-\left[\frac{n}{9}\right]>1$
2 points
analyzing the condition ian giving the values of n that are allowed
2 points
given p and q as described in the solution
one can arrange the males in α discussion groups of size $p+1$
and $x-\alpha$ groups of p elements and the females in β discussion
groups of size $q-1$, and $(y-\beta)$ groups of size q. 2 points

Problem 5. Without loss of generality we can assume that $a \geq b \geq c$. Note that if $x \geq y>0$, then $\sqrt{y} \leq 1 / 2(\sqrt{x}+\sqrt{y})$, i.e.,

$$
\frac{1}{2 \sqrt{y}}(\sqrt{x}+\sqrt{y}) \geq 1
$$

Similarly, if $y \geq x>0$, then

$$
\frac{1}{2 \sqrt{y}}(\sqrt{x}+\sqrt{y}) \leq 1
$$

Multiplying both inequalities by $\sqrt{x}-\sqrt{y}$ we obtain

$$
\sqrt{x}-\sqrt{y} \leq \frac{1}{2 \sqrt{y}}(x-y)
$$

for every $x, y>0$. Moreover, it is easily seen that equality occurs if and only if $x=y$. By applying this last inequality we obtain

$$
\sqrt{a+b-c}-\sqrt{a} \leq \frac{1}{2 \sqrt{a}}(b-c)
$$

$$
\begin{align*}
& \sqrt{c+a-b}-\sqrt{b} \leq \frac{1}{2 \sqrt{b}}(c+a-2 b) \tag{}\\
& \sqrt{b+c-a}-\sqrt{c} \leq \frac{1}{2 \sqrt{c}}(b-a)
\end{align*}
$$

and by adding up the left hand and the right hand sides of these inequalities we have

$$
\begin{aligned}
& \sqrt{a+b-c}+\sqrt{b+c-a}+\sqrt{c+a-b}-(\sqrt{a}+\sqrt{b}+\sqrt{c}) \\
& \frac{1}{2}\left(\frac{1}{\sqrt{a}}(b-c)+\frac{1}{\sqrt{b}}(c+a-2 b)+\frac{1}{\sqrt{c}}(b-a)\right) \\
& \frac{1}{2}\left((b-c)\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)+(a-b)\left(\frac{1}{\sqrt{b}}-\frac{1}{\sqrt{c}}\right)\right) \leq 0,
\end{aligned}
$$

i.e.,

$$
\sqrt{a+b-c}+\sqrt{b+c-a}+\sqrt{c+a-b} \leq \sqrt{a}+\sqrt{b}+\sqrt{c}
$$

and equality occurs if and only if the three relations in $\left({ }^{* *}\right)$ are equalities, i.e., if and only if $a=b=c$.

Points to be given for showing that
$\sqrt{x}-\sqrt{y} \leq \frac{1}{2 \sqrt{y}}(x-y)$ 2 points
the relations in $\left({ }^{* *}\right)$ hold true
1 point each
$\sqrt{a+b-c}+\sqrt{b+c-a}+\sqrt{c+a-b}-(\sqrt{a}+\sqrt{b}+\sqrt{c}) \leq$
1 point
equality occurs if and only if the three relations in (${ }^{* *}$) are equalities, i.e., if and only $a=b=c$

1 point

