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PROBLEMS

ALGEBRA

A1. Real numbers a and b satisfy a3 + b3 − 6ab = −11. Prove that −7
3
< a+ b < −2.

A2. Let a, b, c be positive real numbers such that abc = 2
3
. Prove that

ab

a+ b
+

bc

b+ c
+

ca

c+ a
󰃍 a+ b+ c

a3 + b3 + c3
.

A3. Let A and B be two non-empty subsets of X = {1, 2, . . . , 11} with A ∪B = X. Let
PA be the product of all elements of A and let PB be the product of all elements of B.
Find the minimum and maximum possible value of PA+PB and find all possible equality
cases.

A4. Let a, b be two distinct real numbers and let c be a positive real number such that

a4 − 2019a = b4 − 2019b = c .

Prove that −
√
c < ab < 0.

A5. Let a, b, c, d be positive real numbers such that abcd = 1. Prove the inequality

1

a3 + b+ c+ d
+

1

a+ b3 + c+ d
+

1

a+ b+ c3 + d
+

1

a+ b+ c+ d3
󰃑 a+ b+ c+ d

4
.

A6. Let a, b, c be positive real numbers. Prove the inequality

(a2 + ac+ c2)

󰀕
1

a+ b+ c
+

1

a+ c

󰀖
+ b2

󰀕
1

b+ c
+

1

a+ b

󰀖
> a+ b+ c .

A7. Show that for any positive real numbers a, b, c such that a + b + c = ab + bc + ca,
the following inequality holds

3 +
3

󰁵
a3 + 1

2
+

3

󰁵
b3 + 1

2
+

3

󰁵
c3 + 1

2
󰃑 2(a+ b+ c) .
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COMBINATORICS

C1. Let S be a set of 100 positive integer numbers having the following property:

“Among every four numbers of S, there is a number which divides each of the other three
or there is a number which is equal to the sum of the other three.”

Prove that the set S contains a number which divides all other 99 numbers of S.

C2. In a certain city there are n straight streets, such that every two streets intersect, and
no three streets pass through the same intersection. The City Council wants to organize
the city by designating the main and the side street on every intersection. Prove that
this can be done in such way that if one goes along one of the streets, from its beginning
to its end, the intersections where this street is the main street, and the ones where it is
not, will apear in alternating order.

C3. In a 5× 100 table we have coloured black n of its cells. Each of the 500 cells has at
most two adjacent (by side) cells coloured black. Find the largest possible value of n.

C4. We have a group of n kids. For each pair of kids, at least one has sent a message to
the other one. For each kid A, among the kids to whom A has sent a message, exactly
25% have sent a message to A. How many possible two-digit values of n are there?

C5. An economist and a statistician play a game on a calculator which does only one
operation. The calculator displays only positive integers and it is used in the following
way: Denote by n an integer that is shown on the calculator. A person types an integer,
m, chosen from the set {1, 2, . . . , 99} of the first 99 positive integers, and if m% of the
number n is again a positive integer, then the calculator displays m% of n. Otherwise,
the calculator shows an error message and this operation is not allowed. The game con-
sists of doing alternatively these operations and the player that cannot do the operation
looses. How many numbers from {1, 2, . . . , 2019} guarantee the winning strategy for the
statistician, who plays second?

For example, if the calculator displays 1200, the economist can type 50, giving the number
600 on the calculator, then the statistician can type 25 giving the number 150. Now, for
instance, the economist cannot type 75 as 75% of 150 is not a positive integer, but can
choose 40 and the game continues until one of them cannot type an allowed number.
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GEOMETRY

G1. Let ABC be a right-angled triangle with Â = 90◦ and B̂ = 30◦. The perpendicular
at the midpoint M of BC meets the bisector BK of the angle B̂ at the point E. The
perpendicular bisector of EK meets AB at D. Prove that KD is perpendicular to DE.

G2. Let ABC be a triangle and let ω be its circumcircle. Let ℓB and ℓC be two parallel
lines passing through B and C respectively. The lines ℓB and ℓC intersect with ω for the
second time at the points D and E respectively, with D belonging on the arc AB, and
E on the arc AC. Suppose that DA intersects ℓC at F , and EA intersects ℓB at G. If
O,O1 and O2 are the circumcenters of the triangles ABC, ADG and AEF respectively,
and P is the center of the circumcircle of the triangle OO1O2, prove that OP is parallel
to ℓB and ℓC .

G3. Let ABC be a triangle with incenter I. The points D and E lie on the segments CA
and BC respectively, such that CD = CE. Let F be a point on the segment CD. Prove
that the quadrilateral ABEF is circumscribable if and only if the quadrilateral DIEF
is cyclic.

G4. Let ABC be a triangle such that AB ∕= AC, and let the perpendicular bisector
of the side BC intersect lines AB and AC at points P and Q, respectively. If H is the
orthocenter of the triangle ABC, and M and N are the midpoints of the segments BC
and PQ respectively, prove that HM and AN meet on the circumcircle of ABC.

G5. Let P be a point in the interior of a triangle ABC. The lines AP , BP and CP
intersect again the circumcircles of the triangles PBC, PCA, and PAB at D, E and F
respectively. Prove that P is the orthocenter of the triangle DEF if and only if P is the
incenter of the triangle ABC.

G6. Let ABC be a non-isosceles triangle with incenter I. Let D be a point on the
segment BC such that the circumcircle of BID intersects the segment AB at E ∕= B,
and the circumcircle of CID intersects the segment AC at F ∕= C. The circumcircle of
DEF intersects AB and AC at the second points M and N respectively. Let P be the
point of intersection of IB and DE, and let Q be the point of intersection of IC and
DF . Prove that the three lines EN,FM and PQ are parallel.

G7. Let ABC be a right-angled triangle with Â = 90◦. Let K be the midpoint of BC,
and let AKLM be a parallelogram with centre C. Let T be the intersection of the line
AC and the perpendicular bisector of BM . Let ω1 be the circle with centre C and radius
CA and let ω2 be the circle with centre T and radius TB. Prove that one of the points
of intersection of ω1 and ω2 is on the line LM .



6 JBMO 2019, Cyprus

NUMBER THEORY

N1. Find all prime numbers p for which there are non-negative integers x, y and z such
that the number

A = xp + yp + zp − x− y − z

is a product of exactly three distinct prime numbers.

N2. Find all triples (p, q, r) of prime numbers such that all of the following numbers are
integers

p2 + 2q

q + r
,

q2 + 9r

r + p
,

r2 + 3p

p+ q
.

N3. Find all prime numbers p and nonnegative integers x ∕= y such that x4 − y4 =
p(x3 − y3).

N4. Find all integers x, y such that

x3(y + 1) + y3(x+ 1) = 19 .

N5. Find all positive integers x, y, z such that

45x − 6y = 2019z.

N6. Find all triples (a, b, c) of nonnegative integers that satisfy

a! + 5b = 7c .

N7. Find all perfect squares n such that if the positive integer a 󰃍 15 is some divisor of
n then a+ 15 is a prime power.
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SOLUTIONS

ALGEBRA

A1. Real numbers a and b satisfy a3 + b3 − 6ab = −11. Prove that −7
3
< a+ b < −2.

Solution. Using the identity

x3 + y3 + z3 − 3xyz =
1

2
(x+ y + z)

󰀃
(x− y)2 + (y − z)2 + (z − x)2

󰀄
,

we get

−3 = a3 + b3 + 23 − 6ab =
1

2
(a+ b+ 2)

󰀃
(a− b)2 + (a− 2)2 + (b− 2)2

󰀄
.

Since S = (a− b)2 + (a− 2)2 + (b− 2)2 must be positive, we conclude that a+ b+2 < 0,
i.e. that a+ b < −2. Now S can be bounded by

S 󰃍 (a− 2)2 + (b− 2)2 = a2 + b2 − 4(a+ b) + 8 󰃍 (a+ b)2

2
− 4(a+ b) + 8 > 18 .

Here, we have used the fact that a+b < −2, which we have proved earlier. Since a+b+2
is negative, it immediately implies that a+ b+ 2 < −2·3

18
= −1

3
, i.e. a+ b < −7

3
which we

wanted.

Alternative Solution by PSC. Writing s = a+ b and p = ab we have

a3 + b3 − 6ab = (a+ b)(a2 − ab+ b2)− 6ab = s(s2 − 3p)− 6p = s3 − 3ps− 6p .

This gives 3p(s+ 2) = s3 + 11. Thus s ∕= −2 and using the fact that s2 󰃍 4p we get

p =
s3 + 11

3(s+ 2)
󰃑 s2

4
. (1)

If s > −2, then (1) gives s3 − 6s2 + 44 󰃑 0. This is impossible as

s3 − 6s2 + 44 = (s+ 2)(s− 4)2 + 8 > 0 .

So s < −2. Then from (1) we get s3 − 6s2 + 44 󰃍 0. If s < −7
3
this is again impossible

as s3 − 6s2 = s2(s − 6) < −49
9
· 25

3
< −44. (Since 49 · 25 = 1225 > 1188 = 44 · 27.) So

−7
3
< s < −2 as required.
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A2. Let a, b, c be positive real numbers such that abc = 2
3
. Prove that

ab

a+ b
+

bc

b+ c
+

ca

c+ a
󰃍 a+ b+ c

a3 + b3 + c3
.

Solution. The given inequality is equivalent to

(a3 + b3 + c3)

󰀕
ab

a+ b
+

bc

b+ c
+

ca

c+ a

󰀖
󰃍 a+ b+ c . (1)

By the AM-GM Inequality it follows that

a3 + b3 =
a3 + a3 + b3

3
+

b3 + b3 + a3

3
󰃍 a2b+ b2a = ab(a+ b) .

