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Problem 1. Let n > 10 be an integer, and let A1, A2, . . . , An be distinct
points in the plane such that the distances between the points are pairwise
different. Define f10(j, k) to be the 10th smallest of the distances from Aj

to A1, A2, . . . , Ak, excluding Aj if k ≥ j. Suppose that for all j and k
satisfying 11 ≤ j ≤ k ≤ n, we have f10(j, j − 1) ≥ f10(k, j − 1). Prove that
f10(j, n) ≥ 1

2f10(n, n) for all j in the range 1 ≤ j ≤ n− 1.

Problem 2. Consider an infinite sequence of positive integers a1, a2, a3, . . .
such that a1 > 1 and (2an − 1)an+1 is a square for all positive integers n. Is
it possible for two terms of such a sequence to be equal?

Problem 3. Fix an integer n ≥ 3. Determine the smallest positive integer k
satisfying the following condition:

For any tree T with vertices v1, v2, . . . , vn and any pairwise dis-
tinct complex numbers z1, z2, . . . , zn, there is a polynomial P (X,Y )
with complex coefficients of total degree at most k such that for
all i ̸= j satisfying 1 ≤ i, j ≤ n, we have P (zi, zj) = 0 if and only
if there is an edge in T joining vi to vj .

Note, for example, that the total degree of the polynomial

9X3Y 4 +XY 5 +X6 − 2

is 7 because 7 = 3 + 4.

Each problem is worth 7 marks.
Time allowed: 41

2 hours.



The 16th Romanian Master of Mathematics Competition

Day 2: 13 February, 2025, Bucharest

Language: English

Problem 4. Let Z denote the set of integers, and let S ⊂ Z be the set
of integers that are at least 10100. Fix a positive integer c. Determine all
functions f : S → Z satisfying f(xy + c) = f(x) + f(y) for all x, y ∈ S.

Problem 5. Let ABC be an acute triangle with AB < AC, and let H and O
be its orthocentre and circumcentre, respectively. Let Γ be the circumcircle
of triangle BOC. Circle Γ intersects line AO at points O and A′, and Γ
intersects the circle of radius AO with centre A at points O and F . Prove
that the circle which has diameter AA′, the circumcircle of triangle AFH,
and Γ pass through a common point.

Problem 6. Let k and m be integers greater than 1. Consider k pairwise
disjoint sets S1, S2, . . . , Sk, each of which has exactly m + 1 elements: one
red and m blue. Let F be the family of all subsets T of S1 ∪ S2 ∪ · · · ∪ Sk

such that, for every i, the intersection T ∩ Si is monochromatic. Determine
the largest possible number of sets in a subfamily G ⊆ F such that no two
sets in G are disjoint.

A set is monochromatic if all of its elements have the same colour. In
particular, the empty set is monochromatic.

Each problem is worth 7 marks.
Time allowed: 41

2 hours.



The 16th Romanian Master of Mathematics Competition

Day 1 — Solutions

Problem 1. Let n > 10 be an integer, and let A1, A2, . . . An be distinct points in the plane
such that the distances between the points are pairwise different. Define f10(j, k) to be the
10th smallest of the distances from Aj to A1, A2, . . . , Ak, excluding Aj if k ≥ j. Suppose that
for all j and k satisfying 11 ≤ j ≤ k ≤ n, we have f10(j, j − 1) ≥ f10(k, j − 1). Prove that
f10(j, n) ≥ 1

2f10(n, n) for all j in the range 1 ≤ j ≤ n− 1.

Iran, Morteza Saghafian

Solution 1. For every i, denote ai = f10(i, i − 1) and bi = f10(i, n). So, we need to show that
bn ≤ 2bi for all i. Notice that ai ≥ bi for all i.

To prove this, choose an arbitrary i < n, and let AiAj1 , AiAj2 , . . . , AiAj10 be the ten smallest
numbers among the AiAj with j 6= i, ordered so that j1 < j2 < · · · < j10.

