
Chapter 1

2007 Shortlist JBMO - Problems

1.1 Algebra

A1 Let a be a real positive number such that a3 = 6(a + 1). Prove that the equation
x2 + ax + a2 − 6 = 0 has no solution in the set of the real number.

A2 Prove that
a2 − bc

2a2 + bc
+

b2 − ca

2b2 + ca
+

c2 − ab

2c2 + ab
≤ 0 for any real positive numbers a, b, c.

A3 Let A be a set of positive integers containing the number 1 and at least one more
element. Given that for any two different elements m,n of A the number m+1

(m+1,n+1)
is also

an element of A, prove that A coincides with the set of positive integers.

A4 Let a and b be positive integers bigger than 2. Prove that there exists a positive
integer k and a sequence n1, n2, . . . , nk consisting of positive integers, such that n1 = a,
nk = b, and (ni + ni+1) |nini+1 for all i = 1, 2, . . . , k − 1.

A5 The real numbers x, y, z,m, n are positive, such that m + n ≥ 2. Prove that

x
√

yz(x + my)(x + nz) + y
√
xz(y + mx)(y + nz) + z

√
xy(z + mx)(x + ny) ≤

3(m + n)

8
(x + y)(y + z)(z + x).

1.2 Combinatorics

C1 We call a tiling of an m × n rectangle with corners (see figure below) ”regular” if
there is no sub-rectangle which is tiled with corners. Prove that if for some m and n there
exists a ”regular” tiling of the m× n rectangular then there exists a ”regular” tiling also
for the 2m× 2n rectangle.
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C2 Consider 50 points in the plane, no three of them belonging to the same line. The
points have been colored into four colors. Prove that there are at least 130 scalene triangles
whose vertices are colored in the same color.

C3 The nonnegative integer n and (2n + 1) × (2n + 1) chessboard with squares colored
alternatively black and white are given. For every natural number m with 1 < m < 2n+1,
an m ×m square of the given chessboard that has more than half of its area colored in
black, is called a B-square. If the given chessboard is a B-square, find in terms of n the
total number of B-squares of this chessboard.

1.3 Geometry

G1 Let M be an interior point of the triangle ABC with angles ^BAC = 70◦ and
^ABC = 80◦. If ^ACM = 10◦ and ^CBM = 20◦, prove that AB = MC.

G2 Let ABCD be a convex quadrilateral with ^DAC = ^BDC = 36◦, ^CBD = 18◦

and ^BAC = 72◦. If P is the point of intersection of the diagonals AC and BD, find the
measure of ^APD.

G3 Let the inscribed circle of the triangle4ABC touch side BC at M , side CA at N and
side AB at P . Let D be a point from [NP ] such that DP

DN
= BD

CD
. Show that DM⊥PN .

G4 Let S be a point inside ^pOq, and let k be a circle which contains S and touches
the legs Op and Oq in points P and Q respectively. Straight line s parallel to Op from
S intersects Oq in a point R. Let T be the point of intersection of the ray PS and
circumscribed circle of 4SQR and T 6= S. Prove that OT ‖ SQ and OT is a tangent of
the circumscribed circle of 4SQR.

1.4 Number Theory

NT1 Find all the pairs positive integers (x, y) such that

1

x
+

1

y
+

1

[x, y]
+

1

(x, y)
=

1

2
,

where (x, y) is the greatest common divisor of x, y and [x, y] is the least common multiple
of x, y.

NT2 Prove that the equation x2006 − 4y2006 − 2006 = 4y2007 + 2007y has no solution in
the set of the positive integers.

NT3 Let n > 1 be a positive integer and p a prime number such that n | (p − 1) and
p | (n6 − 1). Prove that at least one of the numbers p− n and p + n is a perfect square.

NT4 Let a, b be two co-prime positive integers. A number is called good if it can be
written in the form ax + by for non-negative integers x, y. Define the function f : Z→ Z
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as f(n) = n − na − nb, where st represents the remainder of s upon division by t. Show
that an integer n is good if and only if the infinite sequence n, f(n), f(f(n)), . . . contains
only non-negative integers.