Similarly we have

b3 + c3 󰃍 bc(b+ c) and c3 + a3 󰃍 ca(c+ a) .

Summing the three inequalities we get

2(a3 + b2 + c3) 󰃍 (ab(a+ b) + bc(b+ c) + ca(c+ a)) . (2)

From the Cauchy-Schwarz Inequality we have

(ab(a+ b) + bc(b+ c) + ca(c+ a))

󰀕
ab

a+ b
+

bc

b+ c
+

ca

c+ a

󰀖
󰃍 (ab+ bc+ ca)2 . (3)

We also have

(ab+ bc+ ca)2 󰃍 3(ab · bc+ bc · ca+ ca · ab) = 3abc(a+ b+ c) = 2(a+ b+ c) . (4)

Combining together (2),(3) and (4) we obtain (1) which is the required inequality.

Alternative Solution by PSC. By the Power Mean Inequality we have

a3 + b3 + c3

3
󰃍

󰀕
a+ b+ c

3

󰀖3

.

So it is enough to prove that

(a+ b+ c)2
󰀕

ab

a+ b
+

bc

b+ c
+

ca

c+ a

󰀖
󰃍 9 ,

or equivalently, that

(a+ b+ c)2
󰀕

1

ac+ bc
+

1

ba+ ca
+

1

cb+ ab

󰀖
󰃍 27

2
. (5)

Since (a+ b+ c)2 󰃍 3(ab+ bc+ ca) = 3
2
((ac+ bc)+ (ba+ ca)+ (cb+ ac)), then (5) follows

by the Cauchy-Schwarz Inequality.

Alternative Solution by PSC. We have

(a3 + b3 + c3)
ab

a+ b
= ab(a2 − ab+ b2) +

abc3

a+ b
󰃍 a2b2 +

2

3

c2

a+ b
.
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So the required inequality follows from

(a2b2 + b2c2 + c2a2) +
2

3

󰀕
a2

b+ c
+

b2

c+ a
+

c2

a+ b

󰀖
󰃍 a+ b+ c . (6)

By applying the AM-GM Inequality three times we get

a2b2 + b2c2 + c2a2 󰃍 abc(a+ b+ c) =
2

3
(a+ b+ c) . (7)

By the Cauchy-Schwarz Inequality we also have

((b+ c) + (c+ a) + (a+ b))

󰀕
a2

b+ c
+

b2

c+ a
+

c2

a+ b

󰀖
󰃍 (a+ b+ c)2 .

which gives
a2

b+ c
+

b2

c+ a
+

c2

a+ b
󰃍 a+ b+ c

2
. (8)

Combining (7) and (8) we get (6) as required.
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A3. Let A and B be two non-empty subsets of X = {1, 2, . . . , 11} with A ∪B = X. Let
PA be the product of all elements of A and let PB be the product of all elements of B.
Find the minimum and maximum possible value of PA+PB and find all possible equality
cases.

Solution. For the maximum, we use the fact that (PA − 1)(PB − 1) 󰃍 0, to get that
PA + PB 󰃑 PAPB + 1 = 11! + 1. Equality holds if and only if A = {1} or B = {1}.

For the minimum observe, first that PA · PB = 11! = c. Without loss of generality let
PA 󰃑 PB. In this case PA 󰃑 √

c. We write PA +PB = PA + c
PA

and consider the function

f(x) = x+ c
x
for x 󰃑 √

c. Since

f(x)− f(y) = x− y +
c(y − x)

yx
=

(x− y)(xy − c)

xy
,

then f is decreasing for x ∈ (0, c].

Since x is an integer and cannot be equal with
√
c, the minimum is attained to the

closest integer to
√
c. We have ⌊

√
11!⌋ = ⌊

√
28 · 34 · 52 · 7 · 11⌋ = ⌊720

√
77⌋ = 6317 and

the closest integer which can be a product of elements of X is 6300 = 2 · 5 · 7 · 9 · 10.

Therefore the minimum is f(6300) = 6300+6336 = 12636 and it is achieved for example
for A = {2, 5, 7, 9, 10}, B = {1, 3, 4, 6, 8, 11}.

Suppose now that there are different sets A and B such that PA + PB = 402. Then the
pairs of numbers (6300, 6336) and (PA, PB) have the same sum and the same product, thus
the equality case is unique for the numbers 6300 and 6336. It remains to find all possible
subsets A with product 6300 = 22 ·32 ·52 ·7. It is immediate that 5, 7, 10 ∈ A and from here
it is easy to see that all posibilities are A = {2, 5, 7, 9, 10}, {1, 2, 5, 7, 9, 10}, {3, 5, 6, 7, 10}
and {1, 3, 5, 6, 7, 10}.

Alternative Solution by PSC. We have PA + PB 󰃍 2
√
PAPB = 2

√
11! = 1440

√
77.

Since PA + PB is an integer, we have PA + PB 󰃍
󰁯
1440

√
77
󰁰
= 12636. One can then

follow the approach of the first solution to find all equality cases.

Remark by PSC. We can increase the difficulty of the alternative solution by taking
X = {1, 2, . . . , 9}. Following the first solution we have ⌊

√
9!⌋ = ⌊72

√
70⌋ = 602 and the

closest integer which can be a product of elements of X is 2 ·4 ·8 ·9 = 576. The minimum
is f(576) = 576 + 630 = 1206 achieved by A = {1, 2, 4, 8, 9} and B = {3, 5, 6, 7}. For
equality, the set with product 630 must contain 5 and 7, either 2 and 9 or 3 and 6, and
finally it is allowed to either contain 1 or not.

Our alternative solution would give PA + PB 󰃍
󰁯
144

√
70
󰁰
= 1205. One would then need

to find a way to show that PA + PB ∕= 1205. To do this we can assume without loss of
generality that 5 ∈ A. Then the last digit of PA is either 5 or 0. In the first case the last
digit of PB would be 0 and so PB would also be a multiple of 5 which is impossible. The
second case is analogous.

The computation of the expresions here might be a bit simpler. For example 9! = 362880
so one expects

√
9! to be slightly larger than 600.
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A4. Let a, b be two distinct real numbers and let c be a positive real number such that

a4 − 2019a = b4 − 2019b = c .

Prove that −
√
c < ab < 0.

Solution. Firstly, we see that

2019(a− b) = a4 − b4 = (a− b)(a+ b)(a2 + b2) .

Since a ∕= b, we get (a+ b)(a2 + b2) = 2019, so a+ b ∕= 0. Thus

2c = a4 − 2019a+ b4 − 2019b

= a4 + b4 − 2019(a+ b)

= a4 + b4 − (a+ b)2(a2 + b2)

= −2ab(a2 + ab+ b2) .

Hence ab(a2 + ab+ b2) = −c < 0. Note that

a2 + ab+ b2 =
1

2

󰀃
a2 + b2 + (a+ b)2

󰀄
󰃍 0 ,

thus ab < 0. Finally, a2 + ab + b2 = (a + b)2 − ab > −ab (the equality does not occur
since a+ b ∕= 0). So

−c = ab(a2 + ab+ b2) < −(ab)2 =⇒ (ab)2 < c ⇒ −
√
c < ab <

√
c .

Therefore, we have −
√
c < ab < 0.

Alternative Solution by PSC. By Descartes’ Rule of Signs, the polynomial p(x) =
x4 − 2019x− c has exactly one positive root and exactly one negative root. So a, b must
be its two real roots. Since one of them is positive and the other is negative, then ab < 0.
Let r ± is be the two non-real roots of p(x).

By Vieta, we have

ab(r2 + s2) = −c , (1)

a+ b+ 2r = 0 , (2)

ab+ 2ar + 2br + r2 + s2 = 0 . (3)

Using (2) and (3), we have

r2 + s2 = −2r(a+ b)− ab = (a+ b)2 − ab 󰃍 −ab . (4)

If in the last inequality we actually have an equality, then a+ b = 0. Then (2) gives r = 0
and (3) gives s2 = −ab. Thus the roots of p(x) are a,−a, ia,−ia. This would give that
p(x) = x4 + a4, a contradiction.

So the inequality in (4) is strict and now from (1) we get

c = −(r2 + s2)ab > (ab)2 ,

which gives that ab > −
√
c.
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A5. Let a, b, c, d be positive real numbers such that abcd = 1. Prove the inequality

1

a3 + b+ c+ d
+

1

a+ b3 + c+ d
+

1

a+ b+ c3 + d
+

1

a+ b+ c+ d3
󰃑 a+ b+ c+ d

4
.

Solution. From the Cauchy-Schwarz Inequality, we obtain

(a+ b+ c+ d)2 󰃑 (a3 + b+ c+ d)

󰀕
1

a
+ b+ c+ d

󰀖
.

Using this, together with the other three analogous inequalities, we get

1

a3 + b+ c+ d
+

1

a+ b3 + c+ d
+

1

a+ b+ c3 + d
+

1

a+ b+ c+ d3

󰃑
3(a+ b+ c+ d) +

󰀃
1
a
+ 1

b
+ 1

c
+ 1

d

󰀄

(a+ b+ c+ d)2
.

So it suffices to prove that

(a+ b+ c+ d)3 󰃍 12(a+ b+ c+ d) + 4

󰀕
1

a
+

1

b
+

1

c
+

1

d

󰀖
,

or equivalently, that

(a3 + b3 + c3 + d3) + 3
󰁛

a2b+ 6(abc+ abd+ acd+ bcd)

󰃍 12(a+ b+ c+ d) + 4(abc+ abd+ acd+ bcd) .

(Here, the sum is over all possible x2y with x, y ∈ {a, b, c, d} and x ∕= y.) From the
AM-GM Inequality we have

a3+a2b+a2b+a2c+a2c+a2d+a2d+ b2a+ c2a+d2a+ bcd+ bcd 󰃍 12
12
√
a18b6c6d6 = 12a .