If j10 < i, then i > 10, and the problem condition yields

bi = max
1≤k≤10

AiAjk = ai ≥ an ≥ bn,

which is even stronger than we need.
Otherwise, set j = j10 > i (in this case we also have j10 > 10), and denote m = bi =

max
1≤k≤10

AiAjk . By the problem condition, we have aj ≥ an = bn. On the other hand, we have

aj ≤ max

(
AjAi, max

1≤k≤9
AjAjk

)
≤ max

(
AjAi, max

1≤k≤9
(AjAi +AiAjk)

)
≤ 2m,

as AjAi, AiAjk ≤ m. So bn ≤ aj ≤ 2m = 2bi, as desired.

Solution 2. Let dj = f10(j, n), j = 1, . . . , n. To prove that 2dj ≥ dn for every j = 1, . . . , n− 1,
induct on n.

Consider the base case, n = 11. Note that each dj = maxi 6=j AiAj , as f10 is 10-variate. Let
d11 = A11Ak for some index k ≤ 10. Clearly, 2dk ≥ 2AkA11 = 2d11 ≥ d11 and if j 6= k then
2dj ≥ AjAk +AjA11 ≥ AkA11 = d11, by the triangle inequality.

For the induction step, let n > 11 and note that

max
n≥`≥k

f10(`, k − 1) = max
n−1≥`≥k

f10(`, k − 1),

as both maxima are achieved at ` = k, by the condition in the statement. Hence A1, A2, . . . , An−1
also satisfy this condition.

Let d′j = f10(j, n − 1), j = 1, . . . ,≤ n − 1. By the induction hypothesis, 2d′j ≥ d′n−1 for all
j ≤ n − 2. Note that d′n−1 = f10(n − 1, n − 2) ≥ f10(n, n − 2) ≥ f10(n, n − 1) = dn; the first
inequality holds by the condition in the statement for k = n− 1 and the second because adding
more variables to f10 does not increase its value.

Let now ∆i be the closed disc (interior and boundary) of radius di, centred at Ai. By the
definition of di, each ∆i contains at least 11 points, of which at most 10 (Ai, inclusive) lie strictly
inside.

Finally, suppose, if possible, that 2dj < dn for some index j < n. If AjAn is not among the
first 10 distances from Aj to the other points, then dj = d′j and this leads to a contradiction with
the induction hypothesis. So AjAn has to be among the first 10 distances from Aj to the other
points. This means that dj ≥ AjAn, so dn > 2dj ≥ 2AjAn. Hence ∆j lies strictly inside ∆n.
This is a contradiction, as ∆j contains at least 11 points, whereas ∆n contains at most 10 strictly
inside. The conclusion follows.



Problem 2. Consider a sequence of integers a1, a2, a3, . . . such that a1 > 1 and (2an − 1)an+1 is
a square for all positive integers n. Is it possible that two terms of such a sequence be equal?

Russia, Pavel Kozlov

Solution. The answer is in the negative. Notice first that, if an > 1, then 2an − 1 ≡ 3 (mod 4);
since (2an − 1)an+1 is a perfect square, we should have an+1 ≡ 0 (mod 4) or an+1 ≡ 3 (mod 4),
so in particular an+1 > 1. As a1 > 1, we conclude that all terms of the sequence are greater
than 1.

Denote the largest prime divisor of an integer k > 1 by g(k). We will show that g(an+1) >
g(an) for all n, which yields the desired result. To this end, usage is made of the lemma below.

Lemma: For any prime p, each prime divisor of 2p − 1 is greater than p.

Proof. Let q be a prime factor of 2p−1; then q is odd. The multiplicative order d of 2 modulo q
divides p and is larger than 1, so d = p. On the other hand, by Fermat’s little theorem, 2q−1 ≡ 1
(mod q), so p = d | q − 1 and the lemma follow.

