
Chapter 1

2008 Shortlist JBMO - Problems

1.1 Algebra

A1 If for the real numbers x, y, z, k the following conditions are valid, x 6= y 6= z 6= x and
x3 + y3 +k(x2 + y2) = y3 + z3 +k(y2 + z2) = z3 +x3 +k(z2 +x2) = 2008, find the product
xyz.
A2 Find all real numbers a, b, c, d such that a+b+c+d = 20 and ab+ac+ad+bc+bd+cd =
150.
A3 Let the real parameter p be such that the system{

p(x2 − y2) = (p2 − 1)xy
|x− 1|+ |y| = 1

has at least three different real solutions. Find p and solve the system for that p.
A4 Find all triples (x, y, z) of real numbers that satisfy the system

x+ y + z = 2008
x2 + y2 + z2 = 60242

1

x
+

1

y
+

1

z
=

1

2008
.

A5 Find all triples (x, y, z) of real positive numbers, which satisfy the system
1

x
+

4

y
+

9

z
= 3

x+ y + z ≤ 12 .

A6 If the real numbers a, b, c, d are such that 0 < a, b, c, d < 1, show that

1 + ab+ bc+ cd+ da+ ac+ bd > a+ b+ c+ d.

A7 Let a, b and c be positive real numbers such that abc = 1. Prove the inequality(
ab+ bc+

1

ca

)(
bc+ ca+

1

ab

)(
ca+ ab+

1

bc

)
≥ (1 + 2a)(1 + 2b)(1 + 2c).
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A8 Show that

(x+ y + z)

(
1

x
+

1

y
+

1

z

)
≥ 4

(
x

xy + 1
+

y

yz + 1
+

z

zx+ 1

)2

,

for all real positive numbers x, y and z.
A9 Consider an integer n ≥ 4 and a sequence of real numbers x1, x2, x3, . . . , xn. An
operation consists in eliminating all numbers not having the rank of the form 4k + 3,
thus leaving only the numbers x3, x7, x11, . . . (for example, the sequence 4, 5, 9, 3, 6, 6, 1, 8
produces the sequence 9, 1). Upon the sequence 1, 2, 3, . . . , 1024 the operation is performed
successively for 5 times. Show that at the end only one number remains and find this
number.

1.2 Combinatorics

C1 On a 5 × 5 board, n white markers are positioned, each marker in a distinct 1 × 1
square. A smart child got an assignment to recolor in black as many markers as possible,
in the following manner: a white marker is taken from the board; it is colored in black, and
then put back on the board on an empty square such that none of the neighboring squares
contains a white marker (two squares are called neighboring if they share a common side).
If it is possible for the child to succeed in coloring all the markers black, we say that the
initial positioning of the markers was good.
a) Prove that if n = 20, then a good initial positioning exists.
b) Prove that if n = 21, then a good initial positioning does not exist.

C2 Kostas and Helene have the following dialogue:
Kostas : I have in my mind three positive real numbers with product 1 and sum equal to
the sum of all their pairwise products.
Helene: I think that I know the numbers you have in mind. They are all equal to 1.
Kostas : In fact, the numbers you mentioned satisfy my conditions, but I did not think of
these numbers. The numbers you mentioned have the minimal sum between all possible
solutions of the problem.
Can you decide if Kostas is right? (Explain your answer).

C3 Integers 1, 2, . . . , 2n are arbitrarily assigned to boxes labeled with numbers 1, 2, . . . , 2n.
Now, we add the number assigned to the box to the number on the box label. Show that
two such sums give the same remainder modulo 2n.

C4 Every cell of table 4 × 4 is colored into white. It is permitted to place the cross
(pictured below) on the table such that its center lies on the table (the whole figure does
not need to lie on the table) and change colors of every cell which is covered into opposite
(white and black). Find all n such that after n steps it is possible to get the table with
every cell colored black.
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1.3 Geometry

G1 Two perpendicular chords of a circle, AM, BN , which intersect at point K, define on
the circle four arcs with pairwise different length, with AB being the smallest of them.
We draw the chords AD,BC with AD ‖ BC and C,D different from N,M . If L is the
point of intersection of DN,MC and T the point of intersection of DC,KL, prove that
∠KTC = ∠KNL.

G2 For a fixed triangle ABC we choose a point M on the ray CA (after A), a point
N on the ray AB (after B) and a point P on the ray BC (after C) in a way such that
AM − BC = BN − AC = CP − AB. Prove that the angles of triangle MNP do not
depend on the choice of M,N,P .
G3 The vertices A and B of an equilateral 4ABC lie on a circle k of radius 1, and the
vertex C is inside k. The point D 6= B lies on k, AD = AB and the line DC intersects k
for the second time in point E. Find the length of the segment CE.
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G4 Let ABC be a triangle, (BC < AB). The line ` passing trough the vertices C and
orthogonal to the angle bisector BE of ∠B, meets BE and the median BD of the side
AC at points F and G, respectively. Prove that segment DF bisects the segment EG.

G5 Is it possible to cover a given square with a few congruent right-angled triangles with
acute angle equal to 30◦? (The triangles may not overlap and may not exceed the margins
of the square.)
G6 Let ABC be a triangle with A < 90◦. Outside of a triangle we consider isosceles
triangles ABE and ACZ with bases AB and AC, respectively. If the midpoint D of the

side BC is such that DE ⊥ DZ and EZ = 2 · ED, prove that ÂEB = 2 · ÂZC.
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G7 Let ABC be an isosceles triangle with AC = BC. The point D lies on the side AB
such that the semicircle with diameter BD and center O is tangent to the side AC in the
point P and intersects the side BC at the point Q. The radius OP intersects the chord

DQ at the point E such that 5 · PE = 3 ·DE. Find the ratio
AB

BC
.

G8 The side lengths of a parallelogram are a, b and diagonals have lengths x and y,

Knowing that ab =
xy

2
, show that

a =
x√
2
, b =

y√
2

or a =
y√
2
, b =

x√
2
.

G9 Let O be a point inside the parallelogram ABCD such that

∠AOB + ∠COD = ∠BOC + ∠COD.

Prove that there exists a circle k tangent to the circumscribed circles of the triangles
4AOB, 4BOC, 4COD and 4DOA.

G10 Let Γ be a circle of center O, and δ be a line in the plane of Γ, not intersecting it.
Denote by A the foot of the perpendicular from O onto δ, and let M be a (variable) point
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on Γ. Denote by γ the circle of diameter AM , by X the (other than M) intersection point
of γ and Γ, and by Y the (other than A) intersection point of γ and δ. Prove that the
line XY passes through a fixed point.
G11 Consider ABC an acute-angled triangle with AB 6= AC. Denote by M the midpoint
ofBC, byD,E the feet of the altitudes fromB,C respectively and let P be the intersection
point of the lines DE and BC. The perpendicular from M to AC meets the perpendicular
from C to BC at point R. Prove that lines PR and AM are perpendicular.

1.4 Number Theory

NT1 Find all the positive integers x and y that satisfy the equation

x(x− y) = 8y − 7.

NT2 Let n ≥ 2 be a fixed positive integer. An integer will be called ”n-free” if it is not a
multiple of an n-th power of a prime. Let M be an infinite set of rational numbers, such
that the product of every n elements of M is an n-free integer. Prove that M contains
only integers.

NT3 Let s(a) denote the sum of digits of a given positive integer a. The sequence
a1, a2, . . . an, . . . of positive integers is such that an+1 = an +s(an) for each positive integer
n. Find the greatest possible n for which it is possible to have an = 2008.

NT4 Find all integers n such that n4 + 8n + 11 is a product of two or more consecutive
integers.

NT5 Is it possible to arrange the numbers 11, 22, . . . , 20082008 one after the other, in
such a way that the obtained number is a perfect square? (Explain your answer.)

NT6 Let f : N→ R be a function, satisfying the following condition:

for every integer n > 1, there exists a prime divisor p of n such that f(n) = f

(
n

p

)
−f(p).

If
f(22007) + f(32008) + f(52009) = 2006,

determine the value of
f(20072) + f(20083) + f(20095).

NT7 Determine the minimal prime number p > 3 for which no natural number n satisfies

2n + 3n ≡ 0 (mod p).

NT8 Let a, b, c, d, e, f are nonzero digits such that the natural numbers abc, def and
abcdef are squares.
a) Prove that abcdef can be represented in two different ways as a sum of three squares
of natural numbers.
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b) Give an example of such a number.

