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Chapter 1

Algebra

A1. Let a, b, c be positive real numbers such that abc = 8. Prove that

ab+ 4

a+ 2
+
bc+ 4

b+ 2
+
ca+ 4

c+ 2
≥ 6.

Solution. We have ab+4 = 8
c
+4 = 4(c+2)

c
and similarly bc+4 = 4(a+2)

a
and ca+4 = 4(b+2)

b
.

It follows that

(ab+ 4)(bc+ 4)(ca+ 4) =
64

abc
(a+ 2)(b+ 2)(c+ 2) = 8(a+ 2)(b+ 2)(c+ 2),

so that
(ab+ 4)(bc+ 4)(ca+ 4)

(a+ 2)(b+ 2)(c+ 2)
= 8.

Applying AM-GM, we conclude:

ab+ 4

a+ 2
+
bc+ 4

b+ 2
+
ca+ 4

c+ 2
≥ 3 · 3

√
(ab+ 4)(bc+ 4)(ca+ 4)

(a+ 2)(b+ 2)(c+ 2)
= 6.

Alternatively, we can write LHS as

bc(ab+ 4)

2(bc+ 4)
+
ac(bc+ 4)

2(ac+ 4)
+
ab(ca+ 4)

2(ab+ 4)

and then apply AM-GM.

�
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A2. Given positive real numbers a, b, c, prove that

8

(a+ b)2 + 4abc
+

8

(a+ c)2 + 4abc
+

8

(b+ c)2 + 4abc
+a2 + b2 + c2 ≥ 8

a+ 3
+

8

b+ 3
+

8

c+ 3
.

Solution. Since 2ab ≤ a2 + b2, it follows that (a+ b)2 ≤ 2(a2 + b2) and 4abc ≤ 2c(a2 + b2),

for any positive reals a, b, c. Adding these inequalities, we find

(a+ b)2 + 4abc ≤ 2(a2 + b2)(c+ 1),

so that
8

(a+ b)2 + 4abc
≥ 4

(a2 + b2)(c+ 1)
.

Using the AM-GM inequality, we have

4

(a2 + b2)(c+ 1)
+
a2 + b2

2
≥ 2

√
2

c+ 1
=

4√
2(c+ 1)

,

respectively
c+ 3

8
=

(c+ 1) + 2

8
≥
√

2(c+ 1)

4
.

We conclude that
4

(a2 + b2)(c+ 1)
+
a2 + b2

2
≥ 8

c+ 3
,

and finally

8

(a+ b)2 + 4abc
+

8

(a+ c)2 + 4abc
+

8

(b+ c)2 + 4abc
+a2 + b2 + c2 ≥ 8

a+ 3
+

8

b+ 3
+

8

c+ 3
.

�
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A3. Determine the number of pairs of integers (m,n) such that√
n+
√

2016 +

√
m−

√
2016 ∈ Q.

Solution. Let r =
√
n+
√

2016 +
√
m−

√
2016. Then

n+m+ 2

√
n+
√

2016 ·
√
m−

√
2016 = r2 ,

and

(m− n)
√

2106 =
1

4
(r2 −m− n)2 −mn+ 2016 ∈ Q.

Since
√

2016 6∈ Q, it follows that m = n. Then

√
n2 − 2016 =

1

2
(r2 − 2n) ∈ Q.

Hence, there is some nonnegative integer p such that n2 − 2016 = p2 and (1) becomes

2n+ 2p = r2.

It follows that 2(n+ p) = r2 is the square of a rational and also an integer, hence a perfect

square. On the other hand, 2016 = (n−p)(n+p) and n+p is a divisor of 2016, larger than√
2016. Since n+p is even, so is also n−p, and r2 = 2(n+p) is a divisor of 2016 = 25 ·32 ·7,

larger than 2
√

2016 > 88. The only possibility is r2 = 24 · 32 = 122. Hence, n+ p = 72 and

n− p = 28, and we conclude that n = m = 50. Thus, there is only one such pair.

�
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A4. If x, y, z are non-negative real numbers such that x2 + y2 + z2 = x+ y+ z, then show

that:
x+ 1√

x5 + x+ 1
+

y + 1√
y5 + y + 1

+
z + 1√
z5 + z + 1

≥ 3.

When does the equality hold?

Solution. First we factor x5 + x+ 1 as follows:

x5 + x+ 1 = x5 − x2 + x2 + x+ 1 = x2(x3 − 1) + x2 + x+ 1 = x2(x− 1)(x2 + x+ 1) + x2 + x+ 1

= (x2 + x+ 1)(x2(x− 1) + 1) = (x2 + x+ 1)(x3 − x2 + 1)

Using the AM −GM inequality, we have

√
x5 + x+ 1 =

√
(x2 + x+ 1)(x3 − x2 + 1) ≤ x2 + x+ 1 + x3 − x2 + 1

2
=
x3 + x+ 2

2

and since

x3+x+2 = x3+1+x+1 = (x+1)(x2−x+1)+x+1 = (x+1)(x2−x+1+1) = (x+1)(x2−x+2),

then √
x5 + x+ 1 ≤ (x+ 1)(x2 − x+ 2)

2

Using x2 − x + 2 =
(
x− 1

2

)2
+ 7

4
> 0, we obtain x+1√

x5+x+1
≥ 2

x2−x+2
Applying the Cauchy-

Schwarz inequality and the given condition, we get∑
cyc

x+ 1√
x5 + x+ 1

≥
∑
cyc

2

x2 − x+ 2
≥ 18∑

cyc(x
2 − x+ 2)

=
18

6
= 3

which is the desired result.