Choose now any positive integer n, and denote, for convenience, k = am and ` = an+1. Let
p = g(k); then 2p − 1 | 2k − 1. Since 2p − 1 ≡ 3 (mod 4), this number is not a square, so there
exists a prime q such that vq(2

p − 1) is odd. By the Lemma, q > p, so in particular q - k.
Therefore, by the Lifting Exponent Lemma,

vq(2
k − 1) = vq(2

p − 1) + vq(k/p) = vq(2
p − 1) + 0,

so vq(2
k − 1) is odd as well. Since (2k − 1)` is a perfect square, we should then have q | `, so

g(`) ≥ q > p = g(k), as desired.
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Problem 3. Fix an integer n ≥ 3. Determine the smallest positive integer k satisfying the
following condition:

For any tree T with vertices v1, v2, . . . , vn and any pairwise distinct complex numbers
z1, z2, . . . , zn, there is a polynomial P (X,Y ) with complex coefficients of total degree
at most k such that for all i 6= j satisfying 1 ≤ i, j ≤ n, we have P (zi, zj) = 0 if and
only if there is an edge in T joining vi to vj .

Note, for example, that the total degree of the polynomial

9X3Y 4 +XY 5 +X6 − 2

is 7 because 7 = 3 + 4.

Romania, Andrei Chiriţă

Solution 1. First we provide a proof that k ≥ n− 1. Let T be the path where vi and vi+1 are
adjacent for all 1 ≤ i ≤ n − 1. Let ω be a primitive root of unity of order n and let ai = ωi for
all 1 ≤ i ≤ n.

If f(X) = P (X,ωX), then for all 1 ≤ i ≤ n−1 we have f(ωi) = P (ai, ai+1) = 0. Since f(1) =
P (an, a1) 6= 0, f is non-zero and has at least n−1 roots. This means that degP ≥ deg f ≥ n−1,
proving k ≥ n− 1.

It remains to prove that k = n − 1 is sufficient i.e. for any tree T and any a1, a2, . . . , an we
can find a polynomial P of degree at most n− 1. For brevity, we call a two-variable polynomial
A(X,Y ) symmetric if A(X,Y ) = A(Y,X).

We begin with the following observation. Suppose that A and B are two variable polynomials
of degree at most d. Then we can find α ∈ C such that for any 1 ≤ i, j ≤ n, A(ai, aj)+αB(ai, aj) =
0 if and only if A(ai, aj) = B(ai, aj) = 0. This means that we can ”merge” two conditions of
degree at most d into a condition of degree at most d (note that this produces a symmetric
polynomial if the initial polynomials are symmetric).

For any integer t ≥ 2, let a star of size t be a collection of t edges for which there is a vertex
which belongs to all edges. We will prove the following claims.

Claim 1. Let G be a graph with vertices v1, v2, . . . , vn and E edges. Suppose that we can parti-
tion the edges of G into a number of stars. Then for any distinct complex numbers a1, a2, . . . , an
we can find a symmetric polynomial P of degree at most E such that for all 1 ≤ i, j ≤ n, i 6= j,
P (ai, aj) = 0 if and only if there is an edge between vi and vj in G.

Proof. We will first prove the claim when G consists of a star of size E ≤ n − 1 and some
isolated vertices. Without loss of generality, let v1v2, v1v3, . . . , v1vE+1 be the edges of G. Also
let s1 = a1 + a2, s2 = a1 + a3, . . . , sE = a1 + aE+1.

Consider merging the polynomials (X−a1)(Y−a1) and (X+Y−s1)(X+Y−s2) . . . (X+Y−sE)
into a polynomial of degree at most E (which is of course symmetric). They both vanish at a
pair ai, aj if and only if 1 ∈ {i, j} and ai + aj ∈ {s1, s2, . . . , sE}. These two happen if and only if
vi and vj are adjacent, so this produces a valid polynomial.