Similarly, we get three more inequalities. Adding them together gives the inequality we
wanted. Equality holds if and only if a = b = c = d = 1.

Remark by PSC. Alternatively, we can finish off the proof by using the following two
inequalities: Firstly, we have a + b + c + d 󰃍 4 4

√
abcd = 4 by the AM-GM Inequality,

giving
3

4
(a+ b+ c+ d)3 󰃍 12(a+ b+ c+ d) .

Secondly, by Mclaurin’s Inequality, we have

󰀕
a+ b+ c+ d

4

󰀖3

󰃍 bcd+ acd+ abd+ abc

4
,

giving
1

4
(a+ b+ c+ d)3 󰃍 4(bcd+ acd+ abd+ abc) .

Adding those inequlities we get the required result.
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A6. Let a, b, c be positive real numbers. Prove the inequality

(a2 + ac+ c2)

󰀕
1

a+ b+ c
+

1

a+ c

󰀖
+ b2

󰀕
1

b+ c
+

1

a+ b

󰀖
> a+ b+ c .

Solution. By the Cauchy-Schwarz Inequality, we have

1

a+ b+ c
+

1

a+ c
󰃍 4

2a+ b+ 2c
,

and
1

b+ c
+

1

a+ b
󰃍 4

a+ 2b+ c
.

Since

a2 + ac+ c2 =
3

4
(a+ c)2 +

1

4
(a− c)2 󰃍 3

4
(a+ c)2 ,

then, writing L for the Left Hand Side of the required inequality, we get

L 󰃍 3(a+ c)2

2a+ b+ 2c
+

4b2

a+ 2b+ c
.

Using again the Cauchy-Schwarz Inequality, we have:

L 󰃍 (
√
3(a+ c) + 2b)2

3a+ 3b+ 3c
>

(
√
3(a+ c) +

√
3b)2

3a+ 3b+ 3c
= a+ b+ c .

Alternative Question by Proposers. Let a, b, c be positive real numbers. Prove the
inequality

a2

a+ c
+

b2

b+ c
>

ab− c2

a+ b+ c
+

ab

a+ b
.

Note that both this inequality and the original one are equivalent to

󰀕
c+

a2

a+ c

󰀖
+

󰀕
a− ab− c2

a+ b+ c

󰀖
+

b2

b+ c
+

󰀕
b− ab

a+ b

󰀖
> a+ b+ c .

Alternative Solution by PSC. The required inequality is equivalent to

󰀗
b2

a+ b
− (b− a)

󰀘
+

b2

b+ c
+

󰀗
a2 + ac+ c2

a+ c
− a

󰀘
+

󰀗
a2 + ac+ c2

a+ b+ c
− (a+ c)

󰀘
> 0 ,

or equivalently, to
a2

a+ b
+

b2

b+ c
+

c2

c+ a
>

ab+ bc+ ca

a+ b+ c
.

However, by the Cauchy-Schwarz Inequality we have

a2

a+ b
+

b2

b+ c
+

c2

c+ a
󰃍 (a+ b+ c)2

2(a+ b+ c)
󰃍 3(ab+ bc+ ca)

2(a+ b+ c)
>

ab+ bc+ ca

a+ b+ c
.
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A7. Show that for any positive real numbers a, b, c such that a + b + c = ab + bc + ca,
the following inequality holds

3 +
3

󰁵
a3 + 1

2
+

3

󰁵
b3 + 1

2
+

3

󰁵
c3 + 1

2
󰃑 2(a+ b+ c) .

Solution. Using the condition we have

a2 − a+ 1 = a2 − a+ 1 + ab+ bc+ ca− a− b− c = (c+ a− 1)(a+ b− 1) .

Hence we have

3

󰁵
a3 + 1

2
=

3

󰁵
(a+ 1)(a2 − a+ 1)

2
= 3

󰁶󰀕
a+ 1

2

󰀖
(c+ a− 1)(a+ b− 1) .

Using the last equality together with the AM-GM Inequality, we have

󰁛

cyc

3

󰁵
a3 + 1

2
=

󰁛

cyc

3

󰁶󰀕
a+ 1

2

󰀖
(c+ a− 1)(a+ b− 1)

󰃑
󰁛

cyc

a+1
2

+ c+ a− 1 + a+ b− 1

3

=
󰁛

cyc

5a+ 2b+ 2c− 3

6

=
3(a+ b+ c− 1)

2
.

Hence it is enough to prove that

3 +
3(a+ b+ c− 1)

2
󰃑 2(a+ b+ c) ,

or equivalently, that a+ b+ c 󰃍 3. From a well- known inequality and the condition, we
have

(a+ b+ c)2 󰃍 3(ab+ bc+ ca) = 3(a+ b+ c) ,

thus a+ b+ c 󰃍 3 as desired.

Alternative Proof by PSC. Since f(x) = 3
√
x is concave for x 󰃍 0, by Jensen’s

Inequality we have

3

󰁵
a3 + 1

2
+

3

󰁵
b3 + 1

2
+

3

󰁵
c3 + 1

2
󰃑 3

3

󰁵
a3 + b3 + c3 + 3

6
.

So it is enough to prove that

3

󰁵
a3 + b3 + c3 + 3

6
󰃑 2(a+ b+ c)− 3

3
. (1)

We now write s = a+ b+ c = ab+ bc+ ca and p = abc. We have

a2 + b2 + c2 = (a+ b+ c)2 − 2(ab+ bc+ ca) = s2 − 2s ,
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and

r = a2b+ ab2 + b2c+ bc2 + c2a+ ca2 = (ab+ bc+ ca)(a+ b+ c)− 3abc = s2 − 3p .

Thus,
a3 + b3 + c3 = (a+ b+ c)3 − 3r − 6abc = s3 − 3s2 + 3p .

So to prove (1), it is enough to show that

s3 − 3s2 + 3p+ 3

6
󰃑 (2s− 3)3

27
.

Expanding, this is equivalent to

7s3 − 45s2 + 108s− 27p− 81 󰃍 0 .

By the AM-GM Inequality we have s3 󰃍 27p. So it is enough to prove that p(s) 󰃍 0,
where

p(s) = 6s3 − 45s2 + 108s− 81 = 3(s− 3)2(2s− 3) .

It is easy to show that s 󰃍 3 (e.g. as in the first solution) so p(s) 󰃍 0 as required.
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COMBINATORICS

C1. Let S be a set of 100 positive integers having the following property:

“Among every four numbers of S, there is a number which divides each of the other three
or there is a number which is equal to the sum of the other three.”

Prove that the set S contains a number which divides each of the other 99 numbers of S.

Solution. Let a < b be the two smallest numbers of S and let d be the largest number
of S. Consider any two other numbers x < y of S. For the quadruples (a, b, x, d) and
(a, b, y, d) we cannot get both of d = a+b+x and d = a+b+y, since a+b+x < a+b+y.
From here, we get a|b and a|d.

Consider any number s of S different from a, b, d. From the condition of the problem, we
get d = a+ b+ s or a divides b, s and d. But since we already know that a divides b and
d anyway, we also get that a|s, as in the first case we have s = d − a − b. This means
that a divides all other numbers of S.

Alternative Solution by PSC. Order the elements of S as x1 < x2 < · · · < x100.

For 2 󰃑 k 󰃑 97, looking at the quadruples (x1, xk, xk+1, xk+2) and (x1, xk, xk+1, xk+3),
we get that x1|xk as alternatively, we would have xk+2 = x1 + xk + xk+1 = xk+3, a
contradiction.

For 5 󰃑 k 󰃑 100, looking at the quadruples (x1, xk−2, xk−1, xk) and (x1, xk−3, xk−1, xk) we
get that x1|xk as alternatively, we would have xk = x1 + xk−2 + xk−1 = x1 + xk−3 + xk−1,
a contradiction.

So x1 divides all other elements of S.

Alternative Solution by PSC. The condition that one element is the sum of the other
three cannot be satisfied by all quadruples. So we have four elements such that one divides
the other three. Suppose inductively that we have a subset S ′ of S with |S ′| = k 󰃍 4
such that there is x ∈ S ′ with x|y for every y ∈ S ′. Pick s ∈ S \S ′ and y, z ∈ S ′ different
from x. Considering (s, x, y, z) either s|x, or x|s or one of the four is a sum of the other
three. In the last case we have s = ±x ± y ± z and so x|s. In any case either x or s
divides all elements of S ′ ∪ {s}.

Remark by PSC. The last solution shows that the condition that the elements of S are
positive can be ignored.
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C2. In a certain city there are n straight streets, such that every two streets intersect, and
no three streets pass through the same intersection. The City Council wants to organize
the city by designating the main and the side street on every intersection. Prove that
this can be done in such way that if one goes along one of the streets, from its beginning
to its end, the intersections where this street is the main street, and the ones where it is
not, will apear in alternating order.

Solution. Pick any street s and organize the intersections along s such that the inter-
sections of the two types alternate, as in the statement of the problem.

On every other street s1, exactly one intersection has been organized, namely the one
where s1 intersects s. Call this intersection I1. We want to organize the intersections
along s1 such that they alternate between the two types. Note that, as I1 is already
organized, we have exactly one way to organize the remaining intersections along s1.

For every street s1 ∕= s, we can apply the procedure described above. Now, we only need
to show that every intersection not on s is well-organized. More precisely, this means
that for every two streets s1, s2 ∕= s intersecting at s1 ∩ s2 = A, s1 is the main street on
A if and only if s2 is the side street on A.