NT9 Let p be a prime number. Find all positive integers a and b such that:

4a+ p

b
+

4b+ p

a

and
a2

b
+
b2

a

are integers.

NT10 Prove that 2n + 3n is not a perfect cube for any positive integer n.

NT11 Determine the greatest number with n digits in the decimal representation which
is divisible by 429 and has the sum of all digits less than or equal to 11.

NT12 Solve the equation
p

q
− 4

r + 1
= 1 in prime numbers.
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Chapter 2

2008 Shortlist JBMO - Solutions

2.1 Algebra

A1 If for the real numbers x, y, z, k the following conditions are valid, x 6= y 6= z 6= x and
x3 + y3 +k(x2 + y2) = y3 + z3 +k(y2 + z2) = z3 +x3 +k(z2 +x2) = 2008, find the product
xyz.
Solution
x3 + y3 + k(x2 + y2) = y3 + z3 + k(y2 + z2)⇒ x2 + xz + z2 = −k(x+ z) : (1) and
y3 + z3 + k(y2 + z2) = z3 + x3 + k(z2 + x2)⇒ y2 + yx+ x2 = −k(y + x) : (2)
• From (1)− (2)⇒ x+ y + z = −k : (∗)
• If x+ z = 0, then from (1)⇒ x2 + xz + z2 = 0⇒ (x+ z)2 = xz ⇒ xz = 0

So x = z = 0, contradiction since x 6= z and therefore (1)⇒ −k =
x2 + xz + z2

x+ z

Similarly we have: −k =
y2 + yx+ x2

y + x
.

So
x2 + xz + z2

x+ z
=
y2 + xy + x2

x+ y
from which xy + yz + zx = 0 : (∗∗).

We substitute k in x3 + y3 + k(x2 + y2) = 2008 from the relation (∗) and using the (∗∗),
we finally obtain that 2xyz = 2008 and therefore xyz = 1004.
Remark: x, y, z must be the distinct real solutions of the equation t3 + kt2 − 1004 = 0.
Such solutions exist if (and only if) k > 3 3

√
251.

A2 Find all real numbers a, b, c, d such that a+b+c+d = 20 and ab+ac+ad+bc+bd+cd =
150.
Solution
400 = (a + b + c + d)2 = a2 + b2 + c2 + d2 + 2 · 150, so a2 + b2 + c2 + d2 = 100. Now
(a− b)2 + (a− c)2 + (a− d)2 + (b− c)2 + (b− d)2 + (c− d)2 = 3(a2 + b2 + c2 + d2)− 2(ab+
ac+ ad+ bc+ bd+ cd) = 300− 300 = 0. Thus a = b = c = d = 5.
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A3 Let the real parameter p be such that the system{
p(x2 − y2) = (p2 − 1)xy
|x− 1|+ |y| = 1

has at least three different real solutions. Find p and solve the system for that p.
Solution
The second equation is invariant when y is replaced by −y, so let us assume y ≥ 0. It is
also invariant when x − 1 is replaced by −(x − 1), so let us assume x ≥ 1. Under these
conditions the equation becomes x+ y = 2, which defines a line on the coordinate plane.
The set of points on it that satisfy the inequalities is a segment with endpoints (1, 1)
and (2, 0). Now taking into account the invariance under the mentioned replacements, we
conclude that the set of points satisfying the second equation is the square � with vertices
(1, 1), (2, 0), (1,−1) and (0, 0).
The first equation is equivalent to
px2 − p2xy + xy − py2 = 0
px(x− py) + y(x− py) = 0
(px+ y)(x− py) = 0.
Thus y = −px or x = py. These are equations of two perpendicular lines passing through
the origin, which is also a vertex of �. If one of them passes through an interior point
of the square, the other cannot have any common points with � other than (0, 0), so the
system has two solutions. Since we have at least three different real solutions, the lines
must contain some sides of �, i.e. the slopes of the lines have to be 1 and −1. This
happens if p = 1 or p = −1. In either case x2 = y2, |x| = |y|, so the second equation
becomes |1− x|+ |x| = 1. It is true exactly when 0 ≤ x ≤ 1 and y = ±x.

A4 Find all triples (x, y, z) of real numbers that satisfy the system
x+ y + z = 2008
x2 + y2 + z2 = 60242

1

x
+

1

y
+

1

z
=

1

2008
.

Solution
The last equation implies xyz = 2008(xy+yz+ zx), therefore xyz−2008(xy+yz+ zx) +
20082(x+ y + z)− 20083 = 0.
(x− 2008)(y − 2008)(z − 2008) = 0.
Thus one of the variable equals 2008. Let this be x. Then the first equation implies
y = −z. From the second one it now follows that 2y2 = 60242 − 20082 = 20082(9− 1) =
2 · 40162. Thus (x, y, z) is the triple (2008, 4016,−4016) or any of its rearrangements.

A5 Find all triples (x, y, z) of real positive numbers, which satisfy the system
1

x
+

4

y
+

9

z
= 3

x+ y + z ≤ 12 .
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Solution
If we multiply the given equation and inequality (x > 0, y > 0, z > 0), we have(

4x

y
+
y

x

)
+

(
z

x
+

9x

z

)
+

(
4z

y
+

9y

z

)
≤ 22. (1)

From AM-GM we have

4x

y
+
y

x
≥ 4,

z

x
+

9x

z
≥ 6,

4z

y
+

9y

z
≥ 12. (2)

Therefore

22 ≤
(

4x

y
+
y

x

)
+

(
z

x
+

9x

z

)
+

(
4z

y
+

9y

z

)
. (3)

Now from (1) and (3) we get(
4x

y
+
y

x

)
+

(
z

x
+

9x

z

)
+

(
4z

y
+

9y

z

)
= 22,

which means that in (2), everywhere equality holds i.e. we have equality between means,
also x+ y + z = 12.

Therefore
4x

y
=
y

x
,
z

x
=

9x

z
and, as x > 0, y > 0, z > 0, we get y = 2x, z = 3x. Finally

if we substitute for y and z, in x + y + z = 12, we get x = 2, therefore y = 2 · 2 = 4 and
z = 3 · 2 = 6.
Thus the unique solution is (x, y, z) = (2, 4, 6).

A6 If the real numbers a, b, c, d are such that 0 < a, b, c, d < 1, show that

1 + ab+ bc+ cd+ da+ ac+ bd > a+ b+ c+ d.

Solution
If 1 ≥ a+ b+ c then we write the given inequality equivalently as

1− (a+ b+ c) + d[(a+ b+ c)− 1] + ab+ bc+ ca > 0

⇔ [1− (a+ b+ c)](1− d) + ab+ bc+ ca > 0

which is of course true.
If instead a+ b+ c > 1, then d(a+ b+ c) > d i.e.

da+ db+ dc > d. (1)

We are going to prove that also

1 + ab+ bc+ ca > a+ b+ c (2)

thus adding (1) and (2) together we’ll get the desired result in this case too.
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For the truth of (2):
If 1 ≥ a+ b, then we rewrite (2) equivalently as

1− (a+ b) + c[(a+ b)− 1] + ab > 0

⇔ [1− (a+ b)](1− c) + ab > 0

which is of course true.
If instead a+ b > 1, then c(a+ b) > c, i.e.

ca+ cb > c (3)

But it is also true that
1 + ab > a+ b (4)

because this is equivalent to (1− a) + b(a− 1) > 0, i.e. to (1− a)(1− b) > 0 which holds.
Adding (3) and (4) together we get the truth of (2) in this case too and we are done. You
can instead consider the following generalization:
Exercise. If for the real numbers x1, x2, . . . , xn it is 0 < xi < 1, for any i, show that

1 +
∑

1≤i<j≤n

xixj >
n∑

i=1

xi.

Solution
We’ll prove it by induction.
For n = 1 the desired result becomes 1 > x1 which is true.
Let the result be true for some natural number n ≥ 1.
We’ll prove it to be true for n+ 1 as well, and we’ll be done.
So let x1, x2, . . . , xn, xn+1 be n+ 1 given real numbers with 0 < xi < 1, for any i. We wish
to show that

1 +
∑

1≤i<j≤n+1

xixj > x1 + x2 + . . .+ xn + xn+1. (5)

If 1 ≥ x1 + x2 + . . .+ xn then we rewrite (5) equivalently as

1− (x1 + x2 + . . .+ xn) + xn+1(x1 + x2 + . . .+ xn − 1) +
∑

1≤i<j≤n

xixj > 0.