NT5 Let p be a prime number. Show that 7p + 3p − 4 is not a perfect square.
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Chapter 2

2007 Shortlist JBMO - Solutions

2.1 Algebra

A1 Let a be a real positive number such that a3 = 6(a + 1). Prove that the equation
x2 + ax + a2 − 6 = 0 has no solution in the set of the real number.
Solution
The discriminant of the equation is ∆ = 3(8−a2). If we accept that ∆ ≥ 0, then a ≤ 2

√
2

and
1

a
≥
√

2

4
, from where a2 ≥ 6 + 6 ·

√
2

4
= 6 +

6

a
≥ 6 +

3
√

2

2
> 8 (contradiction).

A2 Prove that
a2 − bc

2a2 + bc
+

b2 − ca

2b2 + ca
+

c2 − ab

2c2 + ab
≤ 0 for any real positive numbers a, b, c.

Solution

The inequality rewrites as
∑ 2a2 + bc− 3bc

2a2 + bc
≤ 0, or 3−3

∑ bc

2a2 + bc
≤ 0 in other words∑ bc

2a2 + bc
≥ 1.

Using Cauchy-Schwarz inequality we have

∑ bc

2a2 + bc
=
∑ b2c2

2a2bc + b2c2
≥

(∑
bc
)2

2abc (a + b + c) +
∑

b2c2
= 1,

as claimed.

A3 Let A be a set of positive integers containing the number 1 and at least one more
element. Given that for any two different elements m,n of A the number m+1

(m+1,n+1)
is also

an element of A, prove that A coincides with the set of positive integers.
Solution

Let a > 1 be lowest number in A \ {1}. For m = a, n = 1 one gets y =
a + 1

(2, a + 1)
∈ A.

Since (2, a + 1) is either 1 or 2, then y = a + 1 or y =
a + 1

2
.
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But 1 <
a + 1

2
< a, hence y = a + 1. Applying the given property for m = a + 1, n = a

one has
a + 2

(a + 2, a + 1)
= a + 2 ∈ A, and inductively t ∈ A for all integers t ≥ a.

Furthermore, take m = 2a− 1, n = 3a− 1 (now in A!); as (m + 1, n + 1) = (2a, 3a) = a

one obtains
2a

a
= 2 ∈ A, so a = 2, by the definition of a.

The conclusion follows immediately.

A4 Let a and b be positive integers bigger than 2. Prove that there exists a positive
integer k and a sequence n1, n2, . . . , nk consisting of positive integers, such that n1 = a,
nk = b, and (ni + ni+1) |nini+1 for all i = 1, 2, . . . , k − 1.
Solution
We write a⇔ b if the required sequence exists. It is clear that ⇔ is equivalence relation,
i.e. a⇔ a, (a⇔ b implies b⇒ a) and (a⇔ b, b⇔ c imply a⇔ c).
We shall prove that for every a ≥ 3, (a - an integer), a⇔ 3.
If a = 2st, where t > 1 is an odd number, we take the sequence

2st, 2s(t2 − t), 2s(t2 + t), 2s(t + 1) = 2s+1 · t + 1

2
.

Since
t + 1

2
< t after a finite number of steps we shall get a power of 2. On the other

side, if s > 1 we have 2s, 3 · 2s, 3 · 2s−1, 3 · 2s−2, . . . , 3.

A5 The real numbers x, y, z,m, n are positive, such that m + n ≥ 2. Prove that

x
√

yz(x + my)(x + nz) + y
√
xz(y + mx)(y + nz) + z

√
xy(z + mx)(x + ny) ≤

3(m + n)

8
(x + y)(y + z)(z + x).

Solution
Using the AM-GM inequality we have√

yz(x + my)(x + nz) =
√

(xz + myz)(xy + nyz) ≤ xy + xz + (m + n)yz

2
,

√
xz(y + mx)(y + nz) =

√
(yz + mxz)(xy + nxz) ≤ xy + yz + (m + n)xz

2
,√

xy(z + mx)(z + ny) =
√

(yz + mxy)(xz + nxy) ≤ xz + yz + (m + n)xy

2
.