Consider also the intersections I1 = s1 ∩ s and I2 = s2 ∩ s. Now, we will define the “role”
of the street t at the intersection X as “main” if this street t is the main street on X,
and “side” otherwise. We will prove that the roles of s1 and s2 at A are different.

Consider the path A → I1 → I2 → A. Let the number of intersections between A and
I1 be u1, the number of these between A and I2 be u2, and the number of these between
I1 and I2 be v. Now, if we go from A to I1, we will change our role u1 + 1 times, as
we will encounter u1 + 1 new intersections. Then, we will change our street from s1 to
s, changing our role once more. Then, on the segment I1 → I2, we have v + 1 new role
changes, and after that one more when we change our street from s1 to s2. The journey
from I2 to A will induce u2 + 1 new role changes, so in total we have changed our role
u1+1+1+ v+1+1+u2+1 = u1+ v+u2+5, As we try to show that roles of s1 and s2
differ, we need to show that the number of role changes is odd, i.e. that u1 + v + u2 + 5
is odd.

Obviously, this claim is equivalent to 2|u1 + v + u2. But u1, v and u2 count the number
of intersections of the triangle AI1I2 with streets other than s, s1, s2. Since every street
other than s, s1, s2 intersects the sides of AI1I2 in exactly two points, the total number
of intersections is even. As a consequence, 2|u1 + v + u2 as required.
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C3. In a 5× 100 table we have coloured black n of its cells. Each of the 500 cells has at
most two adjacent (by side) cells coloured black. Find the largest possible value of n.

Solution. If we colour all the cells along all edges of the board together with the entire
middle row except the second and the last-but-one cell, the condition is satisfied and
there are 302 black cells. The figure below exhibits this colouring for the 5× 8 case.

We can cover the table by one fragment like the first one on the figure below, 24 fragments
like the middle one, and one fragment like the third one.

kjkjeded

mkjgfedc

mgfgfc

mihgfbac

ihihbaba

In each fragment, among the cells with the same letter, there are at most two coloured
black, so the total number of coloured cells is at most (5 + 24 · 6 + 1) · 2 + 2 = 302.

Alternative Solution by PSC. Consider the cells adjacent to all cells of the second
and fourth row. Counting multiplicity, each cell in the first and fifth row is counted once,
each cell in the third row twice, while each cell in the second and fourth row is also
counted twice apart from their first and last cells which are counted only once.

So there are 204 cells counted once and 296 cells counted twice. Those cells contain,
counting multiplicity, at most 400 black cells. Suppose a of the cells have multiplicity
one and b of them have multiplicity 2. Then a+ 2b 󰃑 400 and a 󰃑 204. Thus

2a+ 2b 󰃑 400 + a 󰃑 604 ,

and so a+ b 󰃑 302 as required.

Remark by PSC. The alternative solution shows that if we have equality, then all
cells in the perimeter of the table except perhaps the two cells of the third row must be
coloured black. No other cell in the second or fourth row can be coloured black as this
will give a cell in the first or fifth row with at least three neighbouring black cells. For
similar reasons we cannot colour black the second and last-but-one cell of the third row.
So we must colour black all other cells of the third row and therefore the colouring is
unique.
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C4. We have a group of n kids. For each pair of kids, at least one has sent a message to
the other one. For each kid A, among the kids to whom A has sent a message, exactly
25% have sent a message to A. How many possible two-digit values of n are there?

Solution. If the number of pairs of kids with two-way communication is k, then by the
given condition the total number of messages is 4k + 4k = 8k. Thus the number of pairs
of kids is n(n−1)

2
= 7k. This is possible only if n ≡ 0, 1 mod 7.

• In order to obtain n = 7m+ 1, arrange the kids in a circle and let each kid send a
message to the first 4m kids to its right and hence receive a message from the first
4m kids to its left. Thus there are exactly m kids to which it has both sent and
received messages.

• In order to obtain n = 7m, let kid X send no messages (and receive from every
other kid). Arrange the remaining 7m − 1 kids in a circle and let each kid on the
circle send a message to the first 4m−1 kids to its right and hence receive a message
from the first 4m− 1 kids to its left. Thus there are exactly m kids to which it has
both sent and received messages.

There are 26 two-digit numbers with remainder 0 or 1 modulo 7. (All numbers of the
form 7m and 7m+ 1 with 2 󰃑 m 󰃑 14.)

Alternative Solution by PSC. Suppose kid xi sent 4di messages. (Guaranteed by the
conditions to be a multiple of 4.) Then it received di messages from the kids that it has
sent a message to, and another n − 1 − 4di messages from the rest of the kids. So it
received a total of n− 1− 3di messages. Since the total number of messages sent is equal
to the total number of mesages received, we must have:

d1 + · · ·+ dn = (n− 1− 3d1) + · · ·+ (n− 1− 3dn) .

This gives 7(d1 + · · · + dn) = n(n − 1) from which we get n ≡ 0, 1 mod 7 as in the first
solution.

We also present an alternative inductive construction (which turns out to be different
from the construction in the first solution).

For the case n ≡ 0 mod 7, we start with a construction for 7k kids, say x1, . . . , x7k, and
another construction with 7 kids, say y1, . . . , y7. We merge them by demanding that in
addition, each kid xi sends and receives gifts according to the following table:

i mod 7 Sends Receives
0 y1, y2, y3, y4 y4, y5, y6, y7
1 y2, y3, y4, y5 y5, y6, y7, y1
2 y3, y4, y5, y6 y6, y7, y1, y2
3 y4, y5, y6, y7 y7, y1, y2, y3
4 y5, y6, y7, y1 y1, y2, y3, y4
5 y6, y7, y1, y2 y2, y3, y4, y5
6 y7, y1, y2, y3 y3, y4, y5, y6

So each kid xi sends an additional four messages and receives a message from only one of
those four additional kids. Also, each kid yj sends an additional 4k messages and receives
from exactly k of those additional kids. So this is a valid construction for 7(k + 1) kids.
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For the case n ≡ 1 mod 7, we start with a construction for 7k+1 kids, say x1, . . . , x7k+1,
and we take another 7 kids, say y1, . . . , y7 for which we do not yet mention how they
exchange gifts. The kids x1, . . . , x7k+1 exchange gifts with the kids y1, . . . , y7 according to
the previous table. As before, each kid xi satisfies the conditions. We now put y1, . . . , y7
on a circle and demand that each of y1, . . . , y3 sends gifts to the next four kids on the
circle and each of y4, . . . , y7 sends gifts to the next three kids on the circle. It is each to
check that the condition is satisfied by each yi as well.
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C5. An economist and a statistician play a game on a calculator which does only one
operation. The calculator displays only positive integers and it is used in the following
way: Denote by n an integer that is shown on the calculator. A person types an integer,
m, chosen from the set {1, 2, . . . , 99} of the first 99 positive integers, and if m% of the
number n is again a positive integer, then the calculator displays m% of n. Otherwise,
the calculator shows an error message and this operation is not allowed. The game con-
sists of doing alternatively these operations and the player that cannot do the operation
looses. How many numbers from {1, 2, . . . , 2019} guarantee the winning strategy for the
statistician, who plays second?

For example, if the calculator displays 1200, the economist can type 50, giving the number
600 on the calculator, then the statistician can type 25 giving the number 150. Now, for
instance, the economist cannot type 75 as 75% of 150 is not a positive integer, but can
choose 40 and the game continues until one of them cannot type an allowed number.

Solution. First of all, the game finishes because the number on the calculator always
decreases. By picking m% of a positive integer n, players get the number

m · n
100

=
m · n
2252

.

We see that at least one of the powers of 2 and 5 that divide n decreases after one move,
as m is not allowed to be 100, or a multiple of it. These prime divisors of n are the
only ones that can decrease, so we conclude that all the other prime factors of n are
not important for this game. Therefore, it is enough to consider numbers of the form
n = 2k5ℓ where k, ℓ ∈ N0, and to draw conclusions from these numbers.

We will describe all possible changes of k and ℓ in one move. Since 53 > 100, then ℓ cannot
increase, so all possible changes are from ℓ to ℓ+b, where b ∈ {0,−1,−2}. For k, we note
that 26 = 64 is the biggest power of 2 less than 100, so k can be changed to k+ a, where
a ∈ {−2,−1, 0, 1, 2, 3, 4}. But the changes of k and ℓ are not independent. For example,
if ℓ stays the same, then m has to be divisible by 25, giving only two possibilities for a
change (k, ℓ) → (k − 2, ℓ), when m = 25 or m = 75, or (k, ℓ) → (k − 1, ℓ), when m = 50.
Similarly, if ℓ decreases by 1, then m is divisible exactly by 5 and then the different
changes are given by (k, ℓ) → (k + a, ℓ − 1), where a ∈ {−2,−1, 0, 1, 2}, depending on
the power of 2 that divides m and it can be from 20 to 24. If ℓ decreases by 2, then m is
not divisible by 5, so it is enough to consider when m is a power of two, giving changes
(k, ℓ) → (k + a, ℓ− 2), where a ∈ {−2,−1, 0, 1, 2, 3, 4}.

We have translated the starting game into another game with changing (the starting pair
of non-negative integers) (k, ℓ) by moves described above and the player who cannot make
the move looses, i.e. the player who manages to play the move (k, ℓ) → (0, 0) wins. We
claim that the second player wins if and only if 3 | k and 3 | ℓ.