For the general case, let S1 ∪ S2 ∪ · · · ∪ Sk be the partition of the edges of G. For each
1 ≤ i ≤ k, we can find a two variable polynomial Pi of degree at most |Si| which vanishes
only at the edges of Si. Then we can let P = P1P2 . . . Pk, which satisfies the claim as degP ≤
|S1|+ |S2|+ · · ·+ |Sk| = E, as desired.

Claim 2. Any tree Γ with odd number of vertices can be partitioned into stars of size 2.

Proof. We prove this by induction on the number of the vertices of Γ. The base case is clear,
since Γ is a star of size 2 when Γ has three vertices.

For the inductive step, let Γ be a tree with 2m + 1 vertices, where m ≥ 2. Let u1u2 . . . ut
be a path of maximal length in Γ (of course, t ≥ 3). Then any neighbour of u2 except for
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maybe u3 must have degree 1, otherwise we can delete u1 and insert two edges, contradicting
the maximality of t. If deg u2 = 2, we can form the star u1u2, u2u3 and apply the inductive
hypothesis on Γ r {u1, u2}. If deg u2 ≥ 3, let u 6= u1, u3 be a neighbour of u2. Then create the
star u1u2, uu2 and apply the inductive hypothesis on Γ r {u, u1}. This proves the claim.

The case where n is odd becomes trivial, since T has n − 1 edges. Assume that n is even.
Without loss of generality, let deg vn = 1 and let vn be adjacent to vn−1.

Consider the graph T ′ formed by deleting the edge vn−1vn from T (but not perturbing the n
vertices). Clearly, T ′ consists of vn and a tree on v1, v2, . . . , vn−1. As n − 1 is odd, the edges
of T ′ can be partitioned into stars of size 2 from Claim 2. From Claim 1 it follows that there is
a symmetric polynomial Q(X,Y ) of degree at most n − 2 such that Q(ai, aj) = 0 if and only if
i, j ≤ n− 1 and vi, vj are adjacent in T .

Let g(X) be the polynomial of degree n − 1 such that g(a1) = g(a2) = · · · = g(an−1) = 0
and g(an) = −Q(an−1, an) = −Q(an, an−1). Let P be the polynomial of degree at most n − 1
obtained by merging F1(X,Y ) = Q(X,Y ) + g(X) + g(Y ) and F2(X,Y ) = Q(X,Y )(X + Y − s),
where s = an +an−1. It is easy to see that P vanishes at each (ai, aj) for which vi, vj are adjacent
in T .

Suppose that vi and vj are not adjacent in T . If i, j ≤ n− 1, then F1(ai, aj) = Q(ai, aj) 6= 0.
If n ∈ {i, j}, then ai + aj 6= s and Q(ai, aj) 6= 0, so F2(ai, aj) 6= 0. Hence P (ai, aj) 6= 0. This
proves that P satisfies the required conditions, as desired.

Solution 2. Establish the lower bound as in Solution 1. We now address the upper bound
differently. Let G be a graph on vertices v1, . . . , vn. Say that a polynomial P (X,Y ) is G-good if
it satisfies the conditions in the statement of the problem. We prove the more general fact below:

Claim. Let di be the degree of vi. Assume that these degrees satisfy di ≤ n− i for all i ≤ n− 1,
and dn = 1. Then there is a G-admissible polynomial of degree at most n− 1.

Notice here that, if G is a tree with vertices ordered so that d1 ≥ d2 ≥ · · · ≥ dn, then it
satisfies the conditions in the Claim. Indeed, we have dn = 1, and if di > n− i for some i ≤ n−1,
then we have

2n− 2

n∑
j=1

dj ≥
i∑

j=1

(n− i+ 1) +

n∑
j=i+1

1 = i(n− i+ 1) + (n− i) = (i+ 1)(n− i+ 1)− 1 ≥ 2n− 1,

which is a contradiction. So, it suffices to prove the Claim.