For the equality both conditions: x2 − x + 2 = y2 − y + 2 = z2 − z + 2(equality in CBS)

and x3 − x2 + 1 = x2 + x+ 1(equality in AM-GM) have to be satisfied.

By using the given condition it follows that x2− x+ 2 + y2− y+ 2 + z2− z+ 2 = 6, hence

3(x2 − x + 2) = 6, implying x = 0 or x = 1. Of these, only x = 0 satisfies the second

condition. We conclude that equality can only hold for x = y = z = 0.

It is an immediate check that indeed for these values equality holds.

�

Alternative solution

Let us present an heuristic argument to reach the key inequality x+1√
x5+x+1

≥ 2
x2−x+2

.

In order to exploit the condition x2 + y2 + z2 = x + y + z when applying CBS in Engel

form, we are looking for α, β, γ > 0 such that

x+ 1√
x5 + x+ 1

≥ γ

α(x2 − x) + β
.

After squaring and cancelling the denominators, we get

(x+ 1)2(α(x2 − x) + β)2 ≥ γ2(x5 + x+ 1)

6



for all x ≥ 0, and, after some manipulations, we reach to f(x) ≥ 0 for all x ≥ 0, where

f(x) = α2x6− γ2x5 + (2αβ − 2α2)x4 + 2αβx3 + (α− β)2x2 + (2β2− 2αβ − γ2)x+ β2− γ2.

As we are expecting the equality to hold for x = 0, we naturally impose the condition that

f has 0 as a double root. This implies β2− γ2 = 0 and 2β2− 2αβ − γ2 = 0, that is, β = γ

and γ = 2α.

Thus the inequality f(x) ≥ 0 becomes

α2x6 − 4α2x5 + 2α2x4 + 4α2x3 + α2x2 ≥ 0,∀x ≥ 0,

that is,

α2x2(x2 − 2x− 1)2 ≥ 0 ∀x ≥ 0,

which is obviously true.

Therefore, the inequality x+1√
x5+x+1

≥ 2
x2−x+2

holds for all x ≥ 0 and now we can continue

as in the first solution.
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A5. Let x, y, z be positive real numbers such that x+ y + z =
1

x
+

1

y
+

1

z
.

a) Prove the inequality

x+ y + z ≥
√
xy + 1

2
+

√
yz + 1

2
+

√
zx+ 1

2
.

b) (Added by the problem selecting committee) When does the equality hold?

Solution.

a) We rewrite the inequality as(√
xy + 1 +

√
yz + 1 +

√
zx+ 1

)2
≤ 2 · (x+ y + z)2 (1)

and note that, from CBS,

LHS ≤ (
xy + 1

x
+
yz + 1

y
+
zx+ 1

z
)(x+ y + z).

But
xy + 1

x
+
yz + 1

y
+
zx+ 1

z
= x+ y + z +

1

x
+

1

y
+

1

z
= 2(x+ y + z),

which proves (1).

b) The equality occurs when we have equality in CBS, i.e. when

xy + 1

x2
=
yz + 1

y2
=
zx+ 1

z2

(
=
xy + yz + zx+ 3

x2 + y2 + z2

)
.

Since we can also write(√
xy + 1 +

√
yz + 1 +

√
zx+ 1

)2
≤ (

xy + 1

y
+
yz + 1

z
+
zx+ 1

x
)(y+z+x) = 2(x+y+z)2,

the equality implies also

xy + 1

y2
=
yz + 1

z2
=
zx+ 1

x2

(
=
xy + yz + zx+ 3

x2 + y2 + z2

)
.

But then x = y = z, and since x+y+z =
1

x
+

1

y
+

1

z
, we conclude that x =

1

x
= 1 = y = z.

�
Alternative solution to b): The equality condition

xy + 1

x2
=
yz + 1

y2
=
zx+ 1

z2

can be rewritten as

y + 1
x

x
=
z + 1

y

y
=
x+ 1

z

z
=

x+ y + z +
1

x
+

1

y
+

1

z

x+ y + z
= 2

8



and thus we obtain the system: 

y = 2x− 1

x

z = 2y − 1

y

x = 2z − 1

z

.

We show that x = y = z. Indeed, if for example x > y, then 2x − 1

x
> 2y − 1

y
, that is,

y > z and z = 2y − 1

y
> 2z − 1

z
= x, and we obtain the contradiction x > y > z > x.

Similarly, if x < y, we obtain x < y < z < x.

Hence, the numbers are equal, and as above we get x = y = z = 1.

9



Chapter 2

Combinatorics

C1. Let Sn be the sum of reciprocal values of non-zero digits of all positive integers up to

(and including) n. For instance, S13 = 1
1
+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ 1

7
+ 1

8
+ 1

9
+ 1

1
+ 1

1
+ 1

1
+ 1

1
+ 1

2
+ 1

1
+ 1

3
.