We notice that all moves have their inverse modulo 3, namely after the move (k, ℓ) →
(k + a, ℓ+ b), the other player plays (k + a, ℓ+ b) → (k + a+ c, ℓ+ b+ d), where

(c, d) ∈ {(0,−1), (0,−2), (−1, 0), (−1,−1), (−1,−2), (−2, 0), (−2,−1), (−2,−2)}

is chosen such that 3 | a+c and 3 | b+d. Such (c, d) can be chosen as all possible residues
different from (0, 0) modulo 3 are contained in the set above and there is no move that
keeps k and ℓ the same modulo 3. If the starting numbers (k, ℓ) are divisible by 3, then
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after the move of the first player at least one of k and ℓ will not be divisible by 3, and
then the second player will play the move so that k and ℓ become divisible by 3 again.
In this way, the first player can never finish the game, so the second player wins. In all
other cases, the first player will make such a move to make k and ℓ divisible by 3 and
then he becomes the second player in the game, and by previous reasoning, wins.

The remaining part of the problem is to compute the number of positive integers n 󰃑 2019
which are winning for the second player. Those are the n which are divisible by exactly
23k53ℓ, k, ℓ ∈ N0. Here, exact divisibility by 23k53ℓ in this context means that 23k || n and
53ℓ || n, even for ℓ = 0, or k = 0. For example, if we say that n is exactly divisible by 8,
it means that 8 | n, 16 ∤ n and 5 ∤ n. We start by noting that for each ten consecutive
numbers, exactly four of them coprime to 10. Then we find the desired amount by dividing
2019 by numbers 23k53ℓ which are less than 2019, and then computing the number of

numbers no bigger than

󰀙
2019

23k53ℓ

󰀚
which are coprime to 10.

First, there are 4·201+4 = 808 numbers (out of positive integers n 󰃑 2019) coprime to 10.
Then, there are

󰀇
2019
8

󰀈
= 252 numbers divisible by 8, and 25 ·4+1 = 101 among them are

exactly divisible by 8. There are
󰀇
2019
64

󰀈
= 31 numbers divisible by 64, giving 3 ·4+1 = 13

divisible exactly by 64. And there are two numbers, 512 and 3 · 512, which are divisible
by exactly 512. Similarly, there are

󰀇
2019
125

󰀈
= 16 numbers divisible by 125, implying that

4+2 = 6 of them are exactly divisible by 125. Finally, there is only one number divisible
by exactly 1000, and this is 1000 itself. All other numbers that are divisible by exactly
23k53ℓ are greater than 2019. So, we obtain that 808+101+13+2+6+1 = 931 numbers
not bigger that 2019 are winning for the statistician.

Alternative Solution by PSC. Let us call a positive integer n losing if n = 2r5sk
where r ≡ s ≡ 0 mod 3 and (k, 10) = 1. We call all other positive integers winning.

Lemma 1. If n is losing, them mn
100

is winning for all m ∈ {1, 2, . . . , 99} such that 100|mn.

Proof of Lemma 1. Let m = 2t5uk′. For mn
100

to be losing, we would need t ≡ u ≡
2 mod 3. But then m 󰃍 100, a contradiction. □
Lemma 2. If n is winning, then there is an m ∈ {1, 2, . . . , 99} such that 100|mn and mn

100

is losing.

Proof of Lemma 2. Let n = 2r5sk where (k, 10) = 1. Pick t, u ∈ {0, 1, 2} such that
t ≡ (2 − r) mod 3 and u ≡ (2 − s) mod 3 and let m = 2t5s. Then 100|mn and mn

100
is

winning. Furthermore m < 100 as otherwise m = 100, t = u = 2 giving r ≡ s ≡ 0 mod 3
contradicting the fact that n was winning. □
Combining Lemmas 1 and 2 we obtain that the second player wins if and only if the game
starts from a losing number.
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GEOMETRY

G1. Let ABC be a right-angled triangle with Â = 90◦ and B̂ = 30◦. The perpendicular
at the midpoint M of BC meets the bisector BK of the angle B̂ at the point E. The
perpendicular bisector of EK meets AB at D. Prove that KD is perpendicular to DE.

Solution. Let I be the incenter of ABC and let Z be the foot of the perpendicular
from K on EC. Since KB is the bisector of B̂, then ∠EBC = 15◦ and since EM is the
perpendicular bisector of BC, then ∠ECB = ∠EBC = 15◦. Therefore ∠KEC = 30◦.
Moreover, ∠ECK = 60◦ − 15◦ = 45◦. This means that KZC is isosceles and thus Z is
on the perpendicular bisector of KC.

Since ∠KIC is the external angle of triangle IBC, and I is the incenter of triangle
ABC, then ∠KIC = 15◦ + 30◦ = 45◦. Thus, ∠KIC = ∠KZC

2
. Since also Z is on

the perpendicular bisector of KC, then Z is the circumcenter of IKC. This means
that ZK = ZI = ZC. Since also ∠EKZ = 60◦, then the triangle ZKI is equilateral.
Moreover, since ∠KEZ = 30◦, we have that ZK = EK

2
, so ZK = IK = IE.

Therefore DI is perpendicular to EK and this means that DIKA is cyclic. So ∠KDI =
∠IAK = 45◦ and ∠IKD = ∠IAD = 45◦. Thus ID = IK = IE and so KD is
perpendicular to DE as required.

15◦

30◦

45◦

C B
M

A

K

EI

D

Z

Alternative Question by Proposers. We can instead ask to prove that ED = 2AD.
(After proving KD ⊥ DE we have that the triangle EDK is right angled and isosceles,
therefore ED = DK = 2AD.) This alternative is probably more difficult because the
perpendicular relation is hidden.

Alternative Solution by PSC. Let P be the point of intersection of EM with AC. The
triangles ABC and MPC are equal since they have equal angles and MC = BC

2
= AC.

They also share the angle Ĉ, so they must have identical incenter.

Let I be the midpoint of EK. We have ∠PEI = ∠BEM = 75◦ = ∠EKP . So the
triangle PEK is isosceles and therefore PI is a bisector of ∠CPM . So the incenter of
MPC belongs on PI. Since it shares the same incentre with ABC, then I is the common
incenter. We can now finish the proof as in the first solution.



24 JBMO 2019, Cyprus
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Alternative Solution by PSC. Let P be the point of intersection of EM with AC
and let I be the midpoint of EK. Then the triangle PBC is equilateral. We also have
∠PEI = ∠BEM = 75◦ and ∠PKE = 75◦, so PEK is isosceles. We also have PI ⊥ EK
and DI ⊥ EK, so the points P,D, I are collinear.

Furthermore, ∠PBI = ∠BPI = 45◦, and therefore BI = PI.

We have ∠DPA = ∠EBM = 15◦ and also BM = AB
2

= AC = PA. So the right-angled
triangles PDA and BEM are equal. Thus PD = BE.

So
EI = BI − BE = PI − PD = DI .

Therefore ∠DEI = ∠IDE = 45◦. Since DE = DK, we also have ∠DEI = ∠DKI =
∠KDI = 45◦. So finally, ∠EDK = 90◦.

Coordinate Geometry Solution by PSC. We may assume that A = (0, 0), B =

(0,
√
3) and C = (1, 0). Since mBC = −

√
3, then mEM =

√
3
3
. Since also M = (1

2
,
√
3
2
),

then the equation of EM is y =
√
3
3
x+

√
3
3
. The slope of BK is

mBK = tan(105◦) =
tan(60◦) + tan(45◦)

1− tan(60◦) tan(45◦)
= −(2 +

√
3) .

So the equation of BK is y = −(2 +
√
3)x +

√
3 which gives K = (2

√
3 − 3, 0) and

E = (2−
√
3,
√
3− 1). Letting I be the midpoint of EK we get I = (

√
3−1
2

,
√
3−1
2

). Thus

I is equidistant from the sides AB,AC, so AI is the bisector of Â, and thus I is the
incenter of triangle ABC. We can now finish the proof as in the first solution.

Metric Solution by PSC. We can assume that AC = 1. Then AB =
√
3 and

BC = 2. So BM = MC = 1. From triangle BEM we get BE = EC = sec(15◦) and
EM = tan(15◦). From triangle BAK we get BK =

√
3 sec(15◦). So EK = BK −BE =

(
√
3 − 1) sec(15◦). Thus, if N is the midpoint of EK, then EN = NK =

√
3−1
2

sec(15◦)

and BN = BE+EN =
√
3+1
2

sec(15◦). From triangle BDN we get DN = BN tan(15◦) =
√
3+1
2

tan(15◦) sec(15◦). It is easy to check that tan(15◦) = 2 −
√
3. Thus DN =

√
3−1
2

sec(15◦) = EN . So DN = EN = EK and therefore ∠EDN = ∠KDN = 45◦

and ∠KDE = 90◦ as required.
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G2. Let ABC be a triangle and let ω be its circumcircle. Let ℓB and ℓC be two parallel
lines passing through B and C respectively. The lines ℓB and ℓC intersect with ω for the
second time at the points D and E respectively, with D belonging on the arc AB, and
E on the arc AC. Suppose that DA intersects ℓC at F , and EA intersects ℓB at G. If
O,O1 and O2 are the circumcenters of the triangles ABC, ADG and AEF respectively,
and P is the center of the circumcircle of the triangle OO1O2, prove that OP is parallel
to ℓB and ℓC .

Solution. We write ω1,ω2 and ω′ for the circumcircles of AGD,AEF and OO1O2 re-
spectively. Since O1 and O2 are the centers of ω1 and ω2, and because DG and EF are
parallel, we get that

∠GAO1 = 90◦ − ∠GO1A

2
= 90◦ − ∠GDA = 90◦ − ∠EFA = 90◦ − ∠EO2A

2
= ∠EAO2 .

So, because G,A and E are collinear, we come to the conclusion that O1, A and O2 are
also collinear.