Proof of the Claim. Let

P (X,Y ) =
n−1∑
j=0

Rj(Y )Xj

be the sought polynomial; set Rn−1(X) = 1. Denote

Qi(X) = P (X, ai) = Xn−1 +
n−2∑
j=0

qijX
j , where qij = Rj(ai).

So, we will seek for the sequences Cj = (q1j , q2j , . . . , qnj) such that there exists a polynomial Rj

with degRj ≤ n − j − 1 such that qij = Rj(ai). Notice that the first n − j terms of such a
sequence determine it uniquely; in particular, there are no restrictions on the sequence C0.

We know that the polynomial Qi has di prescribed roots. For every i ≤ n− 1, augment this
list by some numbers not from the set A = {a1, a2, . . . , an} to the list bi1, bi2, . . . , bi,n−i. Also,
denote by bn1 the unique prescribed root of Qn. Thus, we should have

Qi(X) = Si(X)

max(n−i,1)∏
j=1

(X − bij), (1)
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where Si is a monic polynomial with degSi = i− 1 for i ≤ n− 1 and degSn = n− 2. The only
extra conditions we have are that each Si should achieve non-zero values at the prescribed finite
subset Ai of A (containing no prescribed roots of Qi).

The polynomial Q1 is uniquely determined by (1).
Assume that the polynomials Q1, . . . , Qi−1 have already been determined, for some i ≤ n−2.

This means that the sequences S1, . . . , Si−1 are also determined. This determines the polyno-
mial Si up to the constant term. So we may choose this constant term so that Si has no prohibited
roots, thus defining Qi.

It remains to deal with the indices i = n − 1, n. At this moment, both polynomials Sn−1
and Sn are determined up to constant terms. The conditions they must obey are: (i) they should
not have roots inside An−1 and An, respectively; and (ii) the sequence C1 should be a sequence
of values of a polynomial R1 with degR1 ≤ n − 2. Notice that all such polynomials R1 are
determined up to an additive polynomial of the form α

∏
j≤n−2(X − aj). The coefficients qn−1,1

and qn,1 depend linearly on α with a non-zero linear term. Hence the constant terms of Sn−1
and Sn depend linearly on α. Now, again, there are only finitely many restrictions which remove
finitely many values of α; any other value fits the bill.

Solution 3. The answer is n − 1. Use the same argument as the official solution for the lower
bound.

We can construct such a polynomial via a method that uses no graph theory other than the
fact that T has n− 1 edges.

Lemma 1. Let k be a positive integer and let A,B ⊆ C2 be two disjoint finite sets. Suppose
|A| = 2k and no line intersects A∪B in more than k+ 1 points. Then there exists a polynomial
of degree k that vanishes on A and is non-zero on B.

Proof. We first argue that we may reduce to the case when |B| = 1. This is since if P and P ′

are polynomials that are zero on A and nonzero on B and B′, then a generic linear combination
of P and P ′ is nonzero on A and nonzero on B ∪B′. Now suppose B = {b}.

For a, a′ ∈ A, write a ∼ a′ if a, a′, b are collinear. This is an equivalence relation, and each
equivalence class has at most k elements. Thus we may pair up the elements of A such that no
two paired elements are collinear with b. Now let P be the polynomial vanishing on the union of
the k lines determined by the pairs, which is nonzero at b by construction.

Lemma 2. Let a1, a2, . . . , an be distinct complex numbers. Then a line can intersect at most n
points of the form (ai, aj).

Proof. If not, then by the pigeonhole principle such a line must contain two points with the
same x-coordinate. But then it is vertical and thus can only contain n points.

We are done by applying Lemma 1 with

A = {(ai, aj) : vivj ∈ E(T )} and B = {(ai, aj) : i 6= j, vivj /∈ E(T )}.
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The 16th Romanian Master of Mathematics Competition

Day 2 — Solutions

Problem 4. Let Z denote the set of integers and let S ⊂ Z be the set of integers that are at
least 10100. Fix a positive integer c. Determine all functions f : S → Z satisfying

f(xy + c) = f(x) + f(y) for all x, y ∈ S.