This is also written as

(1− xn+1)[1− (x1 + x2 + . . .+ xn)] +
∑

1≤i<j≤n

xixj > 0

which is clearly true.
If instead x1 + x2 + . . .+ xn > 1 then xn+1(x1 + x2 + . . .+ xn) > xn+1, i.e.

xn+1x1 + xn+1x2 + . . .+ xn+1xn > xn+1. (6)
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By the induction hypothesis applied to the n real numbers x1, x2, . . . , xn we also know
that

1 +
∑

1≤i<j≤n

xixj >

n∑
i=1

xi. (7)

Adding (6) and (7) together we get the validity of (5) in this case too, and we are done.

You can even consider the following variation:

Exercise. If the real numbers x1, x2, . . . , x2008 are such that 0 < xi < 1, for any i, show
that

1 +
∑

1≤i<j≤2008

xixj >
2008∑
i=1

xi.

Remark: Inequality (2) follows directly from (1− a)(1− b)(1− c) > 0⇔ 1− a− b− c+
ab+ bc+ ca > abc > 0.

A7 Let a, b and c be a positive real numbers such that abc = 1. Prove the inequality(
ab+ bc+

1

ca

)(
bc+ ca+

1

ab

)(
ca+ ab+

1

bc

)
≥ (1 + 2a)(1 + 2b)(1 + 2c).

Solution 1
By Cauchy-Schwarz inequality and abc = 1 we get√(

bc+ ca+
1

ab

)(
ab+ bc+

1

ca

)
=

√(
bc+ ca+

1

ab

)(
1

ca
+ ab+ bc

)
≥

(
√
ab ·

√
1

ab
+
√
bc ·
√
bc+

√
1

ca
·
√
ca

)
= (2 + bc) = (2abc+ bc) = bc(1 + 2a)

Analogously we get

√(
bc+ ca+

1

ab

)(
ca+ ab+

1

bc

)
≥ ca(1 + 2b) and√(

ca+ ab+
1

bc

)(
ab+ bc+

1

ca

)
≥ ab(1 + 2a).

Multiplying these three inequalities we get:(
ab+ bc+

1

ca

)(
bc+ ca+

1

ab

)(
ca+ ab+

1

bc

)
≥ a2b2c2(1 + 2a)(1 + 2b)(1 + 2c) =

(1 + 2a)(1 + 2b)(1 + 2c) because abc = 1.
Equality holds if and only if a = b = c = 1.
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Solution 2
Using abc = 1 we get(

ab+ bc+
1

ca

)(
bc+ ca+

1

ab

)(
ca+ ab+

1

bc

)
=

=

(
1

c
+

1

a
+ b

)(
1

a
+

1

b
+ c

)(
1

b
+

1

c
+ a

)
=

=
(a+ c+ abc)

ac
· (b+ a+ abc)

ab
· (b+ c+ abc)

bc
= (a+ b+ 1)(b+ c+ 1)(c+ a+ 1).

Thus, we need to prove

(a+ b+ 1)(b+ c+ 1)(c+ a+ 1) ≥ (1 + 2a)(1 + 2b)(1 + 2c).

After multiplication and using the fact abc = 1 we have to prove

a2b+ a2c+ b2c+ b2a+ c2a+ c2b+ 3(ab+ bc+ ca) + 2(a+ b+ c) + a2 + b2 + c2 + 3 ≥

≥ 4(ab+ bc+ ca) + 2(a+ b+ c) + 9.

So we need to prove

a2b+ a2c+ b2c+ b2a+ c2a+ c2b+ a2 + b2 + c2 ≥ ab+ bc+ ca+ 6

This follows from the well-known (AM-GM inequality) inequalities

a2 + b2 + c2 ≥ ab+ bc+ ca

and
a2b+ a2c+ b2c+ b2a+ c2a+ c2b ≥ 6abc = 6.

A8 Show that

(x+ y + z)

(
1

x
+

1

y
+

1

z

)
≥ 4

(
x

xy + 1
+

y

yz + 1
+

z

zx+ 1

)2

,

for any real positive numbers x, y and z.
Solution
The idea is to split the inequality in two, showing that(√

x

y
+

√
y

z
+

√
z

x

)2

can be intercalated between the left-hand side and the right-hand side.
Indeed, using the Cauchy-Schwarz inequality one has

(x+ y + z)

(
1

x
+

1

y
+

1

z

)
≥
(√

x

y
+

√
y

z
+

√
z

x

)2

.
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On the other hand, as √
x

y
≥ 2x

xy + 1
⇔ (
√
xy − 1)2 ≥ 0

by summation one has√
x

y
+

√
y

z
+

√
z

x
≥ 2x

xy + 1
+

2y

yz + 1
+

2z

zx+ 1
.

The rest is obvious.

A9 Consider an integer n ≥ 4 and a sequence of real numbers x1, x2, x3, . . . , xn. An
operation consists in eliminating all numbers not having the rank of the form 4k + 3,
thus leaving only the numbers x3, x7, x11, . . . (for example, the sequence 4, 5, 9, 3, 6, 6, 1, 8
produces the sequence 9, 1). Upon the sequence 1, 2, 3, . . . , 1024 the operation is performed
successively for 5 times. Show that at the end only 1 number remains and find this number.
Solution
After the first operation 256 number remain; after the second one, 64 are left, then 16,
next 4 and ultimately only one number.
Notice that the 256 numbers left after the first operation are 3, 7, ..., 1023, hence they
are in arithmetical progression of common difference 4. Successively, the 64 numbers left
after the second operation are in arithmetical progression of ratio 16 and so on.
Let a1, a2, a3, a4, a5 be the first term in the 5 sequences obtained after each of the 5
operations. Thus a1 = 3 and a5 is the requested number. The sequence before the fifth
operation has 4 numbers, namely

a4, a4 + 256, a4 + 512, a4 + 768

and a5 = a4 + 512. Similarly, a4 = a3 + 128, a3 = a2 + 32, a2 = a1 + 8.
Summing up yields a5 = a1 + 8 + 32 + 128 + 512 = 3 + 680 = 683.

2.2 Combinatorics

C1 On a 5 × 5 board, n white markers are positioned, each marker in a distinct 1 × 1
square. A smart child got an assignment to recolor in black as many markers as possible,
in the following manner: a white marker is taken from the board; it is colored in black,
and then put back on the board on an empty square such that none of the neighboring
squares contains a white marker (two squares are called neighboring if they contain a
common side). If it is possible for the child to succeed in coloring all the markers black,
we say that the initial positioning of the markers was good.
a) Prove that if n = 20, then a good initial positioning exists.
b) Prove that if n = 21, then a good initial positioning does not exist.
Solution
a) Position 20 white markers on the board such that the left-most column is empty. This
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positioning is good because the coloring can be realized column by column, starting with
the second (from left), then the third, and so on, so that the white marker on position
(i, j) after the coloring is put on position (i, j − 1).
b) Suppose there exists a good positioning with 21 white markers on the board i.e. there
exists a re-coloring of them all, one by one. In any moment when there are 21 markers on
the board, there must be at least one column completely filled with markers, and there
must be at least one row completely filled with markers. So, there exists a ”cross” of
markers on the board. At the initial position, each such cross is completely white, at the
final position each such cross is completely black, and at every moment when there are
21 markers on the board, each such cross is monochromatic. But this cannot be, since
every two crosses have at least two common squares and therefore it is not possible for a
white cross to vanish and for a black cross to appear by re-coloring of only one marker.
Contradiction!

C2 Kostas and Helene have the following dialogue:
Kostas : I have in my mind three positive real numbers with product 1 and sum equal to
the sum of all their pairwise products.
Helene: I think that I know the numbers you have in mind. They are all equal to 1.
Kostas : In fact, the numbers you mentioned satisfy my conditions, but I did not think of
these numbers. The numbers you mentioned have the minimal sum between all possible
solutions of the problem.
Can you decide if Kostas is right? (Explain your answer).
Solution
Kostas is right according to the following analysis:
If x, y, z are the three positive real numbers Kostas thought about, then they satisfy the
following equations:

xy + yz + zx = x+ y + z (1)

xyz = 1. (2)

Subtracting (1) from (2) by parts we obtain

xyz − (xy + yz + zx) = 1− (x+ y + z)

⇔ xyz − xy − yz − zx+ x+ y + z − 1 = 0

⇔ xy(z − 1)− x(z − 1)− y(z − 1) + (z − 1) = 0

⇔ (z − 1)(xy − x− y + 1) = 0

(z − 1)(x− 1)(y − 1) = 0

⇔ x = 1 or y = 1 or z = 1.