Let ∠DFE = ϕ. Then, as a central angle ∠AO2E = 2ϕ. Because AE is a common chord
of both ω and ω2, the line OO2 that passes through their centers bisects ∠AO2E, thus
∠AO2O = ϕ. By the collinearity of O1, A,O2, we get that ∠O1O2O = ∠AO2O = ϕ. As
a central angle in ω′, we have ∠O1PO = 2ϕ, so ∠POO1 = 90◦−ϕ. Let Q be the point of
intersection of DF and OP . Because AD is a common chord of ω and ω1, we have that
OO1 is perpendicular to DA and so ∠DQP = 90◦ − ∠POO1 = ϕ. Thus, OP is parallel
to ℓC and so to ℓB as well.

ω1

ω2

ω′

ω

ℓB
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ϕ

ϕ
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Q
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ℓC

O

B C

A

D

E

F

G

O1

O2
P

X

Alternative Solution by PSC. Let us write α, β, γ for the angles of ABC. Since
ADBC is cyclic, we have ∠GDA = 180◦ − ∠BDA = γ. Similarly, we have

∠GAD = 180◦ − ∠DAE = ∠EBD = ∠BEC = ∠BAC = α ,

where we have also used the fact that ℓB and ℓC are parallel.
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Thus, the triangles ABC and AGD are similar. Analogously, AEF is also similar to
them.

Since AD is a common chord of ω and ω1 then AD is perpendicular to OO1. Thus,

∠OO1A =
1

2
∠DO1A = ∠DGA = β .

Similarly, we have ∠OO2A = γ. Since O1, A,O2 are collinear (as in the first solution) we
get that OO1O2 is also similar to ABC. Their circumcentres are P and O respectively,
thus ∠POO1 = ∠OAB = 90◦ − γ.

Since OO1 is perpendicular to AD, letting X be the point of intersection of OO1 with
GD, we get that ∠DXO1 = 90◦ − γ. Thus OP is parallel to ℓB and therefore to ℓC as
well.

Alternative Solution by PSC.

ℓB

ℓC

A

B C

ω
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Let L and Z be the points of intesecrion of OO1 with ℓb and DA respectively. Since LZ
is perpendicular on DA, and since ℓb is parallel to ℓc, then

∠DLO = 90◦ − ∠LDZ = 90◦ − ∠DFE = 90◦ − ∠AFE .

Since AE is a common chord of ω and ω2, then it is perpendicular to OO2. So letting H
be their point of intersection, we get

∠DLO = 90◦ − ∠AFE = 90◦ − ∠AO2H = ∠O2AH . (1)
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Let K,Y, U be the projections of P onto OO2, O1O2 and OO1 respectively. Then Y KUO1

is a parallelogram and so the extensions of PY and PU meet the segments UK and KY
at points X, V such that Y X ⊥ KU and UV ⊥ KY .

Since the points O1, A,O2 are collinear, we have

∠FAO2 = O1AZ = 90◦ −∠AO1Z = 90◦ −∠Y KU = ∠PUK = ∠POK = ∠POK , (2)

where the last equality follows since PUOK is cyclic.

Since AZOH is also cyclic, we have ∠FAH = ∠O1OO2. From this, together with (1)
and (2) we get

∠DLO = ∠O2AH = ∠FAH − ∠FAO2 = ∠O1OO2 − ∠POK = ∠UOP = ∠LOP .

Therefore OP is parallel to ℓB and ℓC .
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G3. Let ABC be a triangle with incenter I. The points D and E lie on the segments CA
and BC respectively, such that CD = CE. Let F be a point on the segment CD. Prove
that the quadrilateral ABEF is circumscribable if and only if the quadrilateral DIEF
is cyclic.

Solution. Since CD = CE it means that E is the reflection of D on the bisector of
∠ACB, i.e. the line CI. Let G be the reflection of F on CI. Then G lies on the segment
CE, the segment EG is the reflection of the segment DF on the line CI. Also, the
quadraliteral DEGF is cyclic since ∠DFE = ∠EGD.

Suppose that the quadrilateral ABEF is circumscribable. Since ∠FAI = ∠BAI and
∠EBI = ∠ABI, then I is the centre of its inscribed circle. Then ∠DFI = ∠EFI and
since segment EG is the reflection of segment DF on the line CI, we have ∠EFI =
∠DGI. So ∠DFI = ∠DGI which means that quadrilateral DIGF is cyclic. Since the
quadrilateral DEGF is also cyclic, we have that the quadrilateral DIEF is cyclic.

A B

C

I

D

E

F

G

Suppose that the quadrilateral DIEF is cyclic. Since quadrilateral DEGF is also cyclic,
we have that the pentagon DIEGF is cyclic. So ∠IEB = 180◦ − ∠IEG = ∠IDG and
since segment EG is the reflection of segment DF on the line CI, we have ∠IDG =
∠IEF . Hence ∠IEB = ∠IEF , which means that EI is the angle bisector of ∠BEF .
Since ∠IFA = ∠IFD = ∠IGD and since the segment EG is the reflection of segment
DF on the line CI, we have ∠IGD = ∠IFE, hence ∠IFA = ∠IFE, which means that
FI is the angle bisector of ∠EFA. We also know that AI and BI are the angle bisectors
of ∠FAB and ∠ABE. So all angle bisectors of the quadrilateral ABEF intersect at I,
which means that it is circumscribable.

Comment by PSC. There is no need for introducing the point G. One can show that
triangles CID and CIE are equal and also that the triangles CDM and CEM are equal,
where M is the midpoint of DE. From these, one can deduce that ∠CDI = ∠CEI and
∠IDE = ∠IED and proceed with similar reasoning as in the solution.
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G4. Let ABC be a triangle such that AB ∕= AC, and let the perpendicular bisector
of the side BC intersect lines AB and AC at points P and Q, respectively. If H is the
orthocenter of the triangle ABC, and M and N are the midpoints of the segments BC
and PQ respectively, prove that HM and AN meet on the circumcircle of ABC.

Solution. We have

∠APQ = ∠BPM = 90◦ − ∠MBP = 90◦ − ∠CBA = ∠HCB ,

and
∠AQP = ∠MQC = 90◦ − ∠QCM = 90◦ − ∠ACB = ∠CBH .

From these two equalities, we see that the triangles APQ andHCB are similar. Moreover,
since M and N are the midpoints of the segments BC and PQ respectively, then the
triangles AQN and HBM are also similar. Therefore, we have ∠ANQ = ∠HMB.

B C

A

P

Q

M

N

H

L

D

Let L be the intersection of AN and HM . We have

∠MLN = 180◦−∠LNM−∠NML = 180◦−∠LMB−∠NML = 180◦−∠NMB = 90◦ .

Now let D be the point on the circumcircle of ABC diametrically oposite to A. It is
known that D is also the relfection of point H over the point M . Therefore, we have
that D belongs on MH and that ∠DLA = ∠MLA = ∠MLN = 90◦. But, as DA is
the diameter of the circumcirle of ABC, the condition that ∠DLA = 90◦ is enough to
conclude that L belongs on the circumcircle of ABC.

Remark by PSC. There is a spiral similarity mapping AQP to HBC. Since the simi-
larity maps AN to HM , it also maps AH to NM , and since these two lines are parallel,
the centre of the similarity is L = AN ∩HM . Since the similarity maps BC to QP , its
centre belongs on the circumcircle of BCX, where X = BQ∩PC. But X is the reflection
of A on QM and so it must belong on the circumcircle of ABC. Hence so must L.
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G5. Let P be a point in the interior of a triangle ABC. The lines AP , BP and CP
intersect again the circumcircles of the triangles PBC, PCA, and PAB at D, E and F
respectively. Prove that P is the orthocenter of the triangle DEF if and only if P is the
incenter of the triangle ABC.

Solution. If P is the incenter of ABC, then ∠BPD = ∠ABP + ∠BAP = Â+B̂
2

, and

∠BDP = ∠BCP = Ĉ
2
. From triangle BDP , it follows that ∠PBD = 90◦, i.e. that EB

is one of the altitudes of the triangle DEF . Similarly, AD and CF are altitudes, which
means that P is the orhocenter of DEF .

A

B C
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D

E

F A

B C
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D

E
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A′

B′

C′

Notice that AP separates B from C, B from E and C from F . Therefore AP separates
E from F , which means that P belongs to the interior of ∠EDF . It follows that P ∈
Int(∆DEF ).

If P is the orthocenter of DEF , then clearly DEF must be acute. Let A′ ∈ EF , B′ ∈ DF
and C ′ ∈ DE be the feet of the altitudes. Then the quadrilaterals B′PA′F , C ′PB′D,
and A′PC ′E are cyclic, which means that ∠B′FA′ = 180◦ −∠B′PA′ = 180◦ −∠BPA =
∠BFA. Similarly, one obtains that ∠C ′DB′ = ∠CDB, and ∠A′EC ′ = ∠AEC.

• If B ∈ Ext(∆FPD), then A ∈ Int(∆EPF ), C ∈ Ext(∆DPE), and thus B ∈
Int(∆FPD), contradiction.

• If B ∈ Int(∆FPD), then A ∈ Ext(∆EPF ), C ∈ Int(∆DPE), and thus B ∈
Ext(∆FPD), contradiction.

This leaves us with B ∈ FD. Then we must have A ∈ EF , C ∈ DE, which means that
A = A′, B = B′, C = C ′. Thus ABC is the orthic triangle of triangle DEF and it is
well known that the orthocenter of an acute triangle DEF is the incenter of its orthic
triangle.
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G6. Let ABC be a non-isosceles triangle with incenter I. Let D be a point on the
segment BC such that the circumcircle of BID intersects the segment AB at E ∕= B,
and the circumcircle of CID intersects the segment AC at F ∕= C. The circumcircle of
DEF intersects AB and AC at the second points M and N respectively. Let P be the
point of intersection of IB and DE, and let Q be the point of intersection of IC and
DF . Prove that the three lines EN,FM and PQ are parallel.