Find the least positive integer k making the number k! · S2016 an integer.

Solution.

We will first calculate S999, then S1999 − S999, and then S2016 − S1999.

Writing the integers from 1 to 999 as 001 to 999, adding eventually also 000(since 0 digits

actually do not matter), each digit appears exactly 100 times in each position(as unit, ten,

or hundred). Hence

S999 = 300 ·
(

1

1
+

1

2
+ · · ·+ 1

9

)
For the numbers in the interval 1000 → 1999, compared to 0 → 999, there are precisely

1000 more digits 1. We get

S1999 − S999 = 1000 + S999 =⇒ S1999 = 1000 + 600 ·
(

1

1
+

1

2
+ · · ·+ 1

9

)
Finally, in the interval 2000→ 2016, the digit 1 appears twice as unit and seven times as

a ten, the digit 2 twice as a unit and 17 times as a thousand, the digits 3, 4, 5, and 6 each

appear exactly twice as units, and the digits 7, 8, and 9 each appear exactly once as a unit.

Hence

S2016 − S1999 = 9 · 1 + 19 · 1

2
+ 2 ·

(
1

3
+

1

4
+

1

5
+

1

6

)
+ 1 ·

(
1

7
+

1

8
+

1

9

)
.

In the end, we get

S2016 = 1609 · 1 + 619 · 1

2
+ 602 ·

(
1

3
+

1

4
+

1

5
+

1

6

)
+ 601 ·

(
1

7
+

1

8
+

1

9

)
= m+

1

2
+

2

3
+

2

4
+

2

5
+

2

6
+

6

7
+

1

8
+

7

9
= n+

p

23 · 32 · 5 · 7
,

where m, n, and p are positive integers, p coprime to 23 · 32 · 5 · 7. Then k! · S2016 is an

integer precisely when k! is a multiple of 23 · 32 · 5 · 7. Since 7|k!, it follows that k ≥ 7.

Also, 7! = 24 · 32 · 5 · 7, implying that the least k satisfying k! · S2016 ∈ Z is k = 7. �
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C2. The natural numbers from 1 to 50 are written down on the blackboard. At least

how many of them should be deleted, in order that the sum of any two of the remaining

numbers is not a prime?

Solution. Notice that if the odd, respectively even, numbers are all deleted, then the

sum of any two remaining numbers is even and exceeds 2, so it is certainly not a prime.

We prove that 25 is the minimal number of deleted numbers. To this end, we group the

positive integers from 1 to 50 in 25 pairs, such that the sum of the numbers within each

pair is a prime:

(1, 2), (3, 4), (5, 6), (7, 10), (8, 9), (11, 12), (13, 16), (14, 15), (17, 20),

(18, 19), (21, 22), (23, 24), (25, 28), (26, 27), (29, 30), (31, 36), (32, 35),

(33, 34), (37, 42), (38, 41), (39, 40), (43, 46), (44, 45), (47, 50), (48, 49).

Since at least one number from each pair has to be deleted, the minimal number is 25.

�
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C3. Consider any four pairwise distinct real numbers and write one of these numbers in

each cell of a 5× 5 array so that each number occurs exactly once in every 2× 2 subarray.

The sum over all entries of the array is called the total sum of that array. Determine the

maximum number of distinct total sums that may be obtained in this way.

Solution. We will prove that the maximum number of total sums is 60.

The proof is based on the following claim.

Claim. Either each row contains exactly two of the numbers, or each column contains

exactly two of the numbers.

Proof of the Claim. Indeed, let R be a row containing at least three of the numbers.

Then, in row R we can find three of the numbers in consecutive positions, let x, y, z be the

numbers in consecutive positions(where {x, y, s, z} = {a, b, c, d}). Due to our hypothesis

that in every 2× 2 subarray each number is used exactly once, in the row above R(if there

is such a row), precisely above the numbers x, y, z will be the numbers z, t, x in this order.

And above them will be the numbers x, y, z in this order. The same happens in the rows

below R (see at the following figure).
• x y z •
• z t x •
• x y z •
• z t x •
• x y z •


Completing all the array, it easily follows that each column contains exactly two of the

numbers and our claim has been proven.

Rotating the matrix (if it is necessary), we may assume that each row contains exactly two

of the numbers. If we forget the first row and column from the array, we obtain a 4 × 4

array, that can be divided into four 2× 2 subarrays, containing thus each number exactly

four times, with a total sum of 4(a+ b+ c+ d). It suffices to find how many different ways

are there to put the numbers in the first row R1 and the first column C1.

Denoting by a1, b1, c1, d1 the number of appearances of a, b, c, and respectively d in R1

and C1, the total sum of the numbers in the entire 5× 5 array will be

S = 4(a+ b+ c+ d) + a1 · a+ b1 · b+ c1 · c+ d1 · d.