For x = 1, from (1) and (2) we have the equation yz = 1, which has the solutions

(y, z) =

(
a,

1

a

)
, a > 0,
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And therefore the solutions of the problem are the triples

(x, y, z) =

(
1, a,

1

a

)
, a > 0.

Similarly, considering y = 1 or z = 1 we get the solutions

(x, y, z) =

(
a, 1,

1

a

)
or (x, y, z) =

(
a,

1

a
, 1

)
, a > 0.

Since for each a > 0 we have

x+ y + z = 1 + a+
1

a
≥ 1 + 2 = 3

and equality is valid only for a = 1, we conclude that among the solutions of the problem,
the triple (x, y, z) = (1, 1, 1) is the one whose sum x+ y + z is minimal.

C3 Integers 1, 2, . . . , 2n are arbitrarily assigned to boxes labeled with numbers 1, 2, . . . , 2n.
Now, we add the number assigned to the box to the number on the box label. Show that
two such sums give the same remainder modulo 2n.
Solution
Let us assume that all sums give different remainder modulo 2n, and let S denote the
value of their sum.
For our assumption,

S ≡ 0 + 1 + . . .+ 2n− 1 =
(2n− 1)2n

2
= (2n− 1)n ≡ n (mod 2n).

But, if we sum, breaking all sums into its components, we derive

S ≡ 2(1 + . . .+ 2n) = 2 · 2n(2n+ 1)

2
= 2n(2n+ 1) ≡ 0 (mod 2n).

From the last two conclusions we derive n ≡ 0 (mod 2n). Contradiction.
Therefore, there are two sums with the same remainder modulo 2n.
Remark: The result is no longer true if one replaces 2n by 2n + 1. Indeed, one could
assign the number k to the box labeled k, thus obtaining the sums 2k, k = 1, 2n+ 1. Two
such numbers give different remainders when divided by 2n+ 1.

C4 Every cell of table 4 × 4 is colored into white. It is permitted to place the cross
(pictured below) on the table such that its center lies on the table (the whole figure does
not need to lie on the table) and change colors of every cell which is covered into opposite
(white and black). Find all n such that after n steps it is possible to get the table with
every cell colored black.
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Solution
The cross covers at most five cells so we need at least 4 steps to change the color of every
cell. If we place the cross 4 times such that its center lies in the cells marked below, we
see that we can turn the whole square black in n = 4 moves.

Furthermore, applying the same operation twice (,,do and undo”), we get that is possible
to turn all the cells black in n steps for every even n ≥ 4.
We shall prove that for odd n it is not possible to do that. Look at the picture below.

Let k be a difference between white and black cells in the green area in picture. Every
figure placed on the table covers an odd number of green cells, so after every step k is
changed by a number ≡ 2 (mod 4). At the beginning k = 10, at the end k = −10. From
this it is clear that we need an even number of steps.
Solution for n is: every even number except 2.

2.3 Geometry

G1 Two perpendicular chords of a circle, AM, BN , which intersect at point K, define on
the circle four arcs with pairwise different length, with AB being the smallest of them.
We draw the chords AD,BC with AD ‖ BC and C,D different from N,M . If L is the
point of intersection of DN,MC and T the point of intersection of DC,KL, prove that
∠KTC = ∠KNL.
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Solution
First we prove that NL ⊥ MC. The arguments depend slightly on the position of D.
The other cases are similar.
From the cyclic quadrilaterals ADCM and DNBC we have:

^DCL = ^DAM and ^CDL = ^CBN.

So we obtain
^DCL+ ^CDL = ^DAM + ^CBN.

And because AD ‖ BC, if Z the point of intersection of AM , BC then ^DAM = ^BZA,
and we have

^DCL+ ^CDL = ^BZA+ ^CBN = 90◦.

Let P the point of intersection of KL, AC, then NP ⊥ AC, because the line KPL is a
Simson line of the point N with respect to the triangle ACM .
From the cyclic quadrilaterals NPCL and ANDC we obtain:

^CPL = ^CNL and ^CNL = ^CAD,

so ^CPL = ^CAD, that is KL ‖ AD ‖ BC therefore ^KTC = ^ADC (1).
But ^ADC = ^ANC = ^ANK + ^KNC = ^CNL+ ^KNC, so

^ADC = ^KNL (2).

From (1) and (2) we obtain the result.

G2 For a fixed triangle ABC we choose a point M on the ray CA (after A), a point
N on the ray AB (after B) and a point P on the ray BC (after C) in a way such that
AM − BC = BN − AC = CP − AB. Prove that the angles of triangle MNP do not
depend on the choice of M,N,P .
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Solution
Consider the points M ′ on the ray BA (after A), N ′ on the ray CB (after B) and
P ′ on the ray AC (after C), so that AM = AM ′, BN = BN ′, CP = CP ′. Since
AM − BC = BN − AC = BN ′ − AC, we get CM = AC + AM = BC + BN ′ = CN ′.
Thus triangle MCN ′ is isosceles, so the perpendicular bisector of [MN ′] bisects angle
ACB and hence passes through the incenter I of triangle ABC. Arguing similarly, we
may conclude that I lies also on the perpendicular bisectors of [NP ′] and [PM ′]. On
the other side, I clearly lies on the perpendicular bisectors of [MM ′], [NN ′] and [PP ′].
Thus the hexagon M ′MN ′NP ′P is cyclic. Then angle PMN equals angle PN ′N , which

measures 90◦− β
2

(the angles of triangle ABC are α, β, γ). In the same way angle MNP

measures 90◦ − γ

2
and angle MPN measures 90◦ − α

2
.

G3 The vertices A and B of an equilateral 4ABC lie on a circle k of radius 1, and the
vertex C is inside k. The point D 6= B lies on k, AD = AB and the line DC intersects k
for the second time in point E. Find the length of the segment CE.
Solution
As AD = AC, 4CDA is isosceles. If ^ADC = ^ACD = α and ^BCE = β, then
β = 120◦−α. The quadrilateral ABED is cyclic, so ^ABE = 180◦−α. Then ^CBE =
120◦ − α so ^CBE = β. Thus 4CBE is isosceles, so AE is the perpendicular bisector
of BC, so it bisects ^BAC. Now the arc BE is intercepted by a 30◦ inscribed angle, so
it measures 60◦. Then BE equals the radius of k, namely 1. Hence CE = BE = 1.

G4 Let ABC be a triangle, (BC < AB). The line ` passing trough the vertices C and
orthogonal to the angle bisector BE of ∠B, meets BE and the median BD of the side
AC at points F and G, respectively. Prove that segment DF bisect the segment EG.
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Solution
Let CF ∩ AB = {K} and DF ∩ BC = {M}. Since BF ⊥ KC and BF is angle bisector
of ^KBC, we have that 4KBC is isosceles i.e. BK = BC, also F is midpoint of KC.
Hence DF is midline for 4ACK i.e. DF ‖ AK, from where it is clear that M is a
midpoint of BC.

We will prove that GE ‖ BC. It is sufficient to show
BG

GD
=
CE

ED
. From DF ‖ AK and

DF =
AK

2
we have

BG

GD
=
BK

DF
=

2BK

AK
(1)

Also

CE

DE
=
CD −DE

DE
=
CD

DE
− 1 =

AD

DE
− 1 =

AE −DE
DE

− 1 =
AE

DE
− 2 =

=
AB

DF
− 2 =

AK +BK
AK
2

− 2 = 2 + 2
BK

AK
− 2 =

2BK

AK
. (2)

From (1) and (2) we have
BG

GD
=

CE

ED
, so GE ‖ BC, as M is the midpoint of BC, it

follows that the segment DF , bisects the segment GE.

G5 Is it possible to cover a given square with a few congruent right-angled triangles with
acute angle equal to 30◦? (The triangles may not overlap and may not exceed the margins
of the square.)
Solution
We will prove that desired covering is impossible.
Let assume the opposite i.e. a square with side length a, can be tiled with k congruent
right angled triangles, whose sides are of lengths b, b

√
3 and 2b.