Thus it is enough to prove that

x [xy + xz + (m + n)yz] + y [xy + yz + (m + n)xz] + z [xy + yz + (m + n)xz] ≤

≤ 3(m + n)

4
(x + y)(y + z)(z + x),
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or
4 [A + 3(m + n)B] ≤ 3(m + n)(A + 2B)⇔ 6(m + n)B ≤ [3(m + n)− 4]A,

where A = x2y + x2z + xy2 + y2z + xz2 + yz2, B = xyz.
Because m + n ≥ 2 we obtain the inequality m + n ≤ 3(m + n) − 4. From AM-
GM inequality it follows that 6B ≤ A. From the last two inequalities we deduce that
6(m + n)B ≤ [3(m + n)− 4]A. The inequality is proved.
Equality holds when m = n = 1 and x = y = z.

2.2 Combinatorics

C1 We call a tiling of an m × n rectangle with corners (see figure below) ”regular” if
there is no sub-rectangle which is tiled with corners. Prove that if for some m and n there
exists a ”regular” tiling of the m× n rectangular then there exists a ”regular” tiling also
for the 2m× 2n rectangle.

Solution
A corner-shaped tile consists of 3 squares. Let us call ”center of the tile” the square that
has two neighboring squares. Notice that in a ”regular” tiling, the squares situated in the
corners of the rectangle have to be covered by the ”center” of a tile, otherwise a 2× 3 (or
3× 2) rectangle tiled with two tiles would form.
Consider a 2m×2n rectangle, divide it into four m×n rectangles by drawing its midlines,
then do a ”regular” tiling for each of these rectangles. In the center of the 2m × 2n
rectangle we will necessarily obtain the following configuration:

Now simply change the position of these four tiles into:
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It is easy to see that this tiling is ”regular”.

C2 Consider 50 points in the plane, no three of them belonging to the same line. The
points have been colored into four colors. Prove that there are at least 130 scalene triangles
whose vertices are colored in the same color.
Solution
Since 50 = 4 · 12 + 2, according to the pigeonhole principle we will have at least 13 points
colored in the same color. We start with the:
Lemma. Given n > 8 points in the plane, no three of them collinear, then there are at

least
n(n− 1)(n− 8)

6
scalene triangles with vertices among the given points.

Proof. There are
n(n− 1)

2
segments and

n(n− 1)(n− 2)

6
triangles with vertices among

the given points. We shall prove that there are at most n(n−1) isosceles triangles. Indeed,
for every segment AB we can construct at most two isosceles triangles (if we have three
ABC, ABD and ABE, than C, D, E will be collinear). Hence we have at least

n(n− 1)(n− 2)

6
− n(n− 1) =

n(n− 1)(n− 8)

6
scalene triangles.

For n = 13 we have
13 · 12 · 5

6
= 130, QED.

C3 The nonnegative integer n and (2n + 1) × (2n + 1) chessboard with squares colored
alternatively black and white are given. For every natural number m with 1 < m < 2n+1,
an m ×m square of the given chessboard that has more than half of its area colored in
black, is called a B-square. If the given chessboard is a B-square, find in terms of n the
total number of B-squares of this chessboard.
Solution
Every square with even side length will have an equal number of black and white 1 × 1
squares, so it isn’t a B-square. In a square with odd side length, there is one more 1× 1
black square than white squares, if it has black corner squares. So, a square with odd
side length is a B-square either if it is a 1× 1 black square or it has black corners.
Let the given (2n + 1) × (2n + 1) chessboard be a B-square and denote by bi (i =
1, 2, . . . , n + 1) the lines of the chessboard, which have n + 1 black 1 × 1 squares, by
wi (i = 1, 2, . . . , n) the lines of the chessboard, which have n black 1× 1 squares and by
Tm (m = 1, 3, 5, . . . , 2n− 1, 2n+ 1) the total number of B-squares of dimension m×m of
the given chessboard.
For T1 we obtain T1 = (n + 1)(n + 1) + n · n = (n + 1)2 + n2.
For computing T3 we observe that there are n 3×3 B-squares, which have the black corners
on each pair of lines (bi, bi+1) for i = 1, 2, . . . , n and there are n−1 3×3 B-squares, which
have the black corners on each pair of lines (wi, wi+1) for i = 1, 2, . . . , n− 1. So, we have