Solution. Since BDIE is cyclic, and BI is the bisector of ∠DBE, then ID = IE.
Similarly, ID = IF , so I is the circumcenter of the triangle DEF. We also have

∠IEA = ∠IDB = ∠IFC ,

which implies that AEIF is cyclic. We can assume that A,E,M and A,N, F are collinear
in that order. Then ∠IEM = ∠IFN . Since also IM = IE = IN = IF , the two isosceles
triangles IEM and INF are congruent, thus EM = FN and therefore EN is parallel
to FM . From that, we can also see that the two triangles IEA and INA are congruent,
which implies that AI is the perpendicular bisector of EN and MF .

Note that ∠IDP = ∠IDE = ∠IBE = ∠IBD, so the triangles IPD and IDB are
similar, which implies that ID

IB
= IP

ID
and IP ·IB = ID2. Similarly, we have IQ·IC = ID2,

thus IP · IB = IQ · IC. This implies that BPQC is cyclic, which leads to

∠IPQ = ∠ICB =
Ĉ

2
.

But ∠AIB = 90◦ + Ĉ
2
, so AI is perpendicular to PQ. Hence, PQ is parallel to EN and

FM .
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G7. Let ABC be a right-angled triangle with Â = 90◦. Let K be the midpoint of BC,
and let AKLM be a parallelogram with centre C. Let T be the intersection of the line
AC and the perpendicular bisector of BM . Let ω1 be the circle with centre C and radius
CA and let ω2 be the circle with centre T and radius TB. Prove that one of the points
of intersection of ω1 and ω2 is on the line LM .

Solution. Let M ′ be the symmetric point of M with respect to T . Observe that T is
equidistant from B and M , therefore M belongs on ω2 and M ′M is a diameter of ω2. It
suffices to prove that M ′A is perpendicular to LM , or equivalently, to AK. To see this,
let S be the point of intersection of M ′A with LM . We will then have ∠M ′SM = 90◦

which shows that S belongs on ω2 as M ′M is a diameter of ω2. We also have that S
belongs on ω1 as AL is diameter of ω1.

Since T and C are the midpoints of M ′M and KM respectively, then TC is parallel
to M ′K and so M ′K is perpendicular to AB. Since KA = KB, then KM ′ is the
perpendicular bisector of AB. But then the triangles KBM ′ and KAM ′ are equal,
showing that ∠M ′AK = ∠M ′BK = ∠M ′BM = 90◦ as required.
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Alternative Solution by Proposers. Since CA = CL, then L belongs on ω1. Let
S be the other point of intersection of ω1 with the line LM . We need to show that S
belongs on ω2. Since TB = TM (T is on the perpendicular bisector of BM) it is enough
to show that TS = TM .

Let N, T ′ be points on the lines AL and LM respectively, such that MN ⊥ LM and
TT ′ ⊥ LM . It is enough to prove that T ′ is the midpoint of SM . Since AL is diameter
of ω1 we have that AS ⊥ LS. Thus, it is enough to show that T is the midpoint of AN .
We have

AT =
AN

2
⇔ AC − CT =

AL− LN

2
⇔ 2AC − 2CT = AL− LN ⇔ LN = 2CT

as AL = 2AC. So it suffices to prove that LN = 2CT .

Let D be the midpoint of BM . Since BK = KC = CM , then D is also the midpont
of KC. The triangles LMN and CTD are similar since they are right-angled with
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∠TCD = ∠CAK = ∠MLN . (AK = KC and AK is parallel to LM .) So we have

LN

CT
=

LM

CD
=

AK

CD
=

CK

CD
= 2 ,

as required.
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NUMBER THEORY

N1. Find all prime numbers p for which there are non-negative integers x, y and z such
that the number

A = xp + yp + zp − x− y − z

is a product of exactly three distinct prime numbers.

Solution. For p = 2, we take x = y = 4 and z = 3. Then A = 30 = 2 · 3 · 5. For p = 3
we can take x = 3 and y = 2 and z = 1. Then again A = 30 = 2 · 3 · 5. For p = 5 we can
take x = 2 and y = 1 and z = 1. Again A = 30 = 2 · 3 · 5.

Assume now that p 󰃍 7. Working modulo 2 and modulo 3 we see that A is divisible by
both 2 and 3. Moreover, by Fermat’s Little Theorem, we have

xp + yp + zp − x− y − z ≡ x+ y + z − x− y − z = 0 mod p .

Therefore, by the given condition, we have to solve the equation

xp + yp + zp − x− y − z = 6p .

If one of the numbers x, y and z is bigger than or equal to 2, let’s say x 󰃍 2, then

6p 󰃍 xp − x = x(xp−1 − 1) 󰃍 2(2p−1 − 1) = 2p − 2 .

It is easy to check by induction that 2p − 2 > 6p for all primes p 󰃍 7. This contradiction
shows that there are no more values of p which satisfy the required property.

Remark by PSC. There are a couple of other ways to prove that 2p− 2 > 6p for p 󰃍 7.
For example, we can use the Binomial Theorem as follows:

2p − 2 󰃍 1 + p+
p(p− 1)

2
+

p(p− 1)(p− 2)

6
− 2 󰃍 1 + p+ 3p+ 5p− 2 > 6p .

We can also use Bernoulli’s Inequality as follows:

2p − 2 = 8(1 + 1)p−3 − 2 󰃍 8(1 + (p− 3))− 2 = 8p− 18 > 6p

The last inequality is true for p 󰃍 11. For p = 7 we can see directly that 2p − 2 > 6p.
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N2. Find all triples (p, q, r) of prime numbers such that all of the following numbers are
integers

p2 + 2q

q + r
,

q2 + 9r

r + p
,

r2 + 3p

p+ q
.

Solution. We consider the following cases:

1st Case: If r = 2, then r2+3p
p+q

= 4+3p
p+q

. If p is odd, then 4+ 3p is odd and therefore p+ q

must be odd. From here, q = 2 and r2+3p
p+q

= 4+3p
p+2

= 3− 2
p+2

which is not an integer. Thus

p = 2 and r2+3p
p+q

= 10
q+2

which gives q = 3. But then q2+9r
r+p

= 27
4
which is not an integer.

Therefore r is an odd prime.

2nd Case: If q = 2, then q2+9r
r+p

= 4+9r
r+p

. Since r is odd, then 4 + 9r is odd and therefore

r+p must be odd. From here p = 2, but then r2+3p
p+q

= r2+6
4

which is not integer. Therefore
q is an odd prime.

Since q and r are odd primes, then q + r is even. From the number p2+2q
q+r

we get that

p = 2. Since p2+2q
q+r

= 4+2q
q+r

< 2, then 4 + 2q = q + r or r = q + 4. Since

r2 + 3p

p+ q
=

(q + 4)2 + 6

2 + q
= q + 6 +

10

2 + q
,

is an integer, then q = 3 and r = 7. It is easy to check that this triple works. So the only
answer is (p, q, r) = (2, 3, 7).
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N3. Find all prime numbers p and nonnegative integers x ∕= y such that x4 − y4 =
p(x3 − y3).

Solution. If x = 0 then y = p and if y = 0 then x = p. We will show that there are no
other solutions.

Suppose x, y > 0. Since x ∕= y, we have

p(x2 + xy + y2) = (x+ y)(x2 + y2) . (∗)

If p divides x + y, then x2 + y2 must divide x2 + xy + y2 and so it must also divide xy.
This is a contradiction as x2 + y2 󰃍 2xy > xy.

Thus p divides x2 + y2, so x + y divides x2 + xy + y2. As x + y divides x2 + xy and
y2 + xy, it also divides x2, xy and y2. Suppose x2 = a(x + y), y2 = b(x + y) and
xy = c(x + y). Then x2 + xy + y2 = (a + b + c)(x + y), x2 + y2 = (a + b)(x + y), while
(x+ y)2 = x2 + y2 + 2xy = (a+ b+ 2c)(x+ y) yields x+ y = a+ b+ 2c.

Substituting into (∗) gives

p(a+ b+ c) = (a+ b+ 2c)(a+ b) .

Now let a+ b = dm and c = dc1, where gcd(m, c1) = 1. Then

p(m+ c1) = (m+ 2c1)dm .

If m+c1 and m had a common divisor, it would divide c1, a contradiction. So gcd(m,m+
c1) = 1. and similarly, gcd(m + c1,m + 2c1) = 1. Thus m + 2c1 and m divide p, so
m+ 2c1 = p and m = 1. Then m+ c1 = d so c 󰃍 d = a+ b. Now

xy = c(x+ y) 󰃍 (a+ b)(x+ y) = x2 + y2 ,

again a contradiction.

Alternative Solution by PSC. Let d = gcd(x, y). Then x = da and y = db for some
a, b such that gcd(a, b) = 1. Then

d4(a4 − b4) = pd3(a3 − b3) ,

which gives
d(a+ b)(a2 + b2) = p(a2 + ab+ b2) . (∗)

If a prime q divides both a+b and a2+ab+b2, then it also divides (a+b)2−(a2+ab+b2) =
ab. So q divides a or q divides b. Since q also divides a + b, it must divide both a and
b. This is impossible as gcd(a, b) = 1. So gcd(a + b, a2 + ab + b2) = 1 and similarly
gcd(a2 + b2, a2 + ab+ b2) = 1. Then (a+ b)(a2 + b2) divides p and since a+ b 󰃑 a2 + b2,
then a+ b = 1.

If a = 0, b = 1 then (∗) gives d = p and so x = 0, y = p which is obviously a solution. If
a = 1, b = 0 we similarly get the solution x = p, y = 0. These are the only solutions.
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N4. Find all integers x, y such that

x3(y + 1) + y3(x+ 1) = 19 .