Then the area of such a triangle is
b2
√

3

2
.
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And the area of the square is

Ssq = kb2
√

3

2
. (1)

Furthermore, the length of the side of the square, a, is obtained by the contribution of an
integer number of length b, 2b and b

√
3, hence

a = mb
√

3 + nb,

where m,n ∈ N ∪ {0}, and at least one of the numbers m and n is different from zero.
So the area of the square is

Ssq = a2 = (mb
√

3 + nb)2 = b2(3m2 + n2 + 2
√

3mn). (2)

Now because of (1) and (2) it follows 3m2 + n2 + 2
√

3mn = k

√
3

2
i.e.

6m2 + 2n2 = (k − 4mn)
√

3 (3)

Because of 3m2 + n2 6= 0 and from the equality (3) it follows 4mn 6= k.
Using once more (3), we get

√
3 =

6m2 + 2n2

k − 4mn
,

which contradicts at the fact that
√

3 is irrational, because
6m2 + 2n2

k − 4mn
is a rational num-

ber.
Finally, we have obtained a contradiction, which proves that the desired covering is im-
possible.
Remark.
This problem has been given in Russian Mathematical Olympiad 1993 - 1995 for 9-th
Grade.

G6 Let ABC be a triangle with A < 90◦. Outside of a triangle we consider isosceles
triangles ABE and ACZ with bases AB and AC, respectively. If the midpoint D of the

side BC is such that DE ⊥ DZ and EZ = 2 · ED, prove that ÂEB = 2 · ÂZC.
Solution
Since D is the midpoint of the side BC, in the extension of the line segment ZD we take
a point H such that ZD = DH. Then the quadrilateral BHCZ is parallelogram and
therefore we have

BH = ZC = ZA. (1)
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Also from the isosceles triangle ABE we get

BE = AE. (2)

Since DE ⊥ DZ, ED is altitude and median of the triangle EZH and so this triangle is
isosceles with

EH = EZ. (3)

From (1), (2) and (3) we conclude that the triangles BEH and AEZ are equal.
Therefore they have also

B̂EH = ÂEZ, ÊBH = ÊAZ and ÊHB = ÂZE. (4)

Putting ÊBA = ÊAB = ω, ẐAC = ẐCA = ϕ, then we have ĈBH = B̂CZ = Ĉ + ϕ,

and therefore from the equality ÊBH = ÊAZ we receive:

360◦ − ÊBA− B̂ − ĈBH = ÊAB + Â+ ẐAC

⇒ 360◦ − B̂ − ω − ϕ− Ĉ = ω + Â+ ϕ

⇒ 2(ω + ϕ) = 360◦ −
(
Â+ B̂ + Ĉ

)
⇒ ω + ϕ = 90◦

⇒ 180◦ − ÂEB
2

+
180◦ − ÂZC

2
= 90◦

⇒ ÂEB + ÂZC = 180◦. (5)
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From the supposition EZ = 2 ·ED, we get that the right triangle ZEH has ÊZD = 30◦

and ẐED = 60◦. Thus we have ẐEH = 120◦.

However, since we have proved that B̂EH = ÂEZ, we get that

ÂEB = ÂEZ + ẐEB = ẐEB + B̂EH = ẐEH = 120◦. (6)

From (5) and (6) we obtain that ÂZC = 60◦ and thus ÂEB = 2 · ÂZC.

G7 Let ABC be an isosceles triangle with AC = BC. The point D lies on the side AB
such that the semicircle with diameter [BD] and center O is tangent to the side AC in
the point P and intersects the side BC at the point Q. The radius OP intersects the

chord DQ at the point E such that 5 · PE = 3 ·DE. Find the ratio
AB

BC
.

Solution
We denote OP = OD = OB = R, AC = BC = b and AB = 2a. Because OP ⊥ AC and
DQ ⊥ BC, then the right triangles APO and BQD are similar and ^BDQ = ^AOP .
So, the triangle DEO is isosceles with DE = OE. It follows that

PE

DE
=
PE

OE
=

3

5
.

Let F and G are the orthogonal projections of the points E and P respectively on the
side AB and M is the midpoint of the side [AB]. The triangles OFE, OGP , OPA and
CMA are similar. We obtain the following relations

OF

OE
=
OG

OP
=
CM

AC
=
OP

OA
.

But CM =
√
b2 − a2 and we have OG =

R

b
·
√
b2 − a2. In isosceles triangle DEO the

point F is the midpoint of the radius DO. So, OF = R/2. By using Thales’ theorem we
obtain

3

5
=
PE

OE
=
GF

OF
=
OG−OF

OF
=
OG

OF
− 1 = 2 ·

√
1−

(a
b

)2
− 1.

From the last relations it is easy to obtain that
a

b
=

3

5
and

AB

BC
=

6

5
.

The problem is solved.

G8 The side lengths of a parallelogram are a, b and diagonals have lengths x and y,

Knowing that ab =
xy

2
, show that

a =
x√
2
, b =

y√
2

or a =
y√
2
, b =

x√
2
.

Solution 1.
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Let us consider a parallelogram ABCD, with AB = a, BC = b, AC = x, BD = y,

ÂOD = θ.
For the area of ABCD we know (ABCD) = ab sinA.

But it is also true that (ABCD) = 4(AOD) = 4 · OA ·OD
2

sin θ = 2OA ·OD sin θ =

= 2 · x
2
· y

2
sin θ =

xy

2
sin θ. So ab sinA =

xy

2
sin θ and since ab =

xy

2
by hypothesis, we

get

sinA = sin θ.

Thus
θ = Â or θ = 180◦ − Â = B̂

If θ = A then (see Figure below) A2 +B1 = A1 +A2, so B1 = A1 which implies that AD
is tangent to the circumcircle of triangle OAB. So

DA2 = DO ·DB ⇒ b2 =
y

2
· y ⇒ b =

y√
2
.

Then by ab =
xy

2
we get a =

x√
2

.

If θ = B we similarly get a =
x√
2

, b =
y√
2

.

Solution 2.

Let us consider a parallelogram ABCD, with AB = a, BC = b, AC = x, BD = y,

B̂OC = θ, and let us produce the line AD towards D and consider M ∈ (AD so that
AD = DM . Then BCMD is a parallelogram, so CM = BD = y.
Observe also that (ABCD) = 2(ACD) = (ACM) which is written equivalently as

CB · CD · sinC =
AC · CM · sin θ

2
i.e. ab sinC =

xy sin θ

2
.

Because of the given relation ab =
xy

2
the last relation becomes sinC = sin θ, i.e.

θ = Ĉ or θ = 180◦ − Ĉ = B̂.

If θ = Ĉ, then the triangles ACM and BCD are similar because their angles at C are
equal, as well as their angles at B, M (remember BCMD is a parallelogram).
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Then
b

y
=
a

x
=

y

2b
⇒
(
b =

y

2
, a =

x

2

)
.

If θ = B̂, then similarly we prove that the triangles ACM and ACD are similar, which
then implies

a

y
=
b

x
=

x

2b
⇒
(
a =

y

2
, b =

x

2

)
.

Solution 3.
The Parallelogram Law states that, in any parallelogram, the sum of the squares of its
diagonals is equal to the sum of the squares of its sides.
In our case, this translates to x2+y2 = 2(a2+b2). First adding 2xy = 4ab, then subtracting
the same equality, yields (x + y)2 = 2(a + b)2 and (x − y)2 = 2(a − b)2. It follows that
x + y = a

√
2 + b

√
2 and either x − y = a

√
2 − b

√
2, or x − y = b

√
2 − a

√
2. In the first

case one obtains x = a
√

2, y = b
√

2, in the latter case, x = b
√

2, y = a
√

2.
For the proof of the Parallelogram Law, simply apply the Law of cosines in triangles ABC
and ABD and use the fact that cos(^ABC) = − cos(^BAD). Adding the two relations
gives the desired condition.

G9 Let O be a point inside the parallelogram ABCD such that

∠AOB + ∠COD = ∠BOC + ∠COD.