T3 = n · n + (n− 1)(n− 1) = n2 + (n− 1)2.
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By using similar arguments for each pair of lines (bi, bi+2) for i = 1, 2, . . . , n − 1 and for
each pair of lines (wi, wi+2) for i = 1, 2, . . . , n− 2 we compute

T5 = (n− 1)(n− 1) + (n− 2)(n− 2) = (n− 1)2 + (n− 2)2.

Step by step, we obtain

T7 = (n− 2)(n− 2) + (n− 3)(n− 3) = (n− 2)2 + (n− 3)2,

.......................................

T2n−1 = 2 · 2 + 1 · 1 = 22 + 12,

T2n+1 = 1 · 1 = 12.

The total number of B-squares of the given chessboard equals to

T1 + T3 + T5 + . . . + T2n+1 = 2(12 + 22 + . . . + n2) + (n + 1)2 =

n(n + 1)(2n + 1)

3
+ (n + 1)2 =

(n + 1)(2n2 + 4n + 3)

3
.

The problem is solved.

2.3 Geometry

G1 Let M be an interior point of the triangle ABC with angles ^BAC = 70◦ and
^ABC = 80◦. If ^ACM = 10◦ and ^CBM = 20◦, prove that AB = MC.
Solution
Let O be the circumcenter of the triangle ABC. Because the triangle ABC is acute, O is
in the interior of ∆ABC. Now we have that ^AOC = 2^ABC = 160◦, so ^ACO = 10◦

and ^BOC = 2^BAC = 140◦, so ^CBO = 20◦. Therefore O ≡ M , thus MA =
MB = MC. Because ^ABO = 80◦ − 20◦ = 60◦, the triangle ABM is equilateral and so
AB = MB = MC.
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G2 Let ABCD be a convex quadrilateral with ^DAC = ^BDC = 36◦, ^CBD = 18◦

and ^BAC = 72◦. If P is the point of intersection of the diagonals AC and BD, find the
measure of ^APD.
Solution
On the rays (DA and (BA we take points E and Z, respectively, such that AC = AE =

AZ. Since ^DEC =
^DAC

2
= 18◦ = ^CBD, the quadrilateral DEBC is cyclic.

Similarly, the quadrilateral CBZD is cyclic, because ^AZC =
^BAC

2
= 36◦ = ^BDC.

Therefore the pentagon BCDZE is inscribed in the circle k(A,AC). It gives AC = AD

and ^ACD = ^ADC =
180◦ − 36◦

2
= 72◦, which gives ^ADP = 36◦ and ^APD = 108◦.

Alternative solution. Let X be the intersection point of the angle bisector of ^CAD
and PD. As ^CAX = ^CBX = 18◦, ABCX is cyclic, hence ^BXC = 72◦. It follows
that CXD is isosceles. From the SSA criterion for triangles AXC and AXD, it follows
that either ^ACX = ^ADX, or ^ACX + ^ADX = 180◦. The latter being excluded, it
follows that triangles AXC and AXD are congruent. Immediate angle chasing leads to
the conclusion.

Alternative solution. Let S be the reflection of D in the line BC. Triangle BDS is
isosceles, with ^DBS = 36◦, hence ^SDB = ^BSD = 72◦. It follows that ABSD is
cyclic (^BSD+^BAD = 180◦), hence ^BAS = ^BDS = 72◦ which means that A,C, S
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are collinear. C is the incenter of ∆BSD, therefore ^PSB = ^PBS = 36◦, which leads
to ^DPA = 108◦.

