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1. Ha croponax BC, CA u AB Ttpeyroamsnuka ABC nexar Touku M, N, K
COOTBETCTBEHHO, HE coBnajatromue ¢ BepmnHaMmu. TpeyronbHuk MNK HazoBéM

kpacuevim, ecim BAC=~KMN u ABC=~KNM. Jlokaxure, 4YTO €CIu B
TpeyronbHuke ABC CyIecTBYIOT 1Ba KPacHBBIX TPEYrOJIbHMKA ¢ OOIIel BEpUINHOM,
TO TpeyroabHUK ABC — mpsiIMOYTObHBIH.

2. CymectByeT 1 pynkiust f : R — R, ynoBneTBopsiromas CleayrouM yCIOBUsM:

() s Kakmoro BEIIECTBEHHOTO Y CYIIECTBYET BEIIECTBEHHOE X TakKoe,
yro f(X) =Yy, u

(i) f(f(x))=(x-1)f(X)+2 npu Bcex BEIIECTBEHHBIX X ?

3. JlaHbl CTO Pa3JIMYHBIX HATypalbHBIX 4Kcen. HazoBeM mapy uducen xopouwseil, eCiu
YyHucia B HeMl oTynyaroTes B 2 wiM B 3 pa3a. Kakoe HaubompIee Yuciao XOpoIux mnap
MOTYT 00pa3oBbiBaTh 3TH cTO umcen? (OIHO M TO K€ YHCIO MOXET BXOIUTHh B
HECKOJIBKO Tap.)



Problem 1.

Let KMNand KM'N' be two beautiful triangles with common vertex,
Z/KMN = /A= /KM "N ". Without loss of generality, assume that M ' lies between
B and M . The segments MN and M 'N ' have a common point, we denote it by R.
Since ZKMR=~/KM'R, the points K, M, M', R are concyclic and
ZKM'M =180° - /KRM = /KRN . Similarly, K, N, N', R are concyclic,
therefore ZKN'N = ZKRN . Thus ZKM 'C = ZKM 'M = ZKN'N =180° - /KN 'C .
It follows that the  quadrilateral KM 'CN' is  cyclic, and
180° = Z/C + /M 'KN'=2/C, so the angle C is right.



Problem 2.
Does there exist a function f: R — R satisfying the following two conditions:

1) f takesall real values;
2) f(f(x)=(&—-1f(x)+2forall x € R?

Answer: there is no such f .
Suppose that such f does exist.

1. Denote f(1) =a. Set x =1 in
fUE))=C-Dfx)+2, 1)

Then f(a)=2.

2. Now setting x = a in (1) we obtain f(2) =(a—1)-2+ 2, then f(2) = 2a.
3. Bycondition, 3b € R|f(b) =1 .Letx = b in (1), then
a=fD=fFB)=0G-1)-1+2=b+1 ,b=a-1.
4. Further, , 3c € R|f(c) = 0. Setting x = ¢ in (1) we obtain
fO=f(f@)=(C-1D-0+2=2, f(0) =2
So we have 2 = £(0) = f(a), whence f(£(0)) = f(f(a)), or
O-1Df0+2=@—-1f(a)+2,or—=1-2+2=(a—1)-2+ 2,hence a = 0.

Asaresult: f(0) =2,f(2)=2a=0,f(1)=0,b=-1,f(—1) = 1.

5. Letnow d € R be such that f(d) = —1. Setx = d in (1), then
1=f-D=f(f@))=@-1)-(-1)+2=—d+3whenced = 2. Thatis f(2) =
—1, contrary to f(2) = 0.

Note. There exist function f satisfying (1) such that E(f) # R. For example

xX—2
=, x#1 _ (0, x#0
f(x)—{xof ) orf@={; »Z,

X =



Problem 3.
The answer is 180.

We reformulate the problem as follows. Given are 100 lattice points (that is, points
with integral coordinates). How many pairs of neighbours (points at distance 1) can
they form?

To prove that this problem is equivalent to the original one, we assign the number
2'3' to the point (i, j). In the set of numbers thus obtained the number of pairs in
question is equal to the number of neighbouring points in the set of 100 points.