Prove that there exists a circle k tangent to the circumscribed circles of the triangles
4AOB, 4BOC, 4COD and 4DOA.
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Solution
From given condition it is clear that ^AOB + ^COD = ^BOC + ^AOD = 180◦.
Let E be a point such that AE = DO and BE = CE. Clearly, 4AEB ≡ 4DOC and
from that AE ‖ DO and BE ‖ CO. Also, ^AEB = ^COD so ^AOB + ^AEB =
^AOB + ^COD = 180◦. Thus, the quadrilateral AOBE is cyclic.
So 4AOB and 4AEB the same circumcircle, therefor the circumcircles of the triangles
4AOB and 4COD have the same radius.
Also, AE ‖ DO and AE = DO gives AEOD is parallelogram and 4AOD ≡ 4OAE.
So 4AOB, 4COD and 4DOA has the same radius of their circumcircle (the radius of
the cyclic quadrilateral AEBO). Analogously, triangles 4AOB, 4BOC, 4COD and
4DOA has same radius R.
Obviously, the circle with center O and radius 2R is externally tangent to each of these
circles, so this will be the circle k.

G10 Let Γ be a circle of center O, and δ be a line in the plane of Γ, not intersecting it.
Denote by A the foot of the perpendicular from O onto δ, and let M be a (variable) point
on Γ. Denote by γ the circle of diameter AM , by X the (other than M) intersection point
of γ and Γ, and by Y the (other than A) intersection point of γ and δ. Prove that the
line XY passes through a fixed point.
Solution
Consider the line ρ tangent to γ at A, and take the points {K} = AM ∩ XY , {L} =
ρ ∩XM , and {F} = OA ∩XY .
(Remark: Moving M into its reflection with respect to the line OA will move XY into its
reflection with respect to OA. These old and the new XY meet on OA, hence it should
be clear that the fixed point mult be F .)
Since ^LMA = ^FY A and ^Y AF = ^LAM = 90◦, it follows that triangles FAY and
LAM are similar, therefore ^AFY = ^ALM , hence the quadrilateral ALXF is cyclic.
But then ^AFL = ^AXL = 90◦, so LF ⊥ AF , hence LF ‖ δ.
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Now, ρ is the radical axis of circles γ and A (consider A as a circle of center A and radius
0), while XM is the radical axis of circles γ and Γ, so L is the radical center of the three
circle, which means that L lies on the radical axis of circles Γ and A. From LF ⊥ OA,
where OA is the line of the centers of the circles A and Γ, and F ∈ XY , it follows that
F is (the) fixed point of XY .
(The degenerate two cases when M ∈ OA, where X ≡M and Y ≡ A, also trivially satisfy
the conclusion, as then F ∈ AM).

G11 Consider ABC an acute-angled triangle with AB 6= AC. Denote by M the midpoint
ofBC, byD,E the feet of the altitudes fromB,C respectively and let P be the intersection
point of the lines DE and BC. The perpendicular from M to AC meets the perpendicular
from C to BC at point R. Prove that lines PR and AM are perpendicular.
Solution
Let F be the foot of the altitude from A and let S be the intersection point of AM and
RC. As PC is an altitude of the triangle PRS, the claim is equivalent to RM ⊥ PS,
since the latter implies that M is the orthocenter of PRS. Due to RM ⊥ AC, we need
to prove that AC ‖ PS, in other words

MC

MP
=
MA

MS
.

Notice that AF ‖ CS, so
MA

MS
=
MF

MC
. Now the claim is reduced to proving MC2 =

MF ·MP , a well-known result considering that AF is the polar line of P with respect to
circle of radius MC centered at M .

The ”elementary proof” on the latter result may be obtained as follows:
PB

PC
=
FB

FC
, using,

for instance, Menelaus and Ceva theorems with respect to ABC. Cross-multiplying one
gets (PM − x)(FM + x) = (x− FM)(PM + x)
- x stands for the length of MC - and then PM · FM = x2.
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Comment. The proof above holds for both cases AB < AC and AB > AC; it is for the
committee to decide if a contestant is supposed to (even) mention this.

2.4 Number Theory

NT1 Find all the positive integers x and y that satisfy the equation

x(x− y) = 8y − 7.

Solution 1:
The given equation can be written as:

x(x− y) = 8y − 7

x2 + 7 = y(x+ 8)

Let x+ 8 = m, m ∈ N. Then we have: x2 + 7 ≡ 0 (mod m), and x2 + 8x ≡ 0 (mod m).
So we obtain that 8x− 7 ≡ 0 (mod m) (1).
Also we obtain 8x+ 82 = 8(x+ 8) ≡ 0 (mod m) (2).
From (1) and (2) we obtain (8x + 64) − (8x − 7) = 71 ≡ 0 (mod m), therefore m | 71,
since 71 is a prime number, we have:
x + 8 = 1 or x + 8 = 71. The only accepted solution is x = 63, and from the initial
equation we obtain y = 56.
Therefore the equation has a unique solution, namely (x, y) = (63, 56).
Solution 2:
The given equation is x2 − xy + 7− 8y = 0.
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Discriminant is ∆ = y2 + 32y − 28 = (y + 16)2 − 284 and must be perfect square. So
(y + 16)2 − 284 = m2, and its follow (y + 16)2 − m2 = 284, and after some casework,
y + 16−m = 2 and y + 16 +m = 142, hence y = 56, x = 63.

NT2 Let n ≥ 2 be a fixed positive integer. An integer will be called ”n-free” if it is not a
multiple of an n-th power of a prime. Let M be an infinite set of rational numbers, such
that the product of every n elements of M is an n-free integer. Prove that M contains
only integers.
Solution
We first prove that M can contain only a finite number of non-integers. Suppose that

there are infinitely many of them:
p1
q1

,
p2
q2
, . . . ,

pk
qk
, . . . , with (pk, qk) = 1 and qk > 1 for

each k. Let
p

q
=
p1p2 . . . pn−1
q1q2 . . . qn−1

, where (p, q) = 1. For each i ≥ n, the number
p

q
· pi
qi

is

an integer, so qi is a divisor of p (as qi and pi are coprime). But p has a finite set of
divisors, so there are n numbers of M with equal denominators. Their product cannot be
an integer, a contradiction.

Now suppose that M contains a fraction
a

b
in lowest terms with b > 1. Take a prime

divisor p of b. If we take any n− 1 integers from M , their product with
a

b
is an integer,

so some of them is a multiple of p. Therefore there are infinitely many multiples of p in
M , and the product of n of them is not n-free, a contradiction.

NT3 Let s(a) denote the sum of digits of a given positive integer a. The sequence
a1, a2, . . . an, . . . of positive integers is such that an+1 = an +s(an) for each positive integer
n. Find the greatest possible n for which it is possible to have an = 2008.
Solution
Since an−1 ≡ s(an−1) (all congruences are modulo 9), we have 2an−1 ≡ an ≡ 2008 ≡ 10, so
an−1 ≡ 5. But an−1 < 2008, so s(an−1) ≤ 28 and thus s(an−1) can equal 5, 14 or 23. We
check s(2008− 5) = s(2003) = 5, s(2008− 14) = s(1994) = 23, s(2008− 23) = s(1985) =
23. Thus an−1 can equal 1985 or 2003. As above 2an−2 ≡ an−1 ≡ 5 ≡ 14, so an−2 ≡ 7.
But an−2 < 2003, so s(an−2) ≤ 28 and thus s(an−2) can equal 16 or 25. Checking as
above we see that the only possibility is s(2003 − 25) = s(1978) = 25. Thus an−2 can
be only 1978. Now 2an−3 ≡ an−2 ≡ 7 ≡ 16 and an−3 ≡ 8. But s(an−3) ≤ 27 and thus
s(an−3) can equal 17 or 26. The check works only for s(1978− 17) = s(1961) = 17. Thus
an−3 = 1961 and similarly an−4 = 1939 ≡ 4, an−5 = 1919 ≡ 2 (if they exist). The search
for an−6 requires a residue of 1. But an−6 < 1919, so s(an−6) ≤ 27 and thus s(an−6) can
be equal only to 10 or 19. The check fails for both s(1919 − 10) = s(1909) = 19 and
s(1919− 19) = s(1900) = 10. Thus n ≤ 6 and the case n = 6 is constructed above (1919,
1939, 1961, 1978, 2003, 2008).