If the first, the third and the fifth row contain the numbers x, y, with x denoting the

number at the entry (1, 1), then the second and the fourth row will contain only the

numbers z, t, with z denoting the number at the entry (2, 1). Then x1 +y1 = 7 and x1 > 3,

y1 > 2, z1 + t1 = 2, and z1 > t1. Then {x1, y1} = {5, 2} or {x1, y1} = {4, 3}, respectively

{z1, t1} = {2, 0} or {z1, t1} = {1, 1}. Then (a1, b1, c1, d1) is obtained by permuting one of

the following quadruples:

(5, 2, 2, 0), (5, 2, 1, 1), (4, 3, 2, 0), (4, 3, 1, 1).

There are a total of 4!
2!

= 12 permutations of (5, 2, 2, 0), also 12 permutations of (5, 2, 1, 1),

24 permutations of (4, 3, 2, 0) and finally, there are 12 permutations of (4, 3, 1, 1). Hence,

there are at most 60 different possible total sums.

We can obtain indeed each of these 60 combinations: take three rows ababa alternating

12



with two rows cdcdc to get (5, 2, 2, 0); take three rows ababa alternating with one row cdcdc

and a row (dcdcd) to get (5, 2, 1, 1); take three rows ababc alternating with two rows cdcda

to get (4, 3, 2, 0); take three rows abcda alternating with two rows cdabc to get (4, 3, 1, 1).

By choosing for example a = 103, b = 102, c = 10, d = 1, we can make all these sums

different. Hence, 60 is indeed the maximum possible number of different sums.

�
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C4. A splitting of a planar polygon is a finite set of triangles whose interiors are pairwise

disjoint, and whose union is the polygon in question. Given an integer n ≥ 3, determine

the largest integer m such that no planar n-gon splits into less than m triangles.

Solution. The required maximum is dn/3e, the least integer greater than or equal to n/3.

To describe a planar n-gon splitting into this many triangles, write n = 3m−r, where m is a

positive integer and r = 0, 1, 2, and consider m coplanar equilateral triangles A3iA3i+1A3i+2,

i = 0, . . . ,m − 1, where the Ai are pairwise distinct, the A’s of rank congruent to 0 or 2

modulo 3 are all collinear, A2, A3, A5, . . ., A3m−3, A3m−1, A0, in order, and the line

A0A2 separates A1 from the remaining A’s of rank congruent to 1 modulo 3. The polygon

A0A1A2A3A4A5 . . . A3m−3A3m−2A3m−1 settles the case r = 0; removal of A3 from the list

settles the case r = 1; and removal of A3 and A3m−1 settles the case r = 2.

Next, we prove that no planar n-gon splits into less than n/3 triangles. Alternatively, but

equivalently, if a planar polygon splits into t triangles, then its boundary has (combina-

torial) length at most 3t. Proceed by induction on t. The base case t = 1 is clear, so let

t > 1.

The vertices of the triangles in the splitting may subdivide the boundary of the polygon,

making it into a possibly combinatorially longer simple loop Ω. Clearly, it is sufficient to

prove that the length of Ω does not exceed 3t.

To this end, consider a triangle in the splitting whose boundary ω meets Ω along at least

one of its edges. Trace Ω counterclockwise and let α1, . . ., αk, in order, be the connected

components of Ω− ω. Each αi is a path along Ω with distinct end points, whose terminal

point is joined to the starting point of αi+1 by a (possibly constant) path βi along ω. Trace

ω clockwise from the terminal point of αi to its starting point to obtain a path α′i of positive

length, and notice that αi + α′i is the boundary of a polygon split into ti < t triangles.

By the induction hypothesis, the length of αi + α′i does not exceed 3ti, and since α′i has

positive length, the length of αi is at most 3ti− 1. Consequently, the length of Ω−ω does

not exceed
∑k

i=1(3ti − 1) = 3t− 3− k.

Finally, we prove that the total length of the βi does not exceed k + 3. Begin by noticing

that no βi has length greater than 4, at most one has length greater than 2, and at most

three have length 2. If some βi has length 4, then the remaining k − 1 are all of length at

most 1, so the total length of the β’s does not exceed 4+(k−1) = k+3. Otherwise, either

some βi has length 3, in which case at most one other has length 2 and the remaining k−2

all have length at most 1, or the βi all have length less than 3, in which case there are at

most three of length 2 and the remaining k − 3 all have length at most 1; in the former

case, the total length of the β’s does not exceed 3 + 2 + (k − 2) = k + 3, and in the latter,

the total length of the β’s does not exceed 3 · 2 + (k − 3) = k + 3. The conclusion follows.

�
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Chapter 3

Geometry

G1. Let ABC be an acute angled triangle, let O be its circumcentre, and let D, E, F be

points on the sides BC, AC, AB, respectively. The circle (c1) of radius FA, centred at F ,

crosses the segment (OA) at A′ and the circumcircle (c) of the triangle ABC again at K.

Similarly, the circle (c2) of radius DB, centred at D, crosses the segment (OB) at B′ and

the circle (c) again at L. Finally, the circle (c3) of radius EC, centred at E, crosses the

segment (OC) at C ′ and the circle (c) again at M . Prove that the quadrilaterals BKFA′,

CLDB′ and AMEC ′ are all cyclic, and their circumcircles share a common point.