Conversely, in any set of 100 numbers we find for each number its largest divisor m
not divisible by 2 or 3 and divide the set into groups of numbers with the same m.
Obviously the numbers in a good pair belong to the same group. Now we can assign
to each group a set of points where a point (i, j) corresponds to the number 2'3'm. If
some numbers from different groups correspond to coinciding or neighbouring points,
we translate the image of each group by a vector long enough to avoid that.

We can prove now that the maximum number of neighbouring pairs is attained
when the points form a 10x10 square (and then the number is 180).

Let us consider rows (i.e. the set of points with the same ordinate) and columns (i.e.
the set of points with the same abscissa). Suppose we have a nonempty rows and b
nonempty columns. Clearly ab >100.

If a row contains k points then its points form at most k —1 pairs. Denoting the
numbers of points in the rows by k,k,,..,k,, we have at most
(k, =)+ (k,-1)+...+(k, —1) =100—a horizontal pairs of neighbouring points.
Similarly, we have at most 100—b pairs of vertical pairs. Adding these inequalities
we have that the total number of pairs does not exceed

200—a—b < 200—2+/ab <180.
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4. CymectByer nu MHOrowieH P(X) ¢ mensiMu KOI(QQHUIMEHTAMH TaKOH, 4YTO

P(1+\/§):2+\/§ u P(3+\/§):3+\/§?

5. Tlyers U ={1,2,..,2014}. Jlns warypaneHeix a, b, C o6osHaunm depes
f (a,b,c) xomnuectBo ynopsimoueHHsix HaGopos MHOKecTB (X, X,, X3, Y, Y,,Y,),

YIOBJIETBOPSIOLIUX CIEAYIOIIUM YCIOBUSM:

() ,=X,cUn|X]|=a;
(i) Y, = X, cU\Y, u |X,|=b;
(iii) Y; = X, cU\(Y,UY,) u |X,|=c.

Jokaxure, uro f(a,b,c) He mensiercs npu nmepecranoske a, b u c. (3xecs |A|

0003HaYaeT KOJIMYECTBO AIEMEHTOB MHOXKecTBa A .)

6. BeImyKITbIi 4eTHIPEXYTOIBHHUK TOJIENIEH HA JIEBSITh YE€THIPEXyTOJIBHUKOB YETHIPHMSI
OTpe3KaMM, TOYKM IIEPECEUEHUs] KOTOPBIX JIeKAaT Ha JUAroHalIsAX HCXOJHOTO
YeTHIPEXYroJbHUKA (CM. PHCYHOK). M3BecTHO, 4TO B ueThlpexyronbHuku 1, 2, 3, 4
MO’KHO BIHCATh OKPYXHOCTH. J[OKakuTe, 4TO B YETHIPEXYTOJIBHUK 5 TaKKe MOXKHO
BIIHCATh OKPY>KHOCTb.




Problem 4.
The answer is no.
Solution. Note that for each polynomial P(x) with integral coefficients the integers

a, b, ¢, d such that P(1+\@)=a+b\@ and P(3+\@)=c+d\/§ are uniquely
defined. We call a polynomial regular if a—c and b—d are even. If P, Q are
regular and k is an integer, then P+Q and kP are obviously regular. Let us prove
that R=PQ is also regular. Indeed, if P(1+\@):a+b\@, P(3+\@):c+d\@,
Q(++3)=a+b'+3, Q(3++/B)=c+d'/5, then

R(1++/3) = (a+bv3)(a'+b'v3) = (aa'+3bb") + (ab'+ba")y/3,

R(3++/5) = (c+d+/B)(c'+d 'v/5) = (cc'+5dd ) + (cd “+ dc)v/5.

Clearly if a=c(mod2), b=d (mod?2), a'=c'(mod2), b'=d'(mod2), then
aa'+3bb'=cc'+5dd ' (mod 2) u ab'+ba'=cd'+dc' (mod 2).

Now the polynomial P(x) = x is regular. It follows that so are all the polynomials
with integral coefficients, therefore, the desired polynomial does not exist.



