JBMO ShortLists 2001

- Find the positive integers n that are not divisible by 3 if the number $2^{n^2-10}+2133$ is a perfect cube.
 - The wording of this problem is perhaps not the best English. As far as I am aware, just solve the diophantine equation $x^3 = 2^{n^2-10} + 2133$ where $x, n \in \mathbb{N}$ and $3 \nmid n$.
- Let P_n (n = 3, 4, 5, 6, 7) be the set of positive integers $n^k + n^l + n^m$, where k, l, m are positive integers. Find n such that:
 - i) In the set P_n there are infinitely many squares.
 - ii) In the set P_n there are no squares.
- Find all the three-digit numbers \overline{abc} such that the 6003-digit number $\overline{abcabc \dots abc}$ is divisible by 91.
- 4 The discriminant of the equation $x^2 ax + b = 0$ is the square of a rational number and a and b are integers. Prove that the roots of the equation are integers.
- Let $x_k = \frac{k(k+1)}{2}$ for all integers $k \ge 1$. Prove that for any integer $n \ge 10$, between the numbers $A = x_1 + x_2 + \ldots + x_{n-1}$ and $B = A + x_n$ there is at least one square.
- **6** Find all integers x and y such that $x^3 \pm y^3 = 2001p$, where p is prime.
- 7 Prove that there are no positive integers x and y such that $x^5 + y^5 + 1 = (x+2)^5 + (y-3)^5$.

The restriction x, y are positive isn't necessary.

- **8** Prove that no three points with integer coordinates can be the vertices of an equilateral triangle.
- 9 Consider a convex quadrilateral ABCD with AB=CD and $\angle BAC=30^{\circ}$. If $\angle ADC=150^{\circ}$, prove that $\angle BCA=\angle ACD$.
- 10 A triangle ABC is inscribed in the circle $\mathcal{C}(O,R)$. Let $\alpha<1$ be the ratio of the radii of the circles tangent to \mathcal{C} , and both of the rays (AB) and (AC). The numbers $\beta<1$ and $\gamma<1$ are defined analogously. Prove that $\alpha+\beta+\gamma=1$.

- 11 Consider a triangle ABC with AB = AC, and D the foot of the altitude from the vertex A. The point E lies on the side AB such that $\angle ACE = \angle ECB = 18^{\circ}$.
 - If AD = 3, find the length of the segment CE.
- Consider the triangle ABC with $\angle A=90^\circ$ and $\angle B\neq \angle C$. A circle $\mathcal{C}(O,R)$ passes through B and C and intersects the sides AB and AC at D and E, respectively. Let S be the foot of the perpendicular from A to BC and let E be the intersection point of E0 with the segment E1. If E2 is the midpoint of E3, prove that E4 is a parallelogram.
- 13 At a conference there are n mathematicians. Each of them knows exactly k fellow mathematicians. Find the smallest value of k such that there are at least three mathematicians that are acquainted each with the other two.

Rewording of the last line for clarification:

Find the smallest value of k such that there (always) exists 3 mathematicians X, Y, Z such that X and Y know each other, X and Z know each other and Y and Z know each other.