A

B C

K

F

O
A’

S

Solution. We will prove that the quadrilateral BKFA′ is cyclic and its circumcircle

passes through the center O of the circle (c).

The triangle AFK is isosceles, so m(K̂FB) = 2m(K̂AB) = m(K̂OB). It follows that the

quadrilateral BKFO is cyclic. (1)

The triangles OFK and OFA are congruent (S.S.S.), hence m(ÔKF ) = m(ÔAF ). The

triangle FAA′ is isosceles, so m(F̂A′A) = m(ÔAF ). Therefore m(F̂A′A) = m(ÔKF ), so

the quadrilateral OKFA′ is cyclic. (2)

(1) and (2) prove the initial claim.

Along the same lines, we can prove that the points C,D,L,B′, O and A,M,E,C ′, O are

concylic, respectively, so their circumcircles also pass through O.

�
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G2. Let ABC be a triangle with m(B̂AC) = 60◦. Let D and E be the feet of the

perpendiculars from A to the external angle bisectors of ÂBC and ÂCB, respectively. Let

O be the circumcenter of the triangle ABC. Prove that the circumcircles of the triangles

∆ADE and ∆BOC are tangent to each other.

A

D

B

X

O

C

E
I

Solution. Let X be the intersection of the lines BD and CE.

We will prove that X lies on the circumcircles of both triangles ∆ADE and ∆BOC and

then we will prove that the centers of these circles and the point X are collinear, which is

enough for proving that the circles are tangent to each other.

In this proof we will use the notation (MNP ) to denote the circumcircle of the triangle

∆MNP .

Obviously, the quadrilateral ADXE is cyclic, and the circle (DAE) has [AX] as diameter.

(1)

Let I be the incenter of triangle ABC. So, the point I lies on the segment [AX] (2), and

the quadrilateral XBIC is cyclic because IC⊥XC and IB⊥XB. So, the circle (BIC) has

[IX] as diameter.

Finally, m(B̂IC) = 90◦ + 1
2
m(B̂AC) = 120◦ and m(B̂OC) = 2m(B̂AC) = 120◦.

So, the quadrilateral BOIC is cyclic and the circle (BOC) has [IX] as diameter. (3)

(1), (2), (3) imply the conclusion.

�
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G3. A trapezoid ABCD (AB ‖ CD, AB > CD) is circumscribed. The incircle of triangle

ABC touches the lines AB and AC at M and N , respectively. Prove that the incenter of

the trapezoid lies on the line MN .

A M B

CD

N

R I

Solution. Let I be the incenter of triangle ABC and R be the common point of the lines

BI and MN . Since

m(ÂNM) = 90◦ − 1

2
m(M̂AN) and m(B̂IC) = 90◦ +

1

2
m(M̂AN)

the quadrilateral IRNC is cyclic.

It follows that m(B̂RC) = 90◦ and therefore

m(B̂CR) = 90◦ −m(ĈBR) = 90◦ − 1

2

(
180◦ −m(B̂CD)

)
=

1

2
m(B̂CD).

So, (CR is the angle bisector of D̂CB and R is the incenter of the trapezoid.

�
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G4. Let ABC be an acute angled triangle whose shortest side is [BC]. Consider a variable

point P on the side [BC], and let D and E be points on (AB] and (AC], respectively, such

that BD = BP and CP = CE. Prove that, as P traces [BC], the circumcircle of the

triangle ADE passes through a fixed point.

A

C

D

B

EI

P

Solution. We claim that the fixed point is the center of the incircle of ABC.

Let I be the center of the incircle of ABC. Since BD = BP and [BI is the bisector of

D̂BP , the line BI is the perpendicular bisector of [DP ]. This yields DI = PI. Analogously

we get EI = PI. So, the point I is the circumcenter of the triangle DEP .

This means m(D̂IE) = 2m(D̂PE).

On the other hand

m(D̂PE) = 180◦ −m(D̂PB)−m(ÊPC)

= 180◦ −
(

90◦ − 1

2
m(D̂BP )

)
−
(

90◦ − 1

2
m(ÊCP )

)
= 90◦ − 1

2
m(B̂AC).

So, m(D̂IE) = 2m(D̂PE) = 180◦ −m(D̂AE), which means that the points A, D, E and

I are cocyclic.

�
Remark. The fact that the incentre I of the triangle ABC is the required fixed point

could be guessed by considering the two extremal positions of P . Thus, if P = B, then

D = DB = B as well, and CE = CEB = BC, so m(∠AEB) = m(∠C) + m(∠EBC) =

m(∠C) + 180◦−m(∠C)
2

= 90◦+ m(∠C)
2

= m(∠AIB). Hence the points A, E = EB, I, DB = B

are cocyclic. Similarly, letting P = C, the points A, D = DC , I, EC = C are cocyclic.

Consequently, the circles ADBEB and ADCEC meet again at I.
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G5. Let ABC be an acute angled triangle with orthocenter H and circumcenter O. As-

sume the circumcenter X of BHC lies on the circumcircle of ABC. Reflect O across X to

obtain O′, and let the lines XH and O′A meet at K. Let L, M and N be the midpoints

of [XB], [XC] and [BC], respectively. Prove that the points K, L, M and N are cocyclic.