NT4 Find all integers n such that n4 + 8n + 11 is a product of two or more consecutive
integers.
Solution
We will prove that n4+8n+11 is never a multiple of 3. This is clear if n is a multiple of 3. If
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n is not a multiple of 3, then n4+8n+11 = (n4−1)+12+8n = (n−1)(n+1)(n2+1)+12+8n,
where 8n is the only term not divisible by 3. Thus n4 + 8n + 11 is never the product of
three or more integers.
It remains to discuss the case when n4 + 8n+ 11 = y(y+ 1) for some integer y. We write
this as 4(n4+8n+11) = 4y(y+1) or 4n4+32n+45 = (2y+1)2. A check shows that among
n = ±1 and n = 0 only n = 1 satisfies the requirement, as 14 +8 ·1+11 = 20 = 4 ·5. Now
let |n| ≥ 2. The identities 4n2 +32n+45 = (2n2−2)2 +8(n+2)2 +9 and 4n4 +32n+45 =
(2n2 + 8)2 − 32n(n− 1)− 19 indicate that for |n| ≥ 2, 2n2 − 2 < 2y + 1 < 2n2 + 8. But
2y + 1 is odd, so it can equal 2n2 ± 1; 2n2 + 3; 2n2 + 5 or 2n2 + 7. We investigate them
one by one.
If 4n4 + 32n+ 45 = (2n2 − 1)2 ⇒ n2 + 8n+ 11 = 0⇒ (n+ 4)2 = 5, which is impossible,
as 5 is not a perfect square.
If 4n4 + 32n+ 45 = (2n2 + 1)2 ⇒ n2 − 8n− 11 = 0⇒ (n− 4)2 = 27 which also fails.
Also 4n4+32n+45 = (2n2+3)2 ⇒ 3n2−8n−9 = 0⇒ 9n2−24n−27 = 0⇒ (3n−4)2 = 43
fails.
If 4n4 + 32n + 45 = (2n2 + 5)2 ⇒ 5n2 − 8n = 5 ⇒ 25n2 − 40n = 25 ⇒ (5n − 4)2 = 41
which also fails.
Finally, if 4n4 + 32n+ 45 = (2n2 + 7)2, then 28n2 − 32n+ 4 = 0⇒ 4(n− 1)(7n− 1) = 0,
whence n = 1 that we already found. Thus the only solution is n = 1.

NT5 Is it possible to arrange the numbers 11, 22, . . . , 20082008 one after the other, in
such a way that the obtained number is a perfect square? (Explain your answer.)
Solution
We will use the following lemmas.
Lemma 1. If x ∈ N, then x2 ≡ 0 or 1 (mod 3).
Proof: Let x ∈ N, then x = 3k, x = 3k + 1 or x = 3k + 2, hence

x2 = 9k2 ≡ 0 (mod 3),
x2 = 9k2 + 6k + 1 ≡ 1 (mod 3),
x2 = 9k2 + 12k + 4 ≡ 1 (mod 3), respectively.

Hence x2 ≡ 0 or 1 (mod 3), for every positive integer x.

Without proof we will give the following lemma.

Lemma 2. If a is a positive integer then a ≡ S(a) (mod 3), where S(a) is the sum of the
digits of the number a.

Further we have

(6k + 1)6k+1 = [(6k + 1)k]6 · (6k + 1) ≡ 1 (mod 3)
(6k + 2)6k+2 = [(6k + 2)3k+1]2 ≡ 1 (mod 3)
(6k + 3)6k+3 ≡ 0 (mod 3)
(6k + 4)6k+4 = [(6k + 1)3k+2]2 ≡ 1 (mod 3)
(6k + 5)6k+5 = [(6k + 5)3k+2]2 · (6k + 5) ≡ 2 (mod 3)
(6k + 6)6k+6 ≡ 0 (mod 3)

(3)
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for every k = 1, 2, 3, . . . .
Let us separate the numbers 11, 22, . . . , 20082008 into the following six classes: (6k+1)6k+1,
(6k + 2)6k+2, (6k + 3)6k+3, (6k + 4)6k+4, (6k + 5)6k+5, (6k + 6)6k+6, k = 1, 2, . . ., .
For k = 1, 2, 3, . . . let us denote by

sk = (6k+ 1)6k+1 + (6k+ 2)6k+2 + (6k+ 3)6k+3 + (6k+ 4)6k+4 + (6k+ 5)6k+5 + (6k+ 6)6k+6.

From (3) we have
sk ≡ 1 + 1 + 0 + 1 + 2 + 0 ≡ 2 (mod 3) (4)

for every k = 1, 2, 3, . . . .
Let A be the number obtained by writing one after the other (in some order) the numbers
11, 22, . . . , 20082008.
The sum of the digits, S(A), of the number A is equal to the sum of the sums of digits,
S(ii), of the numbers ii, i = 1, 2, . . . , 2008, and so, from Lemma 2, it follows that

A ≡ S(A) = S(11) + S(22) + . . .+ S(20082008) ≡ 11 + 22 + . . .+ 20082008 (mod 3).

Further on 2008 = 334 · 6 + 4 and if we use (3) and (4) we get

A ≡ 11 + 22 + . . .+ 20082008

≡ s1 + s2 + . . .+ s334 + 20052005 + 20062006 + 20072007 + 20082008 (mod 3)
≡ 334 · 2 + 1 + 1 + 0 + 1 = 671 ≡ 2 (mod 3).

Finally, from Lemma 1, it follows that A can not be a perfect square.

NT6 Let f : N→ R be a function, satisfying the following condition:

for every integer n > 1, there exists a prime divisor p of n such that f(n) = f

(
n

p

)
−f(p).

If
f(22007) + f(32008) + f(52009) = 2006,

determine the value of
f(20072) + f(20083) + f(20095).

Solution
If n = p is prime number, we have

f(p) = f

(
p

p

)
− f(p) = f(1)− f(p)

i.e.

f(p) =
f(1)

2
. (1)

If n = pq, where p and q are prime numbers, then

f(n) = f

(
n

p

)
− f(p) = f(q)− f(p) =

f(1)

2
− f(1)

2
= 0.
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If n is a product of three prime numbers, we have

f(n) = f

(
n

p

)
− f(p) = 0− f(p) = −f(p) = −f(1)

2
.

With mathematical induction by a number of prime multipliers we shell prove that:
if n is a product of k prime numbers then

f(n) = (2− k)
f(1)

2
. (2)

For k = 1, clearly the statement (2), holds.
Let statement (2) holds for all integers n, where n is a product of k prime numbers.
Now let n be a product of k + 1 prime numbers. Then we have n = n1p, where n1 is a
product of k prime numbers.
So

f(n) = f

(
n

p

)
− f(p) = f(n1)− f(p) = (2− k)

f(1)

2
− f(1)

2
= (2− (k + 1))

f(1)

2
.

So (2) holds for every integer n > 1.
Now from f(22007) + f(32008) + f(52009) = 2006 and because of (2) we have

2006 = f(22007) + f(32008) + f(52009)

=
2− 2007

2
f(1) +

2− 2008

2
f(1) +

2− 2009

2
f(1) = −3 · 2006

2
f(1),

i.e.

f(1) = −2

3
.

Since
2007 = 32 · 223, 2008 = 23 · 251, 2009 = 72 · 41,

and because of (2) and (3), we get

f(20072) + f(20083) + f(20095) =
2− 6

2
f(1) +

2− 12

2
f(1) +

2− 15

2
f(1)

= −27

2
f(1) = −27

2
·
(
−2

3

)
= 9.

NT7 Determine the minimal prime number p > 3 for which no natural number n satisfies

2n + 3n ≡ 0 (mod p).

Solution
We put A(n) = 2n + 3n. From Fermat’s little theorem, we have 2p−1 ≡ 1 (mod p) and
3p−1 ≡ 1 (mod p) from which we conclude A(n) ≡ 2 (mod p). Therefore, after p− 1 steps
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at most, we will have repetition of the power. It means that in order to determine the
minimal prime number p we seek, it is enough to determine a complete set of remainders
S(p) = {0, 1, . . . , p− 1} such that 2n + 3n 6≡ 0 (mod p), for every n ∈ S(p).
For p = 5 and n = 1 we have A(1) ≡ 0 (mod 5).
For p = 7 and n = 3 we have A(3) ≡ 0 (mod 7).
For p = 11 and n = 5 we have A(5) ≡ 0 (mod 11).
For p = 13 and n = 2 we have A(2) ≡ 0 (mod 13).
For p = 17 and n = 8 we have A(8) ≡ 0 (mod 17).
For p = 19 we have A(n) 6≡ 0 (mod 19), for all n ∈ S(19).
Hence the minimal value of p is 19.