G3 Let the inscribed circle of the triangle4ABC touch side BC at M , side CA at N and
side AB at P . Let D be a point from [NP ] such that DP

DN
= BD

CD
. Show that DM⊥PN .

Solution
From AP = AN it follows that ^ANP = ^APN or ^NPB = ^PNC (both obtuse).

Hence the triangles BDP and CND are similar (SSA) and ^CDN = ^BDP and
CD

BD
=

CN

BP
=

CM

BM
. So DM is a bisector of the angle BDC, from where NP ⊥MD.
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G4 Let S be a point inside ^pOq, and let k be a circle which contains S and touches
the legs Op and Oq in points P and Q respectively. Straight line s parallel to Op from
S intersects Oq in a point R. Let T be the point of intersection of the ray (PS and
circumscribed circle of 4SQR and T 6= S. Prove that OT ‖ SQ and OT is a tangent of
the circumscribed circle of 4SQR.
Solution
Let ^OPS = ϕ1 and ^OQS = ϕ2. We have that ^OPS = ^PQS = ϕ1 and ^OQS =
^QPS = ϕ2 (tangents to circle k).
Because RS ‖ OP we have ^OPS = ^RST = ϕ1 and ^RQT = ^RST = ϕ1 (cyclic
quadrilateral RSQT ). So, we have as follows ^OPT = ϕ1 = ^RQT = ^OQT , which
implies that the quadrilateral OPQT is cyclic. From that we directly obtain ^QOT =
^QPT = ϕ2 = ^OQS, so OT ‖ SQ. From the cyclic quadrilateral OPQT by easy
calculation we get

^OTR = ^OTP − ^RTS = ^OQP − ^RQS = (ϕ1 + ϕ2)− ϕ2 = ϕ1 = ^RQT.

Thus, OT is a tangent to the circumscribed circle of 4SQR.

2.4 Number Theory

NT1 Find all the pairs positive integers (x, y) such that

1

x
+

1

y
+

1

[x, y]
+

1

(x, y)
=

1

2
,

where (x, y) is the greatest common divisor of x, y and [x, y] is the least common multiple
of x, y.
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Solution
We put x = du and y = dv where d = (x, y). So we have (u, v) = 1. From the conclusion
we obtain 2(u + 1)(v + 1) = duv. Because (v, v + 1) = 1, v divides 2(u + 1).
Case 1. u = v. Hence x = y = [x, y] = (x, y), which leads to the solution x = 8 and
y = 8.

Case 2. u < v. Then u + 1 ≤ v ⇔ 2(u + 1) ≤ 2v ⇔ 2(u + 1)

v
≤ 2, so

2(u + 1)

v
∈ {1, 2}.

But
2(u + 1)

v
=

du

v + 1
.

If
2(u + 1)

v
= 1 then we have (d− 2)u = 3. Therefore (d, u) = (3, 3) or (d, u) = (5, 1) so

(d, u, v) = (3, 3, 8) or (d, u, v) = (5, 1, 4).
Thus we get (x, y) = (9, 24) or (x, y) = (5, 20).

If
2(u + 1)

v
= 2 we similarly get (d−2)u = 4 from where (d, u) = (3, 4), or (d, u) = (4, 2),

or (d, u) = (6, 1). This leads (x, y) = (12, 15) or (x, y) = (8, 12) or (x, y) = (6, 12).
Case 3. u > v. Because of the symmetry of u, v and x, y respectively we get exactly
the symmetrical solutions of case 2.
Finally the pairs of (x, y) which are solutions of the problem are:
(8, 8), (9, 24), (24, 9), (5, 20), (20, 5), (12, 15), (15, 12), (8, 12), (12, 8), (6, 12), (12, 6).

NT2 Prove that the equation x2006 − 4y2006 − 2006 = 4y2007 + 2007y has no solution in
the set of the positive integers.
Solution
We assume the contrary is true. So there are x and y that satisfy the equation. Hence
we have

x2006 = 4y2007 + 4y2006 + 2007y + 2006

x2006 + 1 = 4y2006(y + 1) + 2007(y + 1)

x2006 + 1 = (4y2006 + 2007)(y + 1).