A
B

C

O

O!XN
M

K

L
H

Solution. The circumcircles of ABC and BHC have the same radius. So, XB =

XC = XH = XO = r (where r is the radius of the circle ABC) and O′ lies on C(X, r).

We conclude that OX is the perpendicular bisector for [BC]. So, BOX and COX are

equilateral triangles.

It is known that AH = 2ON = r. So, AHO′X is parallelogram, and XK = KH = r/2.

Finally, XL = XK = XN = XM = r/2. So, K, L, M and N lie on the circle c(X, r/2).

�
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G6. Given an acute triangle ABC, erect triangles ABD and ACE externally, so that

m(ÂDB) = m(ÂEC) = 90◦ and B̂AD ≡ ĈAE. Let A1 ∈ BC, B1 ∈ AC and C1 ∈ AB be

the feet of the altitudes of the triangle ABC, and let K and L be the midpoints of [BC1]

and [CB1], respectively. Prove that the circumcenters of the triangles AKL, A1B1C1 and

DEA1 are collinear.

A

D

B

C

E

C

L

B

K

A M

PQ

1

1

1

Solution. Let M , P and Q be the midpoints of [BC], [CA] and [AB], respectively.

The circumcircle of the triangle A1B1C1 is the Euler’s circle. So, the point M lies on this

circle.

It is enough to prove now that [A1M ] is a common chord of the three circles (A1B1C1),

(AKL) and (DEA1).

The segments [MK] and [ML] are midlines for the triangles BCC1 and BCB1 respectively,

hence MK ‖ CC1 ⊥ AB and ML ‖ BB1 ⊥ AC. So, the circle (AKL) has diameter [AM ]

and therefore passes through M .

Finally, we prove that the quadrilateral DA1ME is cyclic.

From the cyclic quadrilaterals ADBA1 and AECA1, ÂA1D ≡ ÂBD and ÂA1E ≡ ÂCE ≡
ÂBD, so m(D̂A1E) = 2m(ÂBD) = 180◦ − 2m(D̂AB).

We notice now that DQ = AB/2 = MP , QM = AC/2 = PE and

m(D̂QM) = m(D̂QB) +m(B̂QM) = 2m(D̂AB) +m(B̂AC),

m(ÊPM) = m(ÊPC) +m(ĈPM) = 2m(ÊAC) +m(ĈAB),

so ∆MPE ≡ ∆DQM (S.A.S.). This leads to m(D̂ME) = m(D̂MQ) + m(QMP ) +

m(PME) = m(D̂MQ) +m(BQM) +m(QDM) = 180◦ −m(D̂QB) = 180◦ − 2m(D̂AB).

Since m(D̂A1E) = m(D̂ME), the quadrilateral DA1ME is cyclic.

�
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G7. Let [AB] be a chord of a circle (c) centered at O, and let K be a point on the segment

(AB) such that AK < BK. Two circles through K, internally tangent to (c) at A and B,

respectively, meet again at L. Let P be one of the points of intersection of the line KL

and the circle (c), and let the lines AB and LO meet at M . Prove that the line MP is

tangent to the circle (c).

M

A L

O

B

P

K

c

c

c

Q

2

1

O1
R

Solution. Let (c1) and (c2) be circles through K, internally tangent to (c) at A and B,

respectively, and meeting again at L, and let the common tangent to (c1) and (c) meet the

common tangent to (c2) and (c) at Q. Then the point Q is the radical center of the circles

(c1), (c2) and (c), and the line KL passes through Q.

We have m(Q̂LB) = m(Q̂BK) = m(Q̂BA) = 1
2
m(
_
BA) = m(Q̂OB). So, the quadrilateral

OBQL is cyclic. We conclude that m(Q̂LO) = 90◦ and the points O, B, Q, A and L are

cocyclic on a circle (k).

In the sequel, we will denote Pω(X) the power of the point X with respect of the circle ω.

The first continuation.

From MO2 − OP 2 = Pc(M) = MA ·MB = Pk(M) = ML ·MO = (MO − OL) ·MO =

MO2 − OL ·MO follows that OP 2 = OL · OM . Since PL ⊥ OM , this shows that the

triangle MPO is right at point P . Thus, the line MP is tangent to the circle (c).

The second continuation.

Let R ∈ (c) be so that BR⊥MO. The triangle LBR is isosceles with LB = LR, so

ÔLR ≡ ÔLB ≡ ÔQB ≡ ÔQA ≡ M̂LA. We conclude that the points A, L and R are

collinear.

Now m(ÂMR)+m(ÂOR) = m(ÂMR)+2m(ÂBR) = m(ÂMR)+m(ÂBR)+m(M̂RB) =

180◦, since the triangle MBR is isosceles. So, the quadrilateral MAOR is cyclic.

This yields LM ·LO = −P(MAOR)(L) = LA ·LR = −Pc(L) = LP 2, which as above, shows

that OP⊥PM .

The third continuation.

K̂LA ≡ K̂AQ ≡ K̂LB and m(M̂LK) = 90◦ show that [LK and [LM are the internal and

external bisectors af the angle ÂLB, so (M,K) and (A,B) are harmonic conjugates. So,

LK is the polar line of M in the circle (c).