NT8 Let a, b, c, d, e, f are nonzero digits such that the natural numbers abc, def and
abcdef are squares.
a) Prove that abcdef can be represented in two different ways as a sum of three squares
of natural numbers.
b) Give an example of such a number.
Solution
a) Let abc = m2, def = n2 and abcdef = p2, where 11 ≤ m ≤ 31, 11 ≤ n ≤ 31 are natural
numbers. So, p2 = 1000 · m2 + n2. But 1000 = 302 + 102 = 182 + 262. We obtain the
following relations

p2 = (302 + 102) ·m2 + n2 = (182 + 262) ·m2 + n2 =

= (30m)2 + (10m)2 + n2 = (18m)2 + (26m)2 + n2.

The assertion a) is proved.
b) We write the equality p2 = 1000·m2+n2 in the equivalent form (p+n)(p−n) = 1000·m2,
where 349 ≤ p ≤ 979. If 1000 ·m2 = p1 · p2, such that p+ n = p1 and p− n = p2, then p1
and p2 are even natural numbers with p1 > p2 ≥ 318 and 22 ≤ p1 − p2 ≤ 62.
For m = 15 we obtain p1 = 500, p2 = 450. So, n = 25 and p = 475. We have

225625 = 4752 = 4502 + 1502 + 252 = 2702 + 3902 + 252.

The problem is solved.

NT9 Let p be a prime number. Find all positive integers a and b such that:

4a+ p

b
+

4b+ p

a

and
a2

b
+
b2

a

are integers.
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Solution
Since a and b are symmetric we can assume that a ≤ b. Let d = (a, b), a = du, b = dv
and (u, v) = 1. Then we have:

a2

b
+
b2

a
=
d(u3 + v3)

uv

Since,
(u3 + v3, u) = (u3 + v3, v) = 1

we deduce that u | d and v | d. But as (u, v) = 1, it follows that uv | d.
Now, let d = uvt. Furthermore,

4a+ p

b
+

4b+ p

a
=

4(a2 + b2) + p(a+ b)

ab
=

4uvt(u2 + v2) + p(u+ v)

u2v2t
.

This implies,
uv | p(u+ v).

But from our assumption 1 = (u, v) = (u, u+ v) = (v, u+ v) we conclude uv | p.
Therefore, we have three cases {u = v = 1}, {u = 1, v = p}, {u = p, v = 1}.
We assumed that a ≤ b, and this implies u ≤ v.

If a = b, we need
4a+ p

a
+

4a+ p

a
∈ N, i.e. a | 2p. Then a ∈ {1, 2, p, 2p}. The other

condition being fulfilled, we obtain the solutions (1, 1), (2, 2), (p, p) and (2p, 2p).
Now, we have only one case to investigate, u = 1, v = p. The last equation is transformed
into:

4a+ p

b
+

4b+ p

a
=

4pt(1 + p2) + p(p+ 1)

p2t
=

4t+ 1 + p(1 + 4pt)

pt
.

From the last equation we derive
p | (4t+ 1).

Let 4t+ 1 = pq. From here we derive

4t+ 1 + p(1 + 4pt)

pt
=
q + 1 + 4pt

t
.

Now, we have
t | (q + 1)

or
q + 1 = st.

Therefore,

p =
4t+ 1

q
=

4t+ 1

st− 1
.

Since p is a prime number, we deduce

4t+ 1

st− 1
≥ 2
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or

s ≤ 4t+ 3

2t
= 2 +

3

2t
< 4.

Case 1: s = 1, p =
4t+ 1

t− 1
= 4 +

5

t− 1
. We conclude t = 2 or t = 6. But when t = 2, we

have p = 9, not a prime. When t = 6, p = 5, a = 30, b = 150.

Case 2: s = 2, p =
4t+ 1

2t− 1
= 2 +

3

2t− 1
. We conclude t = 1, p = 5, a = 5, b = 25 or

t = 2, p = 3, a = 6, b = 18.

Case 3: s = 3, p =
4t+ 1

3t− 1
or 3p = 4 +

7

3t− 1
. As 7 does not have any divisors of the

form 3t− 1, in this case we have no solutions.

So, the solutions are

(a, b) = {(1, 1), (2, 2), (p, p), (2p, 2p), (5, 25), (6, 18), (18, 6), (25, 5), (30, 150), (150, 30)}.

NT10 Prove that 2n + 3n is not a perfect cube for any positive integer n.
Solution
If n = 1 then 21 + 31 = 5 is not perfect cube.
Perfect cube gives residues −1, 0 and 1 modulo 9. If 2n + 3n is a perfect cube, then n
must be divisible with 3 (congruence 2n + 3n = x3 modulo 9).
If n = 3k then 23k + 32k > (3k)3. Also, (3k + 1)3 = 33k + 3 · 32k + 3 · 3k + 1 > 33k + 32k =
33k +9k > 33k +8k = 33k +23k. But, 3k and 3k +1 are two consecutive integers so 23k +33k

is not a perfect cube.

NT11 Determine the greatest number with n digits in the decimal representation which
is divisible by 429 and has the sum of all digits less than or equal to 11.
Solution
Let A = anan−1 . . . a1 and notice that 429 = 3 · 11 · 13.

Since the sum of the digits
∑

ai ≤ 11 and
∑

ai is divisible by 3, we get
∑

ai = 3, 6 or

9. As 11 divides A, we have

11 | an − an−1 + an−2 − an−3 + . . . ,

in other words 11|
∑
i odd

ai −
∑
i even

ai. But

−9 ≤ −
∑

ai ≤
∑
i odd

ai −
∑
i even

ai ≤
∑

ai ≤ 9,

so
∑
i odd

ai−
∑
i even

ai = 0. It follows that
∑

ai is even, so
∑

ai = 6 and
∑
i odd

ai =
∑
i even

ai = 3.

The number 13 is a divisor of 1001, hence

13 | a3a2a1 − a6a5a4 + a9a8a7 − a12a11a10 + . . . (1)
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For each k = 1, 2, 3, 4, 5, 6, let sk be the sum of the digits ak+6m, m ≥ 0; that is

s1 = a1 + a7 + a13 + . . . and so on.

With this notation, (1) rewrites as

13 | 100(s3 − s6) + 10(s2 − s5) + (s1 − s4), or 13|4(s6 − s3) + 3(s5 − s2) + (s1 − s4).

Let S3 = s3 − s6, S2 = s2 − s5, and S1 = s1 − s4. Recall that
∑
i odd

ai =
∑
i even

ai, which

implies S2 = S1 + S3. Then

13 | 4S3 + 3S2 − S1 = 7S3 + 2S1 ⇒ 13 | 49S3 + 14S1 ⇒ 13 |S1 − 3S3.

Observe that |S1| ≤ s1 =
∑
i odd

ai = 3 and likewise |S2|, |S3| ≤ 3. Then −13 < S1−3S3 < 13

and consequently S1 = 3S3. Thus S2 = 4S3 and |S2| ≤ 3 yields S2 = 0 and then
S1 = S3 = 0. We have s1 = s4, s2 = s5, s3 = s6 and s1 + s2 + s3 = 3, so the greatest
number A is 30030000 ... .

NT12 Solve the equation
p

q
− 4

r + 1
= 1 in prime numbers.

Solution
We can rewrite the equation in the form

pr + p− 4q

q(r + 1)
= 1⇒ pr + p− 4q = qr + q

pr − qr = 5q − p⇒ r(p− q) = 5q − p.

It follows that p 6= q and

r =
5q − p
p− q

=
4q + q − p
p− q

r =
4q

p− q
− 1

As p is prime, p− q 6= q, p− q 6= 2q, p− q 6= 4q.
We have p− q = 1 or p− q = 2 or p− q = 4
i) If p− q = 1 then

q = 2, p = 3, r = 7

ii) If p− q = 2 then p = q + 2, r = 2q − 1
If q = 1 (mod 3) then q + 2 ≡ 0 (mod 3)

q + 2 = 3⇒ q = 1

contradiction.
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If q ≡ −1 (mod 3) then r ≡ −2− 1 ≡ 0 (mod 3)

r = 3

r = 2q − 1 = 3

q = 2

p = 4

contradiction.
Hence q = 3, p = 5, r = 5.
iii) If p− q = 4 then p = q + 4.
r = q − 1
Hence q = 3, p = 7, r = 2.
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