But 4y2006 + 2007 ≡ 3 (mod 4), so x2006 + 1 will have at least one prime divisor of the
type 4k + 3. It is known (and easily obtainable by using Fermat’s Little Theorem) that
this is impossible.

NT3 Let n > 1 be a positive integer and p a prime number such that n | (p − 1) and
p | (n6 − 1). Prove that at least one of the numbers p− n and p + n is a perfect square.
Solution
Since n | p− 1, then p = 1 + na, where a ≥ 1 is an integer. From the condition p |n6 − 1,
it follows that p |n− 1, p |n + 1, p |n2 + n + 1 or p |n2 − n + 1.
• Let p |n− 1. Then n ≥ p + 1 > n which is impossible.
• Let p |n+ 1. Then n+ 1 ≥ p = 1 +na which is possible only when a = 1 and p = n+ 1,
i.e. p− n = 1 = 12.
• Let p |n2 + n + 1, i.e. n2 + n + 1 = pb, where b ≥ 1 is an integer.
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The equality p = 1 + na implies n | b− 1, from where b = 1 + nc, c ≥ 0 is an integer. We
have

n2 + n + 1 = pb = (1 + na)(1 + nc) = 1 + (a + c)n + acn2 or n + 1 = acn + a + c.

If ac ≥ 1 then a + c ≥ 2, which is impossible. If ac = 0 then c = 0 and a = n + 1. Thus
we obtain p = n2 + n + 1 from where p + n = n2 + 2n + 1 = (n + 1)2.
• Let p |n2 − n + 1, i.e. n2 − n + 1 = pb and analogously b = 1 + nc. So

n2 − n + 1 = pb = (1 + na)(1 + nc) = 1 + (a + c)n + acn2 or n− 1 = acn + a + c.

Similarly, we have c = 0, a = n− 1 and p = n2− n+ 1 from where p− n = n2− 2n+ 1 =
(n− 1)2.

NT4 Let a, b be two co-prime positive integers. A number is called good if it can be
written in the form ax + by for non-negative integers x, y. Define the function f : Z→ Z
as f(n) = n − na − nb, where st represents the remainder of s upon division by t. Show
that an integer n is good if and only if the infinite sequence n, f(n), f(f(n)), . . . contains
only non-negative integers.
Solution
If n is good then n = ax + by also na = (by)a and nb = (ax)b so

f(n) = ax− (ax)b + by − (by)a = by′ + ax′

is also good, thus the sequence contains only good numbers which are non-negative.
Now we have to prove that if the sequence contains only non-negative integers then n
is good. Because the sequence is non-increasing then the sequence will become constant
from some point onwards. But f(k) = k implies that k is a multiple of ab thus some term
of the sequence is good. We are done if we prove the following:
Lemma: f(n) is good implies n is good.
Proof of Lemma: n = 2n− na− nb− f(n) = ax′+ by′− ax− by = a(x′− x) + b(y′− y)
and x′ ≥ x because n ≥ f(n) ⇒ n − na ≥ f(n) − f(n)a ⇒ ax′ ≥ ax + by − (by)a ≥ ax.
Similarly y′ ≥ y.

NT5 Let p be a prime number. Show that 7p + 3p − 4 is not a perfect square.
Solution
Assume that for a prime number p greater than 3, m = 7p + 3p − 4 is a perfect square.
Let m = n2 for some n ∈ Z. By Fermat’s Little Theorem,

m = 7p + 3p − 4 ≡ 3− 4 ≡ −1 (mod p).

If p = 4k + 3, k ∈ Z, then again by Fermat’s Little Theorem

−1 ≡ m2k+1 ≡ n4k+2 ≡ np−1 ≡ 1 (mod p), but p > 3,

a contradiction. So p ≡ 1 (mod 4).
Therefore m = 7p+ 3p− 4 ≡ 3− 1 ≡ 2 (mod 4). But this is a contradiction since 2 is not
perfect square in (mod 4). For p = 2 we have m = 19 and for p = 3 we have m = 44.
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