United Kingdom

Solution. Observe that if x1, y1, x2, y2 ∈ S with x1y1 = x2y2 then

f(x1) + f(y1) = f(x2) + f(y2). (1)

This tells us that for u, v, w ∈ S,

f(uv) + f(w) = f(u) + f(vw), so f(uv)− f(u)− f(v) = f(vw)− f(w)− f(v).

Notice the RHS is independent of u so the same must be true of the LHS. By replicating the
argument with u and v switched, we also see the LHS is independent of v so in fact

f(uv)− f(u)− f(v) = k for some constant k ∈ Z (2)

Using (1) again we have, for y, z ∈ S

f(cz) + f(y) = f(z) + f(cy),

so f(cy)− f(y) = l for some constant ℓ ∈ Z. (3)

Setting x = cz in the original functional equation for z ∈ S shows

f(c(yz + 1))
(3)
= f(yz + 1) + ℓ = f(cz) + f(y)

(3)
= f(z) + f(y) + ℓ,

so f(yz + 1) = f(y) + f(z).

Let x ∈ S and set y = x, z = x+ 2 in the above to get

f
(
(x+ 1)2

) (2)
= 2f(x+ 1) + k = f(x) + f(x+ 2)

⇒ f(x) + f(x+ 2)− 2f(x+ 1) = −k = constant

which forces f to be a quadratic. By setting x = y in the original functional equation and
considering the degree of both sides, we see f must be in fact be constant. The only constant
function that satisfies the condition is f ≡ 0.



Problem 5. Let ABC be an acute triangle with AB < AC and let H and O be its orthocentre
and circumcentre, respectively. Let Γ be the circle BOC. The line AO and the circle of radius AO
centred at A cross Γ again at A′ and F , respectively. Prove that Γ, the circle on diameter AA′

and the circle AFH are concurrent.

Romania, Radu-Andrei Lecoiu

Solution 1. Let Ω denote the circle (ABC) (centred at O), and let M be the midpoint of the

minor arc BC of that circle.
Consider the composition ι of an inversion centered at A and the reflection in the bisector AM

that swaps B and C. Then ι swaps the circle Ω with the line BC, hence it swaps O with the
reflection L of A in BC. Hence ι(Γ) is the circle Γ∗ = (BCL), i.e., the reflection of Ω in BC
which passes through H. Let S and Q be the centers of Γ and Γ∗, respectively; then AM is the
angle bisector of ∠QAS.

Since ι swaps Γ and Γ∗, they are seen from A at the same angle, so there exists a rotational
homothety h centred at A mapping Γ to Γ∗; the angle of h is ∠SAQ. Notice that the rays
AH and AF are obtained from AO by reflections in AM and AS, respectively, so ∠HAF =
2∠MAS = ∠QAS. This easily yields that H = h(F ). Hence the triangles AHF and AQS are
similar, and ∠AHF = ∠AQS.

Ω

Γ

Γ∗

A

B C

OH

A′

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

T Q

S

M

L

Now, let the circle (AHF ) meet Γ again at T . Using directed angles, we get ∠ATF =
∠AHF = ∠AQS; next, since FO ⊥ AS, we have

∠FTA′ = ∠FOA′ = π/2− ∠OAS = π/2− ∠QAL = π/2− ∠AQS,

(here the equality ∠OAS = ∠QAL holds because these angles are symmetric to each other with
respect to AM), so ∠ATA′ = ∠ATF + ∠FTA′ = π/2, as desired.

Remark. Existence of the rotational homothety h may be shown in various ways. E.g., one may
notice that Ω is an Apollonius circle of the segment QS, so the ratio of the radii of Γ and Γ∗ is
BS/BQ = AS/AQ, which also yields that h exists.