�
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Chapter 4

Number Theory

N1. Determine the largest positive integer n that divides p6 − 1 for all primes p > 7.

Solution. Note that

p6 − 1 = (p− 1)(p+ 1)(p2 − p+ 1)(p2 + p+ 1).

For p = 11 we have

p6 − 1 = 1771560 = 23 · 32 · 5 · 7 · 19 · 37.

For p = 13 we have

p6 − 1 = 23 · 32 · 7 · 61 · 157.

From the last two calculations we find evidence to try showing that p6 − 1 is divisible by

23 · 32 · 7 = 504 and this would be the largest positive integer that divides p6 − 1 for all

primes greater than 7.

By Fermat’s theorem, 7 | p6 − 1.

Next, since p is odd, 8 | p2 − 1 = (p− 1)(p+ 1), hence 8 | p6 − 1.

It remains to show that 9 | p6 − 1.

Any prime number p, p > 3 is 1 or −1 modulo 3.

In the first case both p− 1 and p2 + p+ 1 are divisible by 3, and in the second case, both

p+ 1 and p2 − p+ 1 are divisible by 3.

Consequently, the required number is indeed 504.

Alternative solution

Let q be a (positive) prime factor of n. Then q ≤ 7, as q - q6 − 1. Also, q is not 5, as the

last digit of 136 − 1 is 8.

Hence, the prime factors of n are among 2, 3, and 7.

Next, from 116 − 1 = 23 · 32 · 5 · 7 · 19 · 37 it follows that the largest integer n such that

n | p6 − 1 for all primes p greater than 7 is at most 23 · 32 · 7, and it remains to prove that

504 divides p6 − 1 for all primes grater than 7.

�
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N2. Find the maximum number of natural numbers x1, x2, . . . , xm satisfying the condi-

tions:

a) No xi − xj, 1 ≤ i < j ≤ m is divisible by 11; and

b) The sum x2x3 . . . xm + x1x3 . . . xm + · · ·+ x1x2 . . . xm−1 is divisible by 11.

Solution. The required maximum is 10.

According to a), the numbers xi, 1 ≤ i ≤ m, are all different (mod 11) (1)

Hence, the number of natural numbers satisfying the conditions is at most 11.

If xj ≡ 0 (mod 11) for some j, then

x2x3 . . . xm + x1x3 . . . xm + · · ·+ x1x2 . . . xm−1 ≡ x1 . . . xj−1xj+1 . . . xm (mod 11),

which would lead to xi ≡ 0 (mod 11) for some i 6= j, contradicting (1).

We now prove that 10 is indeed the required maximum.

Consider xi = i, for all i ∈ {1, 2, . . . , 10}. The products 2 · 3 · · · · · 10, 1 · 3 · · · · · 10, . . . ,

1 · 2 · · · · · 9 are all different (mod 11), and so

2 · 3 · · · · · 10 + 1 · 3 · · · · · 10 + · · ·+ 1 · 2 · · · · · 9 ≡ 1 + 2 + · · ·+ 10 (mod 11),

and condition b) is satisfied, since 1 + 2 + · · ·+ 10 = 55 = 5 · 11.

�
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N3. Find all positive integers n such that the number An = 24n+2+1
65

is

a) an integer;

b) a prime.

Solution. a) Note that 65 = 5 · 13.

Obviously, 5 = 22 + 1 is a divisor of (22)2n+1 + 1 = 24n+2 + 1 for any positive integer n.

Since 212 ≡ 1 (mod 13), if n ≡ r (mod 3), then 24n+2 + 1 ≡ 24r+2 + 1 (mod 13). Now,

24·0+2 + 1 = 5, 24·1+2 + 1 = 65, and 24·2+2 + 1 = 1025 = 13 · 78 + 11. Hence 13 is a divisor

of 24n+2 + 1 precisely when n ≡ 1 (mod 3). Hence, An is an integer iff n ≡ 1 (mod 3).

b) Applying the identity 4x4 + 1 = (2x2 − 2x + 1)(2x2 + 2x + 1), we have 24n+2 + 1 =

(22n+1 − 2n+1 + 1)(22n+1 + 2n+1 + 1). For n = 1, A1 = 1, which is not a prime. According

to a), if n 6= 1, then n ≥ 4. But then 22n+1 + 2n+1 + 1 > 22n+1 − 2n+1 + 1 > 65, and An

has at least two factors. We conclude that An can never be a prime.

Alternative Solution to b): Knowing that n = 3k + 1 in order for An to be an integer,

24n+2 + 1 = 212k+6 + 1 = (24k+2)3 + 1 = (24k+2 + 1)(28k+4 − 24k+2 + 1) (∗). As in the

previous solution, if k = 0, then A1 = 1, if k = 1, then A4 = 212− 26 + 1 = 4033 = 37 · 109,

and for k ≥ 2 both factors in (∗) are larger than 65, so A3k+1 is not a prime.

�
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N4. Find all triples of integers (a, b, c) such that the number

N =
(a− b)(b− c)(c− a)

2
+ 2

is a power of 2016.