Solution of problem 5.
Note that it is enough to prove that f(a,b,c) = f(b,a,c) = f(a,c,b). First, let us consider the
following interpretation of our problem:
For every 6-tuple (X1, X2, X3, Y1,Y2, Y3) satisfying conditions of the problem, we
construct three sequences
A=(ai, ..., az2014), B=(b1, ..., b201s), C = (C1, ..., C2014)

as follows:
fori=1,...,2014
2,ifieY,
a, =<1, if ie X, \Y,,
0, otherwise.

Similarly, we define sequences B, C. Conditions (i), (ii), (iit) imply the following
conditions for sequences (A, B, C):

(P1) number of nonzero elements in A is a; number of nonzero elements in B is b; number
of nonzero elements in C is c;

(P2) if aj = 2 for some i, then bj = ¢i = 0; if bi =2, then c; =0.

Clearly, for every sequences (A, B, C) satisfying (P1), (P2) we may construct a sequence
(X1, X2, X3, Y1,Y2, Y3) that satisfies (i), (ii), (iii) of the problem.

So, f(a,b,c) is a number of sequences (A, B, C) satisfying (P1), (P2).

Let us first prove that f(a,b,c) = f(b,a,c). We establish the bijection @, between triples
corresponding to the order (a, b, ¢) and (b, a, c) as follows

®,((A, B, C)) = (A", B", C),
where A’ = (@', ,..., '), B’ = (b, ,...,b',,,) and forall i = 1,...,2014
(@;,b;)=(@0,a) if (a,b)=(@2) and (a';,b’;)=(a;, b, ) otherwise.
(Applying this transform twice we get the initial triple.)

Applying @, we get the property (P1) for (b,a): the number of entries 1,2 in A’ is b and
the number of entries 1,2 in B’ is a. Let us check that (P2) will also be satisfied. If no, then there
Isiwith a’, =2and b', e {2,1}; the pair (2,2) cannot occur since we interchanged (ai, bi); b’,
cannot be 1 since we did not interchange (1,2). As to the sequence C, if b', = 2, then a; was equal
to 2 which gives that ¢; =0. So, f(a,b,c) = f(b,a,c).

To prove now that f(a,b,c) = f(a,c,b) we consider a similar bijection @, :
®,((A,B,C))=(A, C, B)withB’ = (b, ,....b",), C = (¢ ,...,c"y4 ) @and forall i = 1,...,2014
(b ,cy)=(c,b) if (b,c)=(@2) and (b’ ,c;)=(b,,c;) otherwise.

Using a similar argument as explained above, conditions for (P1), (P2) hold for a pair (B’, C’).
To show a full check with (P2), finally note that if a, = 2, then bi = ci = 0 and the same holds

after @, .



Problem 6.

We use the following

Lemma. A convex quadrilateral XYZT has an inscribed circle if and only if
ZYXZ ZTXZ ZYZX ZTZX
tan : tan =tan ‘tan .

2 2 2 2

Proof of the lemma. Let the incircles of triangles XYZ and XTZ touch XZ at Y, and

. . + - + -
T,, respectively. It is easy to see that XY, = KY+RZ-YZ and XT, = XT+XZ-YZ
2

and XYZT is tangential if and only if XY, = XT,, which is equivalent to
XY, :Y,Z = XT,:T,Z and, further, to
LYXZ LTXZ LYZX LTZX
n :tan =tan :tan .
2 2 2 2

fa

Applying the lemma to quadrilaterals B,AD,C,, C,C,C,C,, C,C,C.C, we have
0 Z/B,AC, -tan £ZDAC, _ 0 Z/B,C,A - an £ZDCA _ 0 ZC,CC £C.CC, _
2

Zcc e

fa ta

ta Z - tan

= tan £GCC :tan £C6CC, ta 4:tan £CCC, tan £C,CC, tan £C,CCs .

2
that is,

ZBAC ZDAC ZBCA ZDCA
n :tan =tan :tan

2 2 2 2
and the quadrilateral ABCD is circumscribed.

ta

Applying again the lemma to quadrilaterals BB,C,C,, C,C,C,C,, ABCD, we get
0 ZC,.C,D - tan £D,CD _ 0 ZC,DC 2D,DC, .

2 2
and the quadrilateral C,C,DD, is circumscribed, g.e.d.

ta ta & -tan
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