Solution 2. Let S be the centre of Γ and let the circle on diameter AA′ cross Γ again at T . It
is sufficient to prove that T lies on circle AFH.
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The points O and F are reflections of one another in AS; hence S lies on the internal angle
bisectrix of ∠FAA′. On the other hand, since SF = SA′, it lies on the perpendicular bisectrix
of FA′; so S is the midpoint of the arc A′F on circle AA′F not containing A. In particular,
AFSA′ is cyclic.

Let D be the orthogonal projection of A on BC. We will prove that O, D, T are collinear.
Invert from O with radius OB. This fixes B and C, so Γ maps to line BC. It follows that A
maps to A∗ = AA′ ∩ BC. Note that A is fixed under this inversion, as OA = OB, so the image
of the circle on diameter AA′ is a circle δ through A and A∗ — and, in fact, δ is the circle of
diameter AA∗, as AA′ passes through O. Hence T maps to one of the points where line BC
crosses δ. As T ̸= A′, its image is D, so O, D, T are indeed collinear.

Letting L be the reflection of A in BC, we now prove that HTLO is cyclic. As circle HBC is
the reflection of Γ in BC, the quadrangle HLBC is cyclic, so HD ·DL = BD ·DC = OD ·DT ,
whence HTLO is indeed cyclic.

Ω

Γ

A

B C
D

OH

A′

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

T

S

A∗

L

Next, we show that triangles ALO and A′AS are similar. Let ∠BAC = α and ∠CBA = β.
As OS ∥ AL, it follows that ∠OAL = ∠A′OS = ∠AA′S, so by the sine law:

AL

AA′ = 2 · AD
AB

· AB
AA′ = 2 · sinβ · cosα

sinβ
= 2 cosα and

AO

A′S
=

BO

BS
=

sin 2α

sinα
= 2 cosα.

Consequently, AL/AA′ = AO/A′S, so AL/AO = AA′/A′S, implying the desired similarity. In
particular, ∠ALO = ∠A′AS.

Finally, combine the properties established above to chase angles and write successively

∠FTH = ∠FTO − ∠HTO =
1

2
∠FSO − ∠HLO = ∠ASO − ∠A′AS

= ∠ASO + ∠A′AS − 2∠A′AS = ∠SOA′ − ∠FAO = ∠HAO − ∠FAO

= ∠HAF

and conclude that T lies on circle AFH, as stated in the first paragraph. This completes the
solution.

Remark. Let T be the desired intersection point. The property that the points O, D, and T is
also useful in other approaches to the problem; in fact, it may be proved for both definitions of
point T (as in Solutions 1 and 2), thus providing a different solution.
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Here we list several other properties of the figure which appear to be useful in other approaches
to the problem.

Let the tangent to the circle (ABC) at A meet BC at Z. Then the desired common inter-
section point T lies on ZA′.

Let AH meet the circle (ABC) again at K. Then the points A, O, K, and T are concyclic.
Finally, the circle (AHFT ) also passes through K, as well as through the reflection of O in D.

Ω

Γ

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB C
D

OH

A′

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

T

Z

K

Solution 3. Let S be the centre of Γ and let circle AFH meet Γ again at T ̸= F . In the sequel,
angles are all orientated.

We are to prove that ∠ATF + ∠FTA′ = 90◦. To this end, note the equivalences below:

∠ATF + ∠FTA′ = 90◦ ⇔ ∠AHF + ∠FOA = 90◦ ⇔ ∠AHF = ∠OAS (as AS ⊥ OF )

⇔ ∠AHF = ∠SAF ⇔ AS is tangent to circle AFH

⇔ AH

sin∠HAS
=

AF

sin∠FAS

⇔ AH

AO
=

sin∠HAS

sin∠SAO
. (∗)
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To prove (∗), let AB and AC meet Γ again at B′ and C ′, respectively. An easy angle chase
shows that O is the orthocentre of triangle AB′C ′.