Solution. Let z be a positive integer such that

(a− b)(b− c)(c− a) + 4 = 2 · 2016z.

We set a− b = −x, b− c = −y and we rewrite the equation as

xy(x+ y) + 4 = 2 · 2016z.

Note that the right hand side is divisible by 7, so we have that

xy(x+ y) + 4 ≡ 0 (mod 7)

or

3xy(x+ y) ≡ 2 (mod 7)

or

(x+ y)3 − x3 − y3 ≡ 2 (mod 7). (4.1)

Note that, by Fermat’s Little Theorem, we have that for any integer k the cubic residues

are k3 ≡ −1, 0, 1 mod 7. It follows that in (4.1) some of (x + y)3, x3 and y3 should be

divisible by 7, but in this case, xy(x + y) is divisible by 7 and this is a contradiction. So,

the only possibility is to have z = 0 and consequently, xy(x+ y) + 4 = 2, or, equivalently,

xy(x+y) = −2. The only solution of the latter is (x, y) = (−1,−1), so the required triples

are (a, b, c) = (k + 2, k + 1, k), k ∈ Z, and all their cyclic permutations.

�
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N5. Determine all four-digit numbers abcd such that

(a+ b)(a+ c)(a+ d)(b+ c)(b+ d)(c+ d) = abcd.

Solution. Depending on the parity of a, b, c, d, at least two of the factors (a+ b), (a+ c),

(a+ d), (b+ c), (b+ d), (c+ d) are even, so that 4|abcd.

We claim that 3|abcd.

Assume a+b+c+d ≡ 2 (mod 3). Then x+y ≡ 1 (mod 3), for all distinct x, y ∈ {a, b, c, d}.
But then the left hand side in the above equality is congruent to 1 (mod 3) and the right

hand side congruent to 2 (mod 3), contradiction.

Assume a+b+c+d ≡ 1 (mod 3). Then x+y ≡ 2 (mod 3), for all distinct x, y ∈ {a, b, c, d},
and x ≡ 1 (mod 3), for all x, y ∈ {a, b, c, d}. Hence, a, b, c, d ∈ {1, 4, 7}, and since 4|abcd,

we have c = d = 4. Therefore, 8|ab44, and since at least one more factor is even, it follows

that 16ab44. Then b 6= 4, and the only possibilities are b = 1, implying a = 4, which is

impossible because 4144 is not divisible by 5 = 1 + 4, or b = 7, implying 11|a744, hence

a = 7, which is also impossible because 7744 is not divisible by 14 = 7 + 7.

We conclude that 3|abcd, hence also 3|a + b + c + d. Then at least one factor x + y

of (a + b), (a + c), (a + d), (b + c), (b + d), (c + d) is a multiple of 3, implying that also

3|a+ b+ c+ d− x− y, so 9|abcd. Then 9|a+ b+ c+ d, and a+ b+ c+ d ∈ {9, 18, 27, 36}.
Using the inequality xy ≥ x+ y− 1, valid for all x, y ∈ N∗, if a+ b+ c+ d ∈ {27, 36}, then

abcd = (a+ b)(a+ c)(a+ d)(b+ c)(b+ d)(c+ d) ≥ 263 > 104,

which is impossible.

Using the inequality xy ≥ 2(x + y) − 4 for all x, y ≥ 2, if a + b + c + d = 18 and all

two-digit sums are greater than 1, then abcd ≥ 323 > 104. Hence, if a + b + c + d = 18,

some two-digit sum must be 1, hence the complementary sum will be 17, and the digits

are {a, b, c, d} = {0, 1, 8, 9}. But then abcd = 1 · 17 · 8 · 92 · 10 > 104.

We conclude that a + b + c + d = 9. Then among a, b, c, d there are either three odd or

three even numbers, and 8|abcd.

If three of the digits are odd, then d is even and since c is odd, divisibility by 8 implies

that d ∈ {2, 6}. If d = 6, then a = b = c = 1. But 1116 is not divisible by 7, so this is not

a solution. If d = 2, then a, b, c are either 1, 1, 5 or 1, 3, 3 in some order. In the first case

2 · 62 · 32 · 7 = 4536 6= abcd. The second case cannot hold because the resulting number is

not a multiple of 5.

Hence, there has to be one odd and three even digits. At least one of the two-digits sums

of even digits is a multiple of 4, and since there cannot be two zero digits, we have either

x+ y = 4 and z + t = 5, or x+ y = 8 and z + t = 1 for some ordering x, y, z, t of a, b, c, d.

In the first case we have d = 0 and the digits are 0, 1, 4, 4, or 0, 2, 3, 4, or 0, 2, 2, 5. None of

these is a solution because 1 ·42 ·52 ·8 = 3200, 2 ·3 ·4 ·5 ·6 ·7 = 5040 and 22 ·5 ·4 ·72 = 3920.

In the second case two of the digits are 0 and 1, and the other two have to be either 4 and

4, or 2 and 6. We already know that the first possibility fails. For the second, we get

(0 + 1) · (0 + 2) · (0 + 6) · (1 + 2) · (1 + 6) · (2 + 6) = 2016

and abcd = 2016 is the only solution.
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