Solution. Substituting s = x+ y and p = xy we get

2p2 − (s2 − 3s)p+ 19− s3 = 0 . (1)

This is a quadratic equation in p with discriminant D = s4 + 2s3 + 9s2 − 152.

For each s we have D < (s2 + s+ 5)2 as this is equivalent to (2s+ 5)2 + 329 > 0.

For s 󰃍 11 and s 󰃑 −8 we have D > (s2+s+3)2 as this is equivalent to 2s2−6s−161 > 0,
and thus also to 2(s+ 8)(s− 11) > −15.

We have the following cases:

• If s 󰃍 11 or s 󰃑 −8, then D is a perfect square only when D = (s2 + s + 4)2, or
equivalently, when s = −21. From (1) we get p = 232 (which yields no solution) or
p = 20, giving the solutions (−1,−20) and (−20,−1).

• If −7 󰃑 s 󰃑 10, then D is directly checked to be perfect square only for s = 3.
Then p = ±2 and only p = 2 gives solutions, namely (2, 1) and (1, 2).

Remark by PSC. In the second bullet point, one actually needs to check 18 possible
values of s which is actually quite time consuming. We did not see many possible short-
cuts. For example, D is always a perfect square modulo 2 and modulo 3, while modulo
5 we can only get rid the four cases of the form s ≡ 0 mod 5.
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N5. Find all positive integers x, y, z such that

45x − 6y = 2019z .

Solution. We define v3(n) to be the non-negative integer k such that 3k|n but 3k+1 ∤ n.
The equation is equivalent to

32x · 5x − 3y · 2y = 3z · 673z .

We will consider the cases y ∕= 2x and y = 2x separately.

Case 1. Suppose y ∕= 2x. Since 45x > 45x−6y = 2019z > 45z, then x > z and so 2x > z.
We have

z = v3 (3
z · 673z) = v3

󰀃
32x · 5x − 3y · 2y

󰀄
= min{2x, y} ,

as y ∕= 2x. Since 2x > z, we get z = y. Hence the equation becomes 32x · 5x − 3y · 2y =
3y · 673y, or equivalently,

32x−y · 5x = 2y + 673y .

Case 1.1. Suppose y = 1. Doing easy manipulations we have

32x−1 · 5x = 2 + 673 = 675 = 33 · 52 =⇒ 45x−2 = 1 =⇒ x = 2 .

Hence one solution which satisfies the condition is (x, y, z) = (2, 1, 1).

Case 1.2. Suppose y 󰃍 2. Using properties of congruences we have

1 ≡ 2y + 673y ≡ 32x−y · 5y ≡ (−1)2x−y mod 4 .

Hence 2x− y is even, which implies that y is even. Using this fact we have

0 ≡ 32x−y · 5y ≡ 2y + 673y ≡ 1 + 1 ≡ 2 mod 3 ,

which is a contradiction.

Case 2. Suppose y = 2x. The equation becomes 32x · 5x − 32x · 22x = 3z · 673z, or
equivalently,

5x − 4x = 3z−2x · 673z .

Working modulo 3 we have

(−1)x − 1 ≡ 5x − 4x ≡ 3z−2x · 673z ≡ 0 mod 3 ,

hence x is even, say x = 2t for some positive integer t. The equation is now equivalent to

󰀃
5t − 4t

󰀄 󰀃
5t + 4t

󰀄
= 3z−4t · 673z .

It can be checked by hand that t = 1 is not possible. For t 󰃍 2, since 3 and 673 are the only
prime factors of the right hand side, and since, as it is easily checked gcd(5t−4t, 5t+4t) = 1
and 5t−4t > 1, the only way for this to happen is when 5t−4t = 3z−4t and 5t+4t = 673z

or 5t − 4t = 673z and 5t + 4t = 3z−4t. Adding together we have

2 · 5t = 3z−4t + 673z .
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Working modulo 5 we have

0 ≡ 2 · 5t ≡ 3z−4t + 673z ≡ 34t · 3z−4t + 3z ≡ 2 · 3z mod 5 ,

which is a contradiction. Hence the only solution which satisfies the equation is (x, y, z) =
(2, 1, 1).

Alternative Solution by PSC. Working modulo 5 we see that −1 ≡ 4z mod 5 and
therefore z is odd. Now working modulo 4 and using the fact that z is odd we get that
1−2y ≡ 3z ≡ 3 mod 4. This gives y = 1. Now working modulo 9 we have −6 ≡ 3z mod 9
which gives z = 1. Now since y = z = 1 we get x = 2 and so (2, 1, 1) is the unique
solution.
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N6. Find all triples (a, b, c) of nonnegative integers that satisfy

a! + 5b = 7c .

Solution. We cannot have c = 0 as a! + 5b 󰃍 2 > 1 = 70.

Assume first that b = 0. So we are solving a!+1 = 7c. If a 󰃍 7, then 7|a! and so 7 ∤ a!+1.
So 7 ∤ 7c which is impossible as c ∕= 0. Checking a < 7 by hand, we find the solution
(a, b, c) = (3, 0, 1).

We now assume that b > 0. In this case, if a 󰃍 5, we have 5|a!, and since 5|5b, we have
5|7c, which obviously cannot be true. So we have a 󰃑 4. Now we consider the following
cases:

Case 1. Suppose a = 0 or a = 1. In this case, we are solving the equation 5b + 1 = 7c.
However the Left Hand Side of the equation is always even, and the Right Hand Side is
always odd, implying that this case has no solutions.

Case 2. Suppose a = 2. Now we are solving the equation 5b + 2 = 7c. If b = 1, we have
the solution (a, b, c) = (2, 1, 1). Now assume b 󰃍 2. We have 5b + 2 ≡ 2 mod 25 which
implies that 7c ≡ 2 mod 25. However, by observing that 74 ≡ 1 mod 25, we see that the
only residues that 7c can have when divided with 25 are 7, 24, 18, 1. So this case has no
more solutions.

Case 3. Suppose a = 3. Now we are solving the equation 5b + 6 = 7c. We have
5b + 6 ≡ 1 mod 5 which implies that 7c ≡ 1 mod 5. As the residues of 7c modulo 5 are
2, 4, 3, 1, in that order, we obtain 4|c.

Viewing the equation modulo 4, we have 7c ≡ 5b + 6 ≡ 1 + 2 ≡ 3 mod 4. But as 4|c, we
know that 7c is a square, and the only residues that a square can have when divided by
4 are 0, 1. This means that this case has no solutions either.

Case 4. Suppose a = 4. Now we are solving the equation 5b + 24 = 7c. We have
5b ≡ 7c − 24 ≡ 1 − 24 ≡ 1 mod 3. Since 5 ≡ 2 mod 3, we obtain 2|b. We also have
7c ≡ 5b +24 ≡ 4 mod 5, and so we obtain c ≡ 2 mod 4. Let b = 2m and c = 2n. Observe
that

24 = 7c − 5b = (7n − 5m)(7n + 5m) .

Since 7n + 5m > 0, we have 7n − 5m > 0. There are only a few ways to express 24 =
24 · 1 = 12 · 2 = 8 · 3 = 6 · 4 as a product of two positive integers. By checking these cases
we find one by one, the only solution in this case is (a, b, c) = (4, 2, 2).

Having exhausted all cases, we find that the required set of triples is

(a, b, c) ∈ {(3, 0, 1), (1, 2, 1), (4, 2, 2)} .
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N7. Find all perfect squares n such that if the positive integer a 󰃍 15 is some divisor of
n then a+ 15 is a prime power.

Solution. We call positive a integer a “nice” if a+ 15 is a prime power.

From the definition, the numbers n = 1, 4, 9 satisfy the required property. Suppose that
for some t ∈ Z+, the number n = t2 󰃍 15 also satisfies the required property. We have
two cases:

1. If n is a power of 2, then n ∈ {16, 64} since

24 + 15 = 31, 25 + 15 = 47, and 26 + 15 = 79

are prime, and 27 + 15 = 143 = 11 · 13 is not a prime power. (Thus 27 does not
divide n and therefore no higher power of 2 satisfies the required property.)

2. Suppose n has some odd prime divisor p. If p > 3 then p2|n and p2 > 15 which
imply that p2 must be a nice number. Hence

p2 + 15 = qm

for some prime q and some m ∈ Z+. Since p is odd, then p2 + 15 is even, thus we
can conclude that q = 2. I.e.

p2 + 15 = 2m .

Considering the above modulo 3, we can see that p2 + 15 ≡ 0, 1 mod 3, so 2m ≡
1 mod 3, and so m is even. Suppose m = 2k for some k ∈ Z+. So we have
(2k − p)(2k + p) = 15 and (2k + p)− (2k − p) = 2p 󰃍 10. Thus

2k − p = 1 and 2k + p = 15 ,

giving p = 7 and k = 3. Thus we can write n = 4x · 9y · 49z for some non-negative
integers x, y, z.

Note that 27 is not nice, so 27 ∤ n and therefore y 󰃑 1. The numbers 18 and 21 are
also not nice, so similarly, x, y and y, z cannot both positive. Hence, we just need
to consider n = 4x · 49z with z 󰃍 1.

Note that 73 is not nice, so z = 1. By checking directly, we can see that 72 + 15 =
26, 2·72+15 = 113, 4·72+15 = 211 are nice, but 8·72 is not nice, so only n = 49, 196
satisfy the required property.

Therefore, the numbers n which satisfy the required property are 1, 4, 9, 16, 49, 64 and
196.

Remark by PSC. One can get rid of the case 3|n by noting that in that case, we have
9|n. But then n2 +15 is a multiple of 3 but not a multiple of 9 which is impossible. This
simplifies a little bit the second case.