As triangles ABC and AC ′B′ are similar, AH passes through the centre O′ of circle AB′C ′;
and as circles AB′C ′ and BOCC ′B′ are reflections of one another in B′C ′ and AO′SO is a
parallelogram, it follows that

sin∠HAS

sin∠SAO
=

sin∠O′AS

sin∠ASO′ =
O′S

AO′ =
AO

AO′ . (∗∗)

Further on, as triangles ABC and AC ′B′ are similar, (∗∗) implies equal corresponding length
ratios, so AO/AO′ = AH/AO. This establishes (∗) and concludes the solution.

Remark. Relation (∗) is equivalent to AS being the A-symmedian of triangle AOH. This might
very well be known and can actually be proved in several different ways.
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Problem 6. Let k and m be integers greater than 1. Consider k pairwise disjoint sets
S1, S2, . . . , Sk; each of these sets has exactly m+1 elements, one of which is red and the other m
are all blue. Let F be the family of all subsets F of S1 ∪ S2 ∪ . . . ∪ Sk such that, for every i, the
intersection F ∩ Si is monochromatic; the empty set is monochromatic. Determine the largest
possible cardinality of a subfamily G ⊆ F , no two sets of which are disjoint.

Russia, Andrey Kupavskii and Maksim Turevskii

Solution. The required maximum is 2m−1(2m+1)k−1 and is achieved if, for instance, G consists
of all sets in F containing a fixed blue element.

We now prove that |G| ≤ 2m−1(2m+1)k−1 for any G satisfying the conditions in the statement.
For convenience, write M = 2m +1. Let ri denote the red element of Si, and let Bi be the set of
blue elements in Si.

For every subset Xi ⊂ Bi and every j ∈ ZM , define the sets

TXi,j =


{ri}, if j = 0;

Xi, if j ̸= 0 and j is even (considered as a number in [1,M − 1]);

Bi \Xi, if j ̸= 0 and j is odd (considered as a number in [1,M − 1]).

Note that, for every i and every j, the sets TXi,j and TXi,j+1 are disjoint. Now, for every sets
Xi ⊂ Bi and every elements ji ∈ ZM , i = 1, 2, . . . , k, denote

F (X1, X2, . . . , Xk, j1, j2, . . . , jk) =
k⋃

i=1

TXi,ji . (∗)

Claim. Every set F ∈ F has exactly 2mk representations of the form (∗).

Proof. Set Fi = F ∩ Si. If Fi = {ri}, then there are 2m possible choices for Xi, and one should
necessarily have ji = 0. Otherwise, there are only two possible choices for Xi, namely Xi = Fi

and Xi = Bi \ Fi, and for each of them there are 2m−1 possible choices for ji. So, whatever F ,
there are 2m possible choices for each pair (Xi, ji) all of which can be made independently, whence
a total of 2mk possible tuples (X1, X2, . . . , Xk, j1, j2, . . . , jk). This proves the Claim.

The Claim implies that each F ∈ F has the same number of representations of the form (∗).
Thus, it suffices to show that, among all N = 2km(2m+1)k tuples (X1, X2, . . . , Xk, j1, j2, . . . , jk),

at most
2m−1

2m + 1
N satisfy F (X1, X2, . . . , Xk, j1, j2, . . . , jk) ∈ G.

To this end, split all these tuples into length M cycles(
F (X1, X2, . . . , Xk, j1, j2, . . . , jk), F (X1, X2, . . . , Xk, j1 + 1, j2 + 1, . . . , jk + 1), . . . ,

F (X1, X2, . . . , Xk, j1 +M − 1, j2 +M − 1, . . . , jk +M − 1)
)
,

and note that any two adjacent sets of a cycle are disjoint. Hence each cycle contains at most
⌊M/2⌋ = 2m−1 sets from G. This provides the desired upper bound and completes the